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Abstract
In this paper we propose a novel kind of trajectory analysis, so called context matching. It matches a given trajectory against
a movement model, which is given as a Markov chain, capturing what we call the movement context. Particle filters are then
used to match a given trajectory against its movement context with the ultimate goal of inferring semantic properties of
the movement trajectory. Firstly, we introduce the method in its generality by illustrating multiple showcases. Secondly,
we develop the formal model of context-matching. Finally, we illustrate an example use-case for annotating trajectories of
fishing vessels into fishing and sailing segments. By doing so, we show the effectiveness of context matching and its use in
enriching real-world trajectory datasets.
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1. Introduction
Location tracking of moving objects is becoming more
and more feasible, thanks to the recent advancement
of various technologies, including GPS, Wi-Fi-tracking,
Bluetooth, etc. The data collected from these devices are
typically sequences of location and time. The seman-
tics of the movement, such as the purpose of the trip
and the mode of transport, are not captured during the
observation process. This gap has been identified and
addressed by extensive research work under the title of
semantic trajectories, where one major task is to annotate
trajectory segments by some behavioral properties.

In the literature, many papers approach the matching
of semantic representation to a given trajectory dataset
by using segmentation algorithms [1, 2, 3]. Although
these papers show promising results, the methodologies
that they propose are specified uniquely to a given dataset
or a given context and do not work in a generalized way.
The objective of this paper is to generalize the problem
and approach it in a unified way.

The abstract idea of this work is that the object is mov-
ing in two spaces: it is moving in the geospatial space, as
observed by the location tracking device, and in parallel,
it moves in a semantic space changing its semantic prop-
erties, which we call context. We assume that this context
space can be modeled, using domain knowledge. The task
of inferring the movement semantics is thus mapped into
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matching the observed spatiotemporal trajectory against
the modeled context, i.e., context-matching.

This paper aims to propose a general methodology
that solves the problem of context-matching. Particle fil-
ters [4] are generally used to solve estimation problems,
with wide adoption in the fields of robotics and trajec-
tory guessing. The proposed methodology uses particle
filtering in its core alongside Hidden Markov Models and
concepts seen in Map-Matching [5] in order to match a
defined set of context to a given set of trajectory data.

To represent the context, we use Markov chain which
is a statistical model consisting of a set of states and the
probabilities of moving between them. The model defines
the context that needs to be matched to the spatiotempo-
ral trajectory. After defining the model, particle filtering
algorithm is applied to the spatiotemporal trajectory in
order to match a context to each trajectory point. The
particle filtering process allows us to generate particles
for each given observation and with the help of our model
representation, we can choose the best particle between
particles (filtering process) and keep it as the context
result associated with that given observation. With the
above considerations, our main contributions are:

• the introduction of context-matching, as a generic anal-
ysis for inferring trajectory semantics

• a generalized technique based on particle filtering in
order to match context to the trajectory data

• illustration of the application of the proposed method-
ology on real-world data

The rest of the paper is organized as follows. In Sec-
tion 2, we casually describe context-matching and the
motivation behind it. Section 3 discusses related work.
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Section 4 provides the formal development of context-
matching. We then illustrate a showcase in Section 5.
Lastly, Section 6 concludes this paper and discusses pos-
sible future directions on the topic.

2. Context-Matching
This section casually describes the idea of context-
matching, through examples in different mobility do-
mains, and different application focus. The first example
(Figure 1a, Figure 1b), presented in [6], tries to infer the
flight operations in San Francisco airport. The ADS-B tra-
jectories of aircraft are analyzed in order to identify the
combination of landing, turnover, and take-off resources
(e.g., runways) used by the aircraft. This analysis is impor-
tant for addressing the challenges of airspace monitoring.
The paper proposes a non-supervised waypoint-based
trajectory clustering to identify and group the turning
points into different configurations. Fig. 2 illustrates a
simplistic Markov chain that represents the semantic se-
quence of events through which flight operations can
be determined. We call this Markov chain, the context-
diagram. The proposed context-matching will stochas-
tically devise a correct assignment of the labels in this
context diagram to the trajectory points. Such semantic
enrichment of the trajectory points would thus enable
the identification of flight operations.

(a) San Francisco airport di-
agram with take-off and
landing direction in the
west configuration [6]

(b) Northern California TRA-
CON (NCT) standard traffic
patterns, west configuration
[6]

Figure 1: Example patterns of flight operations

A second work that can be achieved by context-
matching is the segmentation of fishing vessel trajecto-
ries. For instance, [3] proposes window-based trajectory
segmentation algorithm that aims to detect fishing ac-
tivities as completely as possible. This example will be
illustrated in the experiments in Section 5.
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Figure 2: An example Markov Chain capturing the gen-
eral model of flight ground operations. Every flight under-
goes three main steps: (1) landing on a selected runway, (2)
turnaround operations on the ground, i.e., operations for
handling inbound and outbound exchanges of passengers,
crew, catering, cargo, and baggage, (3) taking-off from a se-
lected runway. For every step, there are multiple choices,
i.e., landing/take-off runway, and turnaround operations. The
transitions/edges are weighted. Weights might come from
the operations manual of the airport, or observed in the data
history. An operations-mode is abstracted in this diagram as
the combination of landing, turnaround, and takeoff states.
Notice that this is a simplified ‘proof-of-concept’ diagram,
that might be further detailed, e.g., by further breaking down
turnaround operations.

Context-matching is proposed as an abstraction of
these analyses. Abstractly speaking, these applications
try to infer semantic properties of the moving trajectory,
which were lost during the observation process. Context-
matching assumes that these analyses, and alike, can be
carried out through matching the trajectories to models
that capture their movement mode/behavior/semantics,
here called context. While the movement model can vary
across data and application domains, the matching algo-
rithm remains the same. The analysis task then trans-
forms into defining a movement model that best captures
the context. As such, we are able to carry them out in a
unified way using the same algorithm.

3. Related Work
Moving object databases are mainly focused on storing
trajectories as location sequences [7, 8, 9]. Understanding
the movement semantics is however essential for many
analyses. In the literature, different methodologies are
used for inferring the trajectory semantics. The common
aspect of these methodologies is that they are specific to
a certain data modality and certain semantic properties.
In [10, 11], each trajectory point is assigned to a specific
label describing the activity of the fishing vessel at that
point. On another class of applications, [2, 12, 1, 3, 13, 14]
deal with trajectory segmentation problem and partition
the trajectory data into segments and label each segment
with a given activity. These approaches are not general-



izable, as they are tightly fitted to specific domains.
The proposed context-matching methodology inspires

by the methods introduced in the Map-Matching domain
[5, 15]. The problem of map-matching is defined as the
procedure that determines which road a vehicle is on
utilizing data from sensors. Hence, in the context of map-
matching, we are matching the trajectory data with the
underlying road network. This is similar to what we
desire to achieve in context-matching which is matching
a given set of labels to trajectory data. In [15], a state
of the art is given for different methods used to solve
the problem of map-matching. These methods range
from geometric approaches to topological approaches
and probabilistic approaches.

In [15], a Hidden Markov Model is used as a probabilis-
tic model to solve the problem of map-matching. We
inspire from this approach in our methodology in order
to define how context is defined and how to transition
from one context to another by using the Markov chain.
In HMM map-matching, the Viterbi algorithm [16] is
used generally in order to procure the most probable
lattice through the hidden state and output it as the re-
sult. This algorithm works fine in map-matching but
in context-matching it is difficult to apply it because of
added context to the state space. This is why we opted
to use particle filter which is more flexible.

Particle filtering [17] is a sequential Monte Carlo algo-
rithm that is a probabilistic model used in the method-
ology to assign context to a given point by using the
defined model’s transition probabilities. Particle filtering
is a genetic algorithm. Its objective is to find the most
probable sequence of hidden states in a given model.

4. Proposed Methodology
Context-Matching consists of matching a given set of
semantic properties (context) to a given sequence of spa-
tiotemporal points. We assign labels to each trajectory
point which describes its movement semantics. Hence,
the input data is a set of trajectory points that should
at least provide spatiotemporal coordinates. In addition,
each trajectory point could have the necessary infor-
mation regarding the context such as speed, heading,
time, distance from the last collected trajectory point,
etc. Based on this input, the methodology decides how
to assign the semantic representation to each trajectory
point. The output of the methodology is the annotated
trajectory, in which each trajectory point is augmented
by labels that represent its semantic (context).

The methodology has two main parts. Firstly we need
to define the model by specifying its Markov chain. Then,
we need to apply particle filtering to this model in order
to obtain the matching of trajectory data in which each
trajectory instance has a label assigned to it that describes

its movement semantic.

4.1. Input definition
We start by defining the input for the context-matching
analysis. As mentioned earlier, this methodology uses a
Markov chain as a representation of state-space, which
describes the movement context. A Markov Chain is a
stochastic process that undergoes transitions from one
state to another. The Markov property restricts that each
step in the process is memory-less. In other words, only
the current state of the process is affecting its successor
state, and not the long history of the state transitions.

This stochastic process may thus be described as a
Bayesian systems where the probability of the current
state depends only on the previous state. We describe
this context, i.e., the Markov chain, by a weighted di-
rected graph, where the edges indicate the transition
probabilities of going from one state 𝑐 to another. In the
sequel, we call the Markov chain used for representing
the movement context as the context-diagram.

As input, we also get a spatiotemporal trajectory in the
form of a sequence of observations < (𝑙𝑜𝑐𝑖, 𝑡𝑖) >. Other
spatiotemporal properties of the moving objects may be
available or computed, such as the speed, heading, dis-
tance from certain geospatial objects, etc. In an abstract
sense, a list of observations, either recorded by sensors
or derived is available, denoted as 𝑍 = {𝑧1, ..., 𝑧𝑛}.

What makes context-matching complex in its model-
ing is the state space. In addition to geographic infor-
mation such as the speed, direction, and coordinates, a
label feature is added as well to represent the context.
Hence we need a genetic algorithm that could consider
this when finding an optimal path through the model
lattice.

4.2. Particle filters
A particle filter, similar to the Kalman filter, is a tech-
nique for estimating the state of a dynamic system. It
is a recursion-based filter which takes the current belief
and updates it based on so-called motion information or
control commands and based on observations. In con-
trast to the Kalman, it relaxes the assumption that we
are in a Gaussian space. It actually allows you to de-
scribe arbitrary probability distributions and it uses a
non-parametric form in order to do this.

What the particle filter does is that it just uses a num-
ber of so-called particles, which are hypotheses for the
system being in one single state. Every particle refers to
one guess that the system is in that state. For context-
matching, the state represents some semantic properties
of a moving object. Then a thousand particles will be a
thousand guesses or a thousand hypotheses about what
the object’s state could be in the real-world.



The particle filtering process aims at estimating the
most probable sequence of states from the given sequence
of observations. To do so, it applies the weight-and-
resampling method to perform a kind of survival-of-the-
fittest principle by injecting the tendency to replicate par-
ticles which have a high importance weight and to forget
those particles which have a low importance weight. In
general, particle filtering process consists of three steps.
For each observation 𝑧𝑡 at time 𝑡, the particle filtering pro-
cess deals with multiple particles 𝑆𝑡 = {𝑥1

𝑡 , 𝑥
2
𝑡 , ..., 𝑥

𝑙
𝑡},

each of which is weighted by an importance weight
𝑊𝑡 = {𝑤1

𝑡 , 𝑤
2
𝑡 , ..., 𝑤

𝑙
𝑡}. Assuming that the particles

and weights are already initialized at time 0, here are the
three steps of the particle filtering process:

1. Sampling: particles in 𝑆𝑡 are sampled with replace-
ment according to their weights in𝑊𝑡, i.e., bootstrapping.
This shall result, as illustrated in Fig.3, that the higher-
weight particles get selected multiple times, while some
lower-weight particles get never selected. The resam-
pling step can be compared to "natural selection" where
the best samples survive.

2. Update/Drift & Diffuse: for each particle 𝑥𝑖
𝑡 ∈ 𝑆𝑡

a new particle 𝑥𝑖
𝑡+1 is generated. This step is broken into:

a given the context-state of the selected particle 𝑥𝑖
𝑡, let

it be denoted 𝑐𝑖𝑡, draw a sample context-state 𝑐𝑖𝑡+1

using the transition probabilities in the Markov chain

b based on 𝑥𝑖
𝑡 and 𝑐𝑖𝑡+1, generate a new particle 𝑥𝑖

𝑡+1

by applying the corresponding motion model 𝐹 . The
motion model will result in an update action 𝑢𝑡+1,
e.g., a translation with a certain speed and heading.
This is denoted Drift in Fig. 3. Here we are assuming
the spatiotemporal properties of the movement are
different per context-state. This is a realistic assump-
tion since otherwise, we know that there is no suffi-
cient information to infer the movement semantics.
For instance, a fishing vessel will undergo different
speeds, turns, etc, when fishing than when sailing.
Next, a noise model (Diffuse) is applied in order to
cover some unlikely hypotheses and to differentiate
the particles that are copied from the same 𝑥𝑖

𝑡. In
practice, drift and diffuse can be combined in the mo-
tion model 𝐹 . In such a case, 𝐹 is represented as a
set of probability distributions of the motion delta of
every spatiotemporal property.

3. Measure: This is where the observation 𝑧𝑡 comes
into the play. A weight is assigned for each generated
particle 𝑥𝑖

𝑡+1 ∈ 𝑆𝑡+1 proportional to the emission prob-
abilities of the model 𝑃𝑒(𝑧𝑡+1, 𝑥

𝑖
𝑡+1). Weights can be as

simple as the inverse of the euclidean distance between
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Figure 3: The particle filtering process

the particle and the observation, or involve other complex
similarity measures, depending on the application.

In other words, particle filters allow us to estimate the
internal states in dynamical systems when partial obser-
vations are made and there are perturbations in the data.
The principle is to randomly generate particles following
the transition probability laws, and then select the most
likely ones according to the observations and the emis-
sion probability laws defined in the model. The objective
is to calculate the posterior process of a Markov model
given the observation state. This posterior state space
is represented by with temporal set 𝑆𝑡 with 𝑛 weighted
particles. The sum of all importance weights at time 𝑡
for a sample set 𝑥 is 1. Mathematically particle filters are
solving the following:

• given a set of particles 𝑆𝑡 = {𝑥1
𝑡 , 𝑥

2
𝑡 , ..., 𝑥

𝑙
𝑡},

representing the posterior 𝐵𝑒𝑙(𝑥𝑡) =
𝑃 (𝑥𝑡|𝑧1, ..., 𝑧𝑡, 𝑢1, ..., 𝑢𝑡)

• generate a set of particles 𝑆𝑡+1 =
{𝑥1

𝑡+1, 𝑥
2
𝑡+1, ..., 𝑥

𝑙
𝑡+1} of 𝐵𝑒𝑙(𝑥𝑡) =

𝑃 (𝑥𝑡+1|𝑧1, ..., 𝑧𝑡, zt+1, 𝑢1, ..., 𝑢𝑡,ut+1)

Instead of attempting to solve the exact Bayes system
to find the posterior, particle filters represents the distri-
bution of the posterior by a set of particles drawn from
this distribution. Such a representation is approximate,
but it is non-parametric, and therefore can represent a
much broader space of distributions than, for example,
Gaussians, which is needed to enable a wide range of
applications for context-matching.

As can be seen, in Drift & Diffuse step in Fig. 3, no
observation is taken into consideration and the particle
generation is based on the Markov chain context and



the motion model to generate particles. It is at this step
that we take into account the transition probabilities of
the model. The Measure step is in charge of assigning
a weight to each generated particle. This step uses the
emission probabilities of the model in order to give each
sample a well-defined weight. Hence, during the first
step, new samples are generated from the previous ones,
regardless of the observation 𝑧𝑡+1. In context-matching
application, the particle filtering process samples gen-
erate many pseudo-random trajectory points associated
with context-states and then select the ones that stick
the most to the observation state.

It should also be noted that for each time instant 𝑡,
there are multiple sample candidates and even if they are
classified by the importance sampling step, there is not
only one retained. This dynamic setup makes the system
resilient to noise and observation errors.

4.3. Context-Matching
To sum-up, the proposed context-matching, as illustrated
in Algorithm 1, model consists of:
1. A movement context, given as a Markov chain 𝐺 =
(𝐶 = {𝑐1, ..., 𝑐𝑘}, 𝑃𝑡 = {𝑝𝑖𝑗 |1 ≤ 𝑖, 𝑗 ≤ 𝑘, 0 ≤ 𝑝𝑖𝑗 ≤
1})
2. A trajectory, given as a sequence of observations
𝑍 = {𝑧1, ..., 𝑧𝑛}, where every observation contains the
spatiotemporal coordinates and possibly other movement
attributes.
3. A movement model 𝐹 , computed from ground truth.
This model is used in the drift & diffuse step in order to
change the sampled particles.
4. The particle filter process, as follows:

a A set of particles 𝑆𝑡 = {𝑥1
𝑡 , 𝑥

2
𝑡 , ..., 𝑥

𝑙
𝑡}, which

are initially randomized uniformally over the state-
space. Alongside, there is also the set of weights
𝑊𝑡 = {𝑤1

𝑡 , 𝑤
2
𝑡 , ..., 𝑤

𝑙
𝑡}. 𝑊0 is initialized with equal

weights 1/𝑙 for all particles. For both sets 𝑡 iterates
in the range [1..𝑛[, where 𝑛 is the number of obser-
vations in 𝑍 , (lines 2,3 in Alg. 1).

b A bootstrapping routine for the weighted sampling
of particles𝑍 , (line 5 in Alg. 1).

c A drift & diffuse routine for applying the movement
model 𝐹 to the sampled particles, and producing
𝑆𝑡+1 = {𝑥1

𝑡+1, 𝑥
2
𝑡+1, ..., 𝑥

𝑙
𝑡+1}, (line 6).

d A measure routine to assign weights 𝑊𝑡+1 =
{𝑤1

𝑡+1, 𝑤
2
𝑡+1, ..., 𝑤

𝑙
𝑡+1}, (line 9).

e Steps b – d are repeated until all the 𝑛 trajectory
observations are consumed.

5. The particle filter is an online process that keeps up-
dating the hypotheses, without retaining the history of

updates. For context matching, we would like to track the
history for performing the semantic annotation. For this,
we upgrade the particles with additional memory each
𝑀𝑖 = {𝑚1

𝑖 ,𝑚
2
𝑖 , ...,𝑚

𝑛
𝑖 }. At every drift & diffuse step,

we append the sampled context-state in the memory of
the particle in hand, (line 7 in Alg. 1). The mechanism of
the survival-of-the-fittest shall result that the surviving
particles at the end of the particle filter process being
the ones that mostly performed the correct state updates
during the filter iterations. We then perform an aver-
age, by means of majority voting, over the memory of
all surviving particles {𝑀1,𝑀2, ...,𝑀𝑙} to predict the
state annotations of the trajectory observations, (lines
16-18 in Alg. 1). That is, the state 𝑐 ∈ 𝐶 that will be
assigned as annotation for the observation 𝑧𝑖, will be the
state which repeats the most in {𝑚𝑖

𝑗}, 1 ≤ 𝑗 ≤ 𝑙.
The practical design decisions, in terms of parameter

settings, that we choose for this model are as follows:

• A trade-off has to be made between the number of
particles 𝑙, and the efficiency of the particle filtering
process. A higher value for 𝑙would potentially improve
the approximation of the density distribution of the
state-space, but it would increase the computational
cost. In context-matching, we expect that the state-
space will consist of 10s of context-states. Therefore
a good number of particles would be in the order of
100s.

• Instead of asking the movement model 𝐹 as input, we
compute it by means of data analysis of a ground-truth.
The ground-truth provided by the user, needs to be
labeled by the context-state. The analysis will then
learn statistical summaries about the spatiotemporal
proprieties of the motion refined at context-state level.
Many models exist for this analysis, in the fields of
robotics and location prediction e.g., [18, 19, 20].

• In the measure step, we use emission probabilities in
order to give a weight to each sample, (line 9 in Alg. 1).
This emission probability can be found in item 4.3

𝑝(𝑧𝑡, 𝑥𝑡,𝑖) =
1√
2𝜋𝜎𝑧

𝑒
0.5(

||𝑧𝑡−𝑥𝑡,𝑖||great circle
𝜎𝑧

)2

where 𝜎𝑧 is the standard deviation of location error,
e.g., a widely accepted value for GPS error is 5 meters.

5. Experiments
In this section, we showcase the context-matching
method in an application for segmenting the trajecto-
ries of fishing vessels. The goal is to annotate the points
in the AIS trajectory of a vessel by either fishing or sailing.
We illustrate the use of context-matching: data prepara-
tion, parameter setting, etc. We also compare the results



Algorithm 1 Algorithm context-matching
Input list of observations 𝑍 = [𝑧1...𝑧𝑛], Markov chain
𝐺, motion model 𝐹
Output annotation list [𝑎1, ..., 𝑎𝑛]

1: Initialize lists 𝑆1,𝑊1

2: for 𝑡 = 1 to 𝑛 do
3: 𝑆𝑡+1 = 𝜑, 𝜂 = 0, 𝐴 = 𝜑, 𝑙 = num particles
4: for 𝑖 = 1 to 𝑙 do
5: 𝑥= sample one particle in 𝑆𝑡 using the weights

𝑊𝑡

6: 𝑐= sample one context-state in 𝐺 setting the
current state equal to the state of 𝑥𝑖

7: Append 𝑐 to the memory of 𝑥
8: �̄�= sample a new particle from 𝑃 (�̄�|𝑥, 𝐹𝑐),

where 𝐹𝑐 is the motion model of state context
𝑐

9: �̄�= 𝑃 (𝑧𝑡+1|�̄�) {measure}
10: 𝜂 = 𝜂 + �̄� {sum weights for normalization}
11: 𝑆𝑡+1 = Append �̄� to 𝑆𝑡+1

12: 𝑊𝑡+1 = Append �̄� to 𝑊𝑡+1

13: Normalize 𝑊𝑡+1 by dividing all weights by 𝜂
{generate the annotation 𝑎𝑡}

14: for 𝑡 = 1 to 𝑛 do
15: 𝑎𝑡 = find the most recurring 𝑐 in the 𝑡𝑡ℎ-slot of

memory of the particles 𝑆𝑛 = {𝑥1
𝑛, 𝑥

2
𝑛, ..., 𝑥

𝑙
𝑛}

16: return [𝑎1, ..., 𝑎𝑛]

with [3], which proposed a dedicated method for this
segmentation.

5.1. Dataset
We use the same labeled dataset in [3]. It consists of AIS
trajectories obtained from the Website of the Danish Mar-
itime Authority 1, then annotated into sailing, and fishing
segments. The data used is the AIS files of the week be-
tween Nov 14, 2021, and Nov 20, 2021. The dataset is
restricted to the fishing vessels only, thus other types
of vessels are not included in the analysis. The dataset
contains 1, 080, 220 points and has an average sampling
interval of 10.63 seconds. It is made of 128 trajectories
that were manually labeled in [3].

5.2. Context-matching of fishing vessels
activities

The goal of this analysis is to assign a label to each trajec-
tory point describing the activity of the fishing vessel at
that point. As in [3], we consider the activities of sailing
and fishing. From a sequence of AIS positions, a context-
matching algorithm should be able to distinguish the fish-

1https://web.ais.dk/aisdata/

ing segments and the sailing segments. This use case is in
fact a true issue because the detection of vessel activities
allows for combating illegal fishing activities. In addition,
depending on the model, boats must be equipped with
an automatic identification system (AIS), a system that
contains a GPS, so it is possible to track them. There-
fore this segmentation has been a point of attention in
research, e.g., in [21] a method based on Hidden Markov
Model is proposed for detecting ship activities. Note that
the goal of this experiment is not to propose a better
trajectory segmentation method. Rather, our goal is to
illustrate how the proposed context-matching method
can be specialized for a semantic annotation application.

As discussed during section 4, we need to first design a
Markov Chain G, that captures the context of motion. In
this segmentation application, the context consists of two
states and the transition probabilities of these two states.
This model is presented in Figure 4. We can see that the
probability of staying in the same state for both states is
90% while the probability of transitioning from one state
to another for both states is 10%. They are obtained by
simple statistical analysis of the ground truth.

sailing fishing 0.9

0.1

0.1

0.9

Figure 4: Context diagram for detecting fishing vessels activ-
ities with two states

Before applying particle filtering to the data, we need
to define some parameters. These parameters are:

• Number of particles 𝑙 : as discussed in section 4, for
each observation, a fixed number of particles need to
be generated. In this experiment, we fix this value to
100.

• Motion Model 𝐹 : this parameter is used in the drift
& diffuse step in order to update the particles. Here we
use a simple model based on Gaussian and uniform dis-
tributions of speed and heading changes respectively,
as detailed in the following points.

Let us now describe the drift&diffuse process and how
it is applied in this experiment. This process is the core
of the particle filters and this methodology as discussed
in section 4. The principle of this process is to randomly
update the sample 𝑥𝑖

𝑡 to the sample 𝑥𝑖
𝑡+1. This is where

the transition probability 𝑝𝑡(𝑥
𝑖
𝑡, 𝑥

𝑖
𝑡+1) and the Markov

chain defined in Figure 4 are used. In this experiment,
the process is split into four parts, in order to update all
the attributes of the particle. Here are these four parts:



• Update heading: The heading change is randomly
drawn from −22.91 to +22.91 degree from the pre-
vious one. The distribution is uniform. This range is
meant to reflect the degree of the maneuverability of a
fishing vessels.

𝑝𝑡(𝑥
𝑖
𝑡+1.(dir) = 𝑦, 𝑥𝑖

𝑡.(dir) = 𝑦) ∼ 𝒰(𝑦 −+22.91)

• Update context: This is where we use the Markov
chain model (Figure 4) in order to update the context.

𝑝𝑡(𝑥
𝑖
𝑡+1.(context) = sail, 𝑥𝑖

𝑡.(context) = fish) =

𝑝𝑡(𝑥
𝑖
𝑡+1.(context) = fish, 𝑥𝑖

𝑡.(context) = sail) = 0.1

𝑝𝑡(𝑥
𝑖
𝑡+1.(context) = sail, 𝑥𝑖

𝑡.(context) = sail) =

𝑝𝑡(𝑥
𝑖
𝑡+1.(context) = fish, 𝑥𝑖

𝑡.(context) = fish) = 0.9

• Update speed: The speed is set according to the con-
text. The value is drawn following the Gaussian dis-
tribution whose parameters are computed using the
ground-truth.

The speed update is then applied using the following
formula:

𝑝𝑡(𝑥
𝑖
𝑡+1.(speed) = 𝑣, 𝑥𝑖

𝑡.(speed) = 𝑣) ={︃
𝒩 (𝜇sailing, 𝜎sailing), if 𝑥𝑖

𝑡+1.(context) = sailing
𝒩 (𝜇fishing, 𝜎fishing), if 𝑥𝑖

𝑡+1.(context) = fishing

• Update position: The position is calculated using the
heading and the speed.

𝑥�⃗�
𝑡+1.(pos) = 𝑧�⃗�𝑡+1.(pos)+∆𝑡×𝑥𝑖

𝑡+1.(speed)×𝑥�⃗�
𝑡+1.(dir)

Here 𝑥�⃗�
𝑡+1.(dir) denotes the unit vector whereas

𝑥𝑖
𝑡+1.(dir) is its argument.

(a) MMSI #219002136 (b) MMSI #219011321

Figure 5: An example of two context-matched trajectories
of a fishing vessel. Green points represent fishing activity
while orange points represent sailing activity. Blue outlines
are the actual sailing activity as per the ground-truth while red
outlines are actual fishing activities. Hence, we should mostly
have orange points with a blue outline and green points with
red outlines.

Figure 6: Density distribution of experiment result

5.3. Results
Running the context-matching as described in the pre-
vious two sections, we observed promising results that
confirm our expectations. Table 1 reports the purity,
coverage (described in [22]), and harmonic mean of our
results. In comparison to the WBS-RLE method in [3], we
consider that the achieved accuracy is good for a generic
method, in comparison to a dedicated method. The den-
sity results of these three metrics can be found in Fig. 6.
We can observe that the majority of trajectories have a
really high purity and high coverage which results in a
high harmonic mean.

method purity coverage harmonic
mean

Proposed
methodology

0.990 0.847 0.908

WBS-RLE 0.890 0.974 0.927

Table 1
Results of context matching for fishing vessels

We observe however that the resulting number of seg-
ments is very high on average. The results include many
short segments of a few points, e.g., short sailing seg-
ments inside a longer fishing segment and vice versa, as
illustrated in the example in Fig. 5. Our best guess is that
this is an issue of parameter setting, such as the transition
probabilities in the Markov chain. This is an important
point of further research, that we note for future work.

In Fig. 5, two examples of context-matched trajectories
for trajectories #219011321− 3 and #219002136− 3
can be found.

6. Conclusions and Future Work
The paper proposed a new tool for the analysis of mobil-
ity trajectories called context-matching. The theoretical
foundation is based on Markov models and particle filters.
The Markov model enables users to describe a semantic
context of the motion. A memory-enriched particle filter



process is then applied to annotate the trajectory point
with the semantic states of this context.

Building on the flexibility of Markov models, it is possi-
ble to describe arbitrarily complex models. Also building
on the dynamics of particle filters, no assumptions are
made about the probability distribution of the resulting
annotation. As a result, the proposed context-matching
is capable of accurately annotating trajectory points in a
variety of application scenarios.

While this work is still in its beginning, the prelimi-
nary experiments in this paper show promising results,
confirming that the theory is correct. The experiments
illustrate context-matching in application to trajectory
segmentation. The results are almost as accurate as an
algorithm which was developed in previous work specif-
ically for this task and for this data modality.

The preliminary results in this paper encourage multi-
ple directions for continuing this work. One challenge
that a lot of context authoring is required. Our impression
is that it is possible to automate most of it by incorporat-
ing other exploratory analysis methods. Secondly, some
debugging tool is needed to help analysts unpack the
stochastic process of particle filters, and fine-tune it. A
third direction would be to experiment with other data
and use cases, including the ones mentioned in this paper.
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