
Outlier Detection and Cleaning in Trajectories: A
Benchmark of Existing Tools
Mariana M G Duarte1, Mahmoud Sakr1,2

1Université Libre de Bruxelles, Brussels, Belgium
2Ain Shams University, Cairo, Egypt

Abstract
Outliers can affect trajectory analysis as they represent errors. There are two outlier detection categories, one focusing on a
collection of trajectories, where one whole trajectory can be an outlier and another on points inside individual trajectories. In
this paper, we focus on the latter. We benchmark existing open-source libraries and compare their efficiency and accuracy
in cleaning outliers. To compare the accuracy, we present a method to build ground truth using the other sensor data in a
multi-sensor environment.

Keywords
Outlier Detection, Trajectory cleaning, Trajectory Preprocessing, Benchmark, Programming Libraries

1. Introduction
Outlier or noise detection is an essential step in trajectory
cleaning, as it helps to identify points in the data that
deviate significantly from the expected pattern. Mov-
ing object trajectory data comes with many outliers due
to sensor and connectivity problems. Outliers in tra-
jectory data can lead to misleading analysis results and
inaccurate decision-making, which can have significant
consequences for businesses, governments, and individ-
uals. This type of data problem affects the accuracy of
analytic functions, e.g., trajectory similarity [1, 2]. As
such, outlier mining is an essential function in mobility
data management systems [3, 4].

There are two outlier detection categories, one focus-
ing on a collection of trajectories, where a trajectory can
be an outlier and another on points inside individual
trajectories. In this paper, we focus on the latter.

We benchmark open-source libraries and compare
their efficiency and accuracy in detecting and cleaning
outliers. The main contributions of this work are:

• A automated method for generating ground truth
in multi-sensor data.

• A benchmark of libraries, including movetk [5],
movingpandas[6], scikit-mobility[7], Ptrail [8],
PyMove [9], Argosfilter[10] and Stmove [11] fo-
cusing on outlier detection. The benchmark con-
siders the user perspective. That is, the context is
to compare the offering of the existing libraries

Proceedings of the Workshop on Big Mobility Data Analytics (BMDA)
co-located with EDBT/ICDT 2023 Joint Conference (March 28-31, 2023),
Ioannina, Greece
$ mariana.machado.garcez.duarte@ulb.be (M. M. G. Duarte);
mahmoud.sakr@ulb.be (M. Sakr)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

for end users rather than comparing their algo-
rithms and implementation aspects.

Outline. The rest of the paper is structured as follows.
In Section 2 we present essential concepts for outlier
detection. Section 3 surveys the state of art. A benchmark
using real data is the subject of Section 4. In Section 5,
we discuss our findings and we conclude.

2. Outlier Detection
There are a variety of outlier detection techniques. In
[12], the authors divide the methods into three cate-
gories: mean/median, Kalman and Particle Filters, and,
Heuristics-Based Outlier Detection.

Distance-based algorithms compare each point in
the trajectory to its neighbors and select the points that
are significantly further away than expected. Methods
based on the mean or Median Filters replace points com-
pared to the measurements done at preceding points in
time. These algorithms are simple and practical for de-
tecting single outliers. Nonetheless, these techniques
depend on the number of predecessors compared to the
mean. Multiple successive outlier points can affect the
accuracy of the outcome trajectory. These algorithms are
not always effective at detecting multiple successive out-
lier points, which can affect the accuracy of the output
trajectory. More advanced algorithms or methods may
be needed to detect and correct outliers in these cases.

Statistic-based detection and correction methods
include the Kalman filter (KF). It is a well established
method [13] used to smooth point series. This algorithm
estimates missing points based on previously observed
values that might have measurement errors. In [13], the

mailto:mariana.machado.garcez.duarte@ulb.be
mailto:mahmoud.sakr@ulb.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


authors mention the advantages of the KF and its deriva-
tives is its recursive aspect, which can be used in real-
time. It is also widely used due to its simplicity and
capability to provide accurate estimations and prediction
results.

Particle filters (PF) uses a set of randomly generated
particles to represent the possible states of the system and
update the particles based on observed data. In contrast
to KF, they are not restricted to Gaussian distribution of
errors, which makes them applicable in a wider range
of noisy data. PF can however be computationally inten-
sive, and thus not commonly implemented in trajectory
libraries. Additionally, like KF, PF are sensitive to the
first measurement in the trajectory, and their accuracy
can be reduced if the first point is an anomaly[12, 14, 15].

The Hampel Filter (HF) detects and replaces outliers
in trajectories with estimates via the Hampel identifier.
The HF expresses a conventional heuristic that almost all
values lie within three standard deviations of the mean.
For each trajectory, the method calculates the median of
a sliding window and adjacent points on each side of the
trajectory. The HF estimates the standard deviation of
each point about its window median using the median
absolute deviation. If a measurement differs from the
median by more than the threshold, the filter replaces
the sample with the median.

Finally, heuristic-based techniques focus more on
detection, rather than correction. For instance, [12] does
not replace outlier points with estimated values, but
instead removes them from the trajectory. Common
heuristics are based on the speed. The idea is that if
the speed/speed change rate is significantly higher than
a given threshold and a proportion of the points in the
entire trajectory, the point is removed. This approach has
the advantage of not introducing any estimated values
into the trajectory, but it can lead to significant data loss.

In [5], a new method category based on physical move-
ment properties is introduced, such as speed (Optimal
Speed-bounded) and acceleration (Optimal Acceleration-
bounded). This method defines limits on the minimum
and maximum allowed values for these properties, and
uses them to determine whether a point in the trajectory
is consistent with the model. The limits are minimum
v- and maximum speed v+, minimum a-, and maximum
acceleration a+. It follows the definition that from one
point to its successor, there should always be inside [v,
v+] and [a, a+]. In addition, a trajectory T = 〈p1, . . . , pn
〉 is consistent with the model if and only if there exists
at least one point in a path such that the measurement
coincides with the point and the speed and acceleration
are inside speed and acceleration bounds. The method de-
fines a reachable region as a cone, i.e. given the physical
boundaries, it is possible to reach the cone from point pi
to pi+1. Additionally, If a trajectory T is consistent, then

is so any subtrajectory. In opposition, it is not necessarily
possible to construct a trajectory from the concatenation
of two consistent subtrajectories: the concatenation 〈p1,
. . . , pn = q1, . . . , qm〉 of two consistent subsequences T
= 〈p1, . . . , pn 〉 and U = 〈q1, . . . , qm〉 with pn = q1 is
not necessarily consistent. Joining these subtrajectories
can reproduce inconsistent points—especially when con-
sidering an acceleration-bound model. The speed of two
points can infer two accelerations for the same position.
The model is called concatenable if it is possible to join
both sub-trajectories respecting the bounds.

In the next Session, we relate each of these methods
to state-of-the-art libraries.

3. State of Technology
In this section of the paper, we will benchmark the avail-
able libraries that offer trajectory outlier detection and
correction. We also highlight the algorithms and methods
used by each library.

MovingPandas1 [6] is a Phyton library for trajectories
of moving objects. Data can be represented in Pandas
[16], GeoPandas [17], HoloViz [18], CSV, GIS file formats,
JSON, and geoJSON. MovingPandas implements struc-
tures for movement data in Python for interaction and
analysis of movement. This library has many trajectory
manipulation functions. Focusing on the outlier detec-
tion, this library implements KF. For outlier detection,
MovingPandas uses the KF algorithm, which is imple-
mented using the Stone Soup software [19].

Scikit-mobility2 [7] is a Python library. It extends Pan-
das [16]. Scikit-mobility offers functions for prepossess-
ing and cleaning trajectory and analysis. The library
chosen method for outlier detection is heuristic filtering,
based on the speed and a given threshold. This approach
can be effective for identifying points in the trajectory
that deviate significantly from the expected pattern but
may not be as accurate as other methods that use estima-
tion to deal with outlier points.

Ptrail 3 [8]is a Python package that uses parallel com-
putation and vectorization, making it suitable for large
datasets. It offers several preprocessing steps, such as
feature extraction, filtering, interpolation and outlier de-
tection. Ptrail removes outliers using a Hampel filter [20]
based on the distance and speed of the ships between
consecutive points. For each trajectory, the method cal-
culates the median of a sliding window and adjacent
points on each side of the trajectory. The HF also es-
timates the standard deviation of each point about its
window median using the median absolute deviation. If
a measurement differs from the median by more than the

1https://github.com/anitagraser/movingpandas-examples
2https://github.com/scikit-mobility/scikit-mobility
3https://github.com/YakshHaranwala/PTRAIL



threshold multiplied by the standard deviation, the filter
replaces the sample with the median.

PyMove 4 [9, 21] is a Python library. It offers a range
of operations for data preprocessing and pattern mining.
PyMove also provides tools for data visualization, allow-
ing users to explore and understand their data through
various techniques and channels. PyMove detects outlier
points considering the distance traveled, minimum and
maximum speed.

Movetk5 [5] is C++ library. It offers tools for construct-
ing, cleaning and analyzing trajectory data. One of the
key features of Movetk is its implementation of the Opti-
mal Speed-bounded and Optimal Acceleration-bounded
algorithms for outlier detection. Movetk implements a
series of outlier detection methods based on Optimal
Speed-bounded algorithm and the Optimal Acceleration-
bounded algorithm. This can help to identify potential
outlier points and can provide a more accurate and reli-
able way of detecting anomalies in the data. In addition
to these algorithms, movetk implements a range of other
methods for outlier detection, including greedy and smart
greedy approaches. These methods build on the basic
speed and acceleration-bounded algorithms and incor-
porate additional strategies and techniques to improve
their performance and accuracy. For the greedy approach,
movetk greedily builds a consistent subsequence by test-
ing if the new mesurament is consistent with the last in
the subsequence under the speed-bounded model (GSB)
or acceleration-bounded model (GAB). In addition, the
authors implement a Smart Greedy Speed/Acceleration-
bounded methods (SGSB/SGAB). With SGSB and SGAB,
multiple subsequences are tracked simultaneously. The
next mesurament is added to all subsequeces that end in a
consistent measurement; if there is no such subsequence,
a new subsequence starting with the measurement is
created. In the end, the longest subsequence is returned.
Also, as a baseline, the library implements their interpre-
tation of the method described in [12] as Local Greedy
Speed-bounded (LGSB). In LGSB, a graph is constructed
with a vertex per measurement. Two vertices are con-
nected if their timestamps are successive in the original
trajectory and they are consistent to the speed-bound.
A measurement is added to the output, if and only if its
vertex is in a connected component of a given size. LGSB
does not guarantee that the complete output is consistent
according to the speed bound [12].

Argosfilter 6 [10] is an R package that offers a set of
functions for working with trajectory data. The outlier
detection in Argosfilter uses two different methods: one
based on speed and the other based on location. The
speed-based method is similar to the one provided in [12],
but the location-based method is based on the algorithm

4https://github.com/InsightLab/PyMove
5https://github.com/movetk/movetk
6https://cran.r-project.org/web/packages/argosfilter/argosfilter.pdf

described in the paper [22]. This method uses a set of
spatial constraints, such as a minimum distance between
two points or a maximum distance from a reference point
to identify and remove outliers from a trajectory.

Stmove7 [11] is an R package library. It provides con-
struction functions, filter, and outlier detection functions.
For the outlier filter, the KF is applied.

In the next Session, we present experiments performed
in the libraries presented above.

4. Experiments
In this Section, we present our method for constructing
ground truth in Subsection 4.1. We present an analysis
of the benchmark results in Subsection 4.2.

4.1. Constructing Ground-truth
Constructing a ground-truth for trajectory data analysis
is a task that presents several challenges. The difficulties
include the cost, accuracy, and scale of the ground-truth
data that is required. Additionally, cleaning the data to
remove errors and noise can be time-consuming and may
not always produce reliable results.

We present a method that can be applied to the data
originating from multi-sensor tracking technologies. Our
proposed method offers a different approach to tradi-
tional methods for constructing ground-truth, such as
manual annotation or data cleaning techniques like those
described in [23, 24, 25]. It also allows for data integra-
tion from multiple sensors, increasing the overall accu-
racy of the ground-truth. The Algorithm compares the
calculated speed and bearing with the recorded values
present in the data. The input consist of speed and head-
ing thresholds (tS and tH) and the file path. In line 6,
for each point in the file, firstly, we check if the IDs are
the same, i.e. the points belong to the same trajectory.
Secondly, we calculate speed and bearing between the
point and its successor. Later, we compare the newly
calculate speed and bearing with the files’ input in line
11. If the difference in speed or heading are bigger than
the inputted thresholds, the point is considered an outlier
and added to the output array.

Our method involves cross-referencing the data from
multiple sensors in order to generate a more accurate rep-
resentation of the true trajectory. We apply this method
in data from modern multi-sensor trackings, such as GPS,
AIS, ADS-B, Mode S, TCAS and FLARM sensors. By com-
bining the data from multiple sources, we can increase
the overall accuracy of the ground-truth in the presence
of errors or noise in individual sensors. When comparing
data from different sources, we can differentiate the data
to see if there are any discrepancies or inconsistencies

7https://tinyurl.com/stmove



Algorithm 1: Ground-truth
Input: thresoldSpeed 𝑡𝑆, thresoldHeading 𝑡𝐻 ,FilePath 𝑓𝑖𝑙𝑒
Output: Outliers

1 Outliers← {};
2 file← ReadFile (FilePath);
3 file← OrderByIDandTimeStamp (file);
4 speed← 0;
5 bearing← 0;
6 foreach 𝑝𝑜𝑖𝑛𝑡 ∈ 𝑓𝑖𝑙𝑒.𝑙𝑒𝑛𝑔ℎ𝑡 do
7 if file[point].id == file[point+1].id then
8 speed← CalculateSpeed (point, point+1);
9 bearing← CalculateBearing (point, point+1);

10 if (abs (speed - file[point].sensorRecordedSpeed) > tS) OR
11 (abs (bearing - file[point].sensorRecordedBearing) > tH) then
12 Outliers.append(point);
13 end
14 end
15 end
16 return Outliers;

between multiple sources, such as different sensors or
instruments. In addition, statistical tests can determine
whether the data is consistent with a particular hypothe-
sis or model. For example, we can check the calculated
speed with the speed given in the data.

Our datasets for this benchmark consist of multi-
sensor trajectory data. The first source is AIS data8: AIS
is the location tracking system for sea vessels. Addition-
ally, the AIS data is collected from a variety of different
ships, providing a diverse set of trajectories to work with.
This can be useful for testing the robustness of different
algorithms and methods, and for evaluating their perfor-
mance on different types of data. In this paper, we utilize
total of 4.3 GB. The Fig. 1 shows the raw data and Fig. 2
shows filtering of outliers.

The raw data collected in the OpenSky Network 9 is
stored in a historical database and used by researchers
to study and improve air traffic control technologies and
processes. The Fig. 3 shows the raw data.

We utilize two datasets from [26] 10 consists of GPS
trajectory datasets of Southeast Asia from Singapore and
Jakarta. Grab-Posisi covers over 1 million kilometers and
contains more than 88 million points. The Images 4 and
5 show the raw data.

Table 1 shows the total number of records, as well as
the number of outliers detected in the cross-check, the
correct points, i.e., points that are not considered outliers,
and the percentage of outliers over total points. The
cross-check method was used to detect the outliers.

OpenSky data does not have a significant amount of
outliers. One possible reason for the low number of out-
liers in the OpenSky data could be the accuracy of the
sensors used to collect the data. If the sensors are highly
accurate, there may be fewer errors or discrepancies in
the data, resulting in fewer outliers. Additionally, it is pos-

8https://dma.dk/safety-at-sea/navigational-information/ais-data
9https://opensky-network.org
10https://engineering.grab.com/grab-posisi

Figure 1: AIS raw dataset

Figure 2: AIS with Ground-truth filtering

Figure 3: Open Sky raw dataset

Figure 4: Jakarta raw dataset

sible that the data has been adjusted or corrected in some
way to account for any errors or noise, further reducing
the number of outliers. It is also worth considering the
nature of the data itself.



Figure 5: Singapore raw dataset

Table 1
Datasets total points, outliers, correct points, and percentage
of outlier over total points

DataSet Total Points Outliers Normal Points %
city=Jakarta

Part 0 5597262 28326 5568936 0.506%
Part 1 5602260 28591 5573669 0.510%
Part 2 5599282 28358 5570924 0.506%
Part 3 5598078 28287 5569791 0.505%

city=Singapore 0
Part 0 3034553 22764 3011789 0.750%
Part 1 3029553 22640 3006913 0.747%
Part 2 3032527 22798 3009729 0.752%

OpenSky 0
2020-05-25-00 723098 2 723096 0.000%
2022-02-28-22 2609917 0 2609917 0.000%
2022-06-27-01 2084075 0 2084075 0.000%

AIS 0
aisdk_20110301 7778783 343 7778440 0.004%

aisdk-2022-11-17 8926371 224 8926147 0.003%
aisdk-2022-11-18 9009140 390 9008750 0.004%

4.2. Benchmark
The benchmark was run in seven libraries composed by
Ptrail, MovingPandas, Scikit-Mobility,Pymove, Stmove,
Argosfilter and MoveTk. These were described in Session
3. Fig. 6. The data used in the benchmark was decribed in
Session 4.1. The benchmark code is publicly available11.

The European aviation industry [27] developed meth-
ods to reduce carbon emissions to meet climate targets.
An aircraft can fly an optimal flight path and use var-
ious technologies and infrastructure to minimize fuel
consumption and carbon emissions. This might include
using modern flight planning software and meteorolog-
ical data to plan for a minimal amount of fuel, using
green energy at the airport to power the aircraft on the
ground, and using electric taxi solutions to minimize
ground-based emissions. The aircraft would also fly an
optimal climb phase, follow a fuel-efficient cruising level,
and use idle thrust descent to minimize fuel consumption
during descent, i.e., the aircraft should change its altitude
as rarely as possible. Due to this standard, we consider
the OpenSky dataset with only 2D rather than 3D data.
However, it is important to note that the assumption may
not hold true in all circumstances. It may be necessary

11https://github.com/marianaGarcez/OutlierDetectionLibraries

Figure 6: Run time

Figure 7: Amount of points after correction

to use 3D data or incorporate altitude data in some cases
to analyze flight patterns accurately.

Fig. 6 relates the run time of libraries. The top left
graph corresponds to Jakarta datasets, divided by each
file part 0, 1, 2, and 3. The top right graph represents
the Singapore dataset and corresponding files. OpenSky
dataset run time is at the bottom left and AIS is at the bot-
tom right. It is possible to see that the first four libraries,
i.e., Ptrail, Moving Pandas, Scikit Mobility and Pymove
takes the longest to finish as they are implemented in
Python. For Jakarta and Singapore datasets, Pymove
presents the highest run time in the biggest datasets.
Both R libraries have similar performance. Also, C++ has
a similar performance to the R libraries.

For the OpenSky dataset, Pymove and Moving Pandas
have similar performance in terms of run time, while
MoveTk is slightly faster but has similar performance to
Stmove and argosfilter.

The AIS data exhibits an exception in the run time of
MoveTk, which may be due to the implemented process
of reading the data. Its performance is comparable to that
of Pymove. The run time of the various libraries varies
depending on the dataset being used and the specific
implementation of the library. It is important to consider
the run time of the different options when selecting a
library for detecting and erasing trajectory data.

Fig. 8 and 9 illustrate the run time for the Python and



Figure 8: Run time for Python Libraries

Figure 9: Run time for R libraries

R programming languages, respectively. For the Jakarta
and Singapore datasets, the python libraries Ptrail, Mov-
ing Pandas and Scikit Mobility have a similar perfor-
mance. It is possible to see a higher processing time for
the Pymove library. For the OpenSky and AIS datasets,
Ptrail and Scikit Mobility present a better performance.
In contrast, Moving Pandas exhibit a higher processing
time for both datasets. Pymove run time is comparable
with Ptrail and Scikit Mobility only with AIS dataset.
Overall, Pymove has a higher processing time compared
to the other libraries. Both R libraries have a similar
run time for the Jakarta and AIS datasets. Although, Ar-
gosfilter run time is consistently lower throughout all
datasets. It is possible to see a considerable difference in
performance for Singapore and OpenSky datasets.

As shown in Fig. 7, the number of outliers removed
by each library varies depending on the dataset being
used. These points consist of total points, i.e., outliers
and normal points. The amount of points corresponds
to the correct points detected by each library. For the
Jakarta dataset, there is a consistent quantity of removed
points, with Pymove removing the most points followed
by Ptrail. The Singapore dataset is consistent between
Stmove, argosfilter, MoveTk, and Moving Pandas, with
Pymove, Ptrail, and Scikit Mobility removing points in
increasing order. For the OpenSky dataset, Scikit Mo-
bility and Ptrail remove the most points, while Moving

Pandas, Stmove, argosfilters, and MoveTk have a consis-
tent amount of removal. For the AIS dataset, all libraries
seem consistent in the number of points removed, with
the exception of Pymove, which removes a larger num-
ber of points. It is important to note that the number
of removed points does not necessarily imply accuracy
or precision. It is necessary to compare the actual out-
lier and normal points with the resulting trajectories in
order to fully assess the accuracy and reliability of the
trajectories cleaned by each library.

In order to analyze results, we utilize scores to compare
the performance of the different libraries. Fig. 10, 11, 12,
13 show the Accuracy, precision, recall and F-1 scores
of each library, respectively. The scores are based on
comparison to the cross-check data and libraries output.

Fig. 10 shows the accuracy of each library. It is pos-
sible to observe that over all datasets, Movetk has the
highest accuracy. For Jakarta dataset, Moving Pandas
accuracy is comparable to MoveTk. As second, we ob-
serve Ptrail, argosfilter and Pymove. Scikit Mobility, has
the lowest accurarcy in this dataset. For the Singapore
dataset, Moving Pandas also has comparable accuracy
to MoveTk. Libraries Scikit Mobility, Pymove, StMove,
argosfilter have a comparable performance. Ptrail has the
lowest accurarcy in this dataset. For OpenSky data, both
argosfilter and Movetk have the highest accuracy. All
other libraries have a comparable performance. With the
exception of Ptrail which presents a low accuracy in the
file ’2020-02-25-00’. A high accuracy score means that
the library is able to correctly identify a large proportion
of the true outliers and normal points in these datasets.
A high accuracy score indicates that the trajectory is
likely to be accurate and useful for identifying patterns
or anomalies in the data. While Ptrail and Scikit Mobility
tend to have lower accuracy.

Precision measures the proportion of true positives
among all positive predictions made by the library. A
high precision score indicates that the library can cor-
rectly identify a large proportion of the true outliers. In
contrast, a low precision score indicates that the library
is prone to false positives. Looking at Fig. 11, we can see
that the libraries Ptrail, Moving Pandas, Scikit Mobility,
Pymove, and StMoe have a consistent level of precision
across the different datasets. Except for StMove in the AIS
dataset, the precision is the lowest among all libraries.
Argos filter and MoveTk have lower precision scores
throughout all datasets. Overall, these results suggest
that Ptrail, Moving Pandas, Scikit Mobility, Pymove, and
StMoe are relatively reliable in precision, with a low rate
of false positives. On the other hand, Argos filter and
MoveTk tend to have lower precision scores, indicating
that they may be prone to false positives.

Recall is a measure of the proportion of true positives
correctly identified by the library. A high recall score
indicates that the library is able to correctly identify a



Figure 10: Accuracy

Figure 11: Precision

large proportion of the true outliers in the dataset, while
a low recall score indicates that the library is prone to
false negatives. The Fig. 12 shows the recall. Movetk
have the highest recall for almost all datasets and files.
For the Jakarta dataset, Moving Pandas has the second
highest recall, followed by Ptrail, argosfilter and Pymove.
Scikit Mobility presents the lowest recall. The libraries
MoveTk and argosfilter in Singapore dataset have the
highest recall. Followed by Moving Pandas. Also, StMove
and Scikit Mobility have comparable performance and,
Ptrail presents the lowest performance. For the OpenSky
dataset, the libraries have a similar performance. Still,
MoveTk presents the highest recall and Ptrail the lowest.
The AIS dataset has MoveTk as the highest recall. Ptrail,
Moving pandas, Scikit Mobility, Pymove and Stmove have
the lowest recall rate. These results suggest that MoveTk
is the most reliable library regarding recall, with a low
rate of false negatives. On the other hand, Ptrail, Moving
pandas, Scikit Mobility, Pymove, and Stmove tend to have
lower recall scores, indicating that they may be prone
to false negatives. These results suggest that MoveTk is
the most reliable library regarding the recall, with a low
rate of missed true outliers. On the other hand, Ptrail,
Moving Pandas, Scikit Mobility, Pymove, and Stmove
tend to have lower recall scores, indicating that they may
be prone to missing true outliers.

Figure 12: Recall

Figure 13: F-1 Score

The F-1 score is a metric used for comparing the over-
all performance of the different libraries. The final metric
we consider is the F-1 score, a combination of precision
and recall, shown in Fig. 13. The MoveTk library has
the biggest rate for the F1-score in all datasets. Followed
by argosfilter library. In the Jakarta dataset, Moving
Pandas has the second highest F-1 score. Followed by
argosfilter and Pymove. In contrast, Stmove and Scikit
Mobility have a low rate for the F-1 score. For the Singa-
pore dataset, Moving Pandas has the third highest rate,
followed by StMove. Ptrail has the lowest rate in this
dataset. The OpenSky dataset, has a similar performance
in all libraries. With the exception of Ptrail which has
the lowest score in the first file. In AIS dataset, Movetk,
Ptrail, Moving Pandas, argosfilter have the highest score.
In contrast, Pymove and StMove have the lowest rate.

These results suggest that MoveTk [5] is the most re-
liable library for trajectory outlier removal, with a high
level of accuracy, precision, and recall. Moving Pandas
[6] also performs well in terms of F-1 score, particularly
for the Jakarta and Singapore datasets. On the other hand,
Ptrail, argosfilter, Pymove, Scikit Mobility, and Stmove
tend to have lower F-1 scores, indicating that they may
not be as reliable for removing outliers in these datasets.
It is also important to consider the specific requirements
of the application and the trade-offs between precision,



recall and run time. Also, it is important to note that
the libraries’ performance varies based on the dataset. In
addition, the ground-truth method can be applied in all
of these datasets to assist in outlier detection.

5. Conclusion
In this paper, we presented an approach for construct-
ing ground-truth that involves cross-referencing the data
from multiple sensors. We applied this method to data
from modern multi-sensor tracking technologies. We also
evaluated the performance of several libraries for out-
lier removal in trajectory data, including Ptrail, Moving
Pandas, Scikit Mobility, Pymove, Stmove, argosfilter, and
MoveTk. Our results showed that MoveTk was the most
reliable library, with a high level of accuracy, precision,
and recall. Moving Pandas also performed well, particu-
larly for the Jakarta and Singapore datasets. For future
work, it would be interesting to explore other methods
for constructing ground-truth in trajectory data, such as
using machine learning techniques or integrating data
from additional sources.

References
[1] A generic trajectory similarity operator in moving

object databases, Egyptian Informatics Journal 18
(2017) 29–37.

[2] M. S. Bakli, M. A. Sakr, T. H. A. Soliman, A spa-
tiotemporal algebra in hadoop for moving objects,
Geo-spatial Information Science 21 (2018) 102–114.

[3] E. Zimányi, M. Sakr, A. Lesuisse, Mobilitydb: A
mobility database based on postgresql and postgis,
New York, NY, USA, 2020.

[4] E. Zimányi, M. Sakr, A. Lesuisse, M. Bakli, Mobili-
tydb: A mainstream moving object database system,
2019, pp. 206–209.

[5] B. Custers, M. V. D. Kerkhof, W. Meulemans,
B. Speckmann, F. Staals, Maximum physically con-
sistent trajectories, ACM Trans. Spatial Algorithms
Syst. 7 (2021).

[6] A. Graser, Movingpandas: Efficient structures for
movement data in python, GI Forum Volume 7
(2019) 54–68.

[7] L. Pappalardo, F. Simini, G. Barlacchi, R. Pellungrini,
Scikit-mobility: a python library for the analysis,
generation and risk assessment of mobility data,
2019.

[8] S. Haidri, Y. J. Haranwala, V. Bogorny, C. Renso, V. P.
da Fonseca, A. Soares, Ptrail – a python package
for parallel trajectory data preprocessing (2021).

[9] A. Sanches, Uma arquitetura e implementação do
módulo de pré-processamento para biblioteca Py-
Move, Bachelor’s thesis, UFC, 2019.

[10] C. Freitas, C. Lydersen, M. A. Fedak, K. M. Kovacs,
A simple new algorithm to filter marine mammal
argos locations, Marine Mammal Science (2008).

[11] D. P. Seidel, E. R. Dougherty, W. M. Getz, Ex-
ploratory movement analysis and report building
with r package stmove, bioRxiv (2019).

[12] Y. Zheng, Trajectory data mining: An overview,
ACM Trans. Intell. Syst. Technol. 6 (2015).

[13] C. Urrea, R. Agramonte, Kalman filter: Historical
overview and review of its use in robotics 60 years
after its creation (2021).

[14] S. H. Lee, M. West, Performance comparison of
the distributed extended kalman filter and markov
chain distributed particle filter, IFAC Proceedings
(2010).

[15] J. Kotecha, P. Djuric, Gaussian particle filtering,
IEEE Transactions on Signal Processing 51 (2003)
2592–2601.

[16] Wes McKinney, Data Structures for Statistical Com-
puting in Python, in: Stéfan van der Walt, Jarrod
Millman (Eds.), Proceedings of the 9th Python in
Science Conference, 2010, pp. 56 – 61.

[17] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
Y. Huang, T-drive: Driving directions based on taxi
trajectories, 2010.

[18] S. Yang, M. S. Madsen, J. A. Bednar, Holoviz: Vi-
sualization and interactive dashboards in python,
KDD, 2022.

[19] P. Thomas, J. Barr, B. Balaji, K. White, An open
source framework for tracking and state estimation,
2017.

[20] T. M, Hampel filter in python, 2021.
[21] A. F. D. Oliveira, Uma arquitetura e implementação

do módulo de visualização para biblioteca PyMove,
Bachelor’s thesis, UFC, 2019.

[22] C. Freitas, C. Lydersen, M. A. Fedak, K. M. Kovacs,
A simple new algorithm to filter marine mammal
argos locations, Marine Mammal Science (2008).

[23] S. Wu, E. Zimanyi, M. Sakr, K. Torp, Semantic seg-
mentation of ais trajectories for detecting complete
fishing activities, IEEE Computer Society, 2022.

[24] X. Yang, L. Tang, Q. Li, A data cleaning method for
big trace data using movement consistency, 2018.

[25] S. Moosavi, B. Omidvar-Tehrani, R. Ramnath, Tra-
jectory annotation by discovering driving patterns,
2017.

[26] X. Huang, Y. Yin, S. Lim, G. Wang, B. Hu,
J. Varadarajan, S. Zheng, A. Bulusu, R. Zimmer-
mann, Grab-posisi: An extensive real-life gps tra-
jectory dataset in southeast asia, in: SIGSPATIAL,
New York, NY, USA, 2019.

[27] E. Control, The economics of aviation decarbonisa-
tion towards the 2030 green deal milestone (2022).


	1 Introduction
	2 Outlier Detection
	3 State of Technology
	4 Experiments
	4.1 Constructing Ground-truth
	4.2 Benchmark

	5 Conclusion

