
Scalable Distributed Trajectory Clustering Using Apache
Spark
Stamatis Stefanopoulos1, Charilaos Akasiadis2, Nikos Pelekis3 and Dimitris Zissis4,5

1University of the Peloponnese, Erythrou Stavrou 28 & Karyotaki, Tripolis, 22131, Greece
2II&T, NCSR “Demokritos”, Patr. Grigoriou & Neapoleos 27, Agia Paraskevi, 15341, Greece
3Department of Statistics & Insurance Science, University of Piraeus, 80, M. Karaoli & A. Dimitriou St., Piraeus, 18534, Greece
4Department of Product & Systems Design Engineering, University of the Aegean, Konstantinoupoleos 2, Ermoupolis, Syros, 84100, Greece
5MarineTraffic.com

Abstract
Trajectory clustering is an important problem, where position data of mobile objects, such as vehicles and vessels, is analyzed
to extract knowledge utilized for a plethora of management tasks. Recently, a vast increase in the production of data gathering
devices has taken place, allowing the collection of data in much larger volumes. This challenges the application of existing
clustering algorithms, as they are not always able to handle large datasets due to their design. In particular, TRACLUS is one
of the most well-known trajectory clustering algorithms that is a generalization of DBSCAN for trajectory line segments.
However, due to the iterative approach and the repetitive usage of a spatial index inherited from DBSCAN, TRACLUS’s
performance degrades as the datasets increase in size and can be extremely slow in some cases. To tackle this shortcoming,
we propose a distributed implementation of TRACLUS, built on Apache Spark, that can operate on very large datasets by
applying different types of partitioning to the input data. Results from an empirical evaluation on real-world trajectories
illustrate that our distributed variant achieves improved runtime performance and clustering efficiency.

Keywords
Trajectory Clustering, Data Mining, Distributed Computing

1. Introduction
Clustering algorithms are valuable components in con-
temporary data analysis workflows. Being an unsuper-
vised learning method, clustering analysis unveils the
structure of the data and can be used as the basis for
further learning [1]. The main objective of clustering
algorithms is to divide data into groups, where mem-
bers of the same cluster should be as similar as possible,
while members belonging to other clusters should be
quite different [2]. Due to the high diversity of the clus-
tering problems properties, as these emerge from the
features of the data to be clustered, a wide variety of
clustering algorithms exists. Following different work-
flows, these algorithms incorporate various methods for
problem solving, e.g. data partitioning, data hierarchy,
fuzzy theory, distributedness, data density, graph theory,

Proceedings of the Workshop on Big Mobility Data Analytics (BMDA)
co-located with EDBT/ICDT 2023 Joint Conference (March 28-31,
2023), Ioannina, Greece
$ dsc19025@go.uop.gr (S. Stefanopoulos);
cakasiadis@iit.demokritos.gr (C. Akasiadis); npelekis@unipi.gr
(N. Pelekis); dzissis@aegean.gr (D. Zissis)
� https://www.iit.demokritos.gr/el/people/charilaos-akasiadis/
(C. Akasiadis); http://www.unipi.gr/faculty/npelekis/ (N. Pelekis);
https://www.syros.aegean.gr/en/staff/professors-and-lecturers/
associate-professors/dimitris-zisis (D. Zissis)
� 0000-0003-0785-4036 (C. Akasiadis); 0000-0001-7205-5703
(N. Pelekis)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

grid structures, fractal theory, or other data models [1].
Among these categories, density based clustering is

widely used to handle real-world problems, as such algo-
rithms can effectively discover arbitrarily shaped groups
of data based on the density of their distribution in the
𝑛-dimensional space. From the algorithms of this cate-
gory, DBSCAN [3] is one of the most well-known, as it
comprises a simple, understandable concept that is also
resilient to noise. DBSCAN’s initial design applies cluster-
ing to a spatial distribution of points. However, there are
other types of spatial information that would be valuable
to consider. Moving object trajectories for example, also
include timestamps due to their time series nature and
thus constitute more complex data, that can currently be
measured using a variety of sensors, for example the GPS
of mobile devices that track routes. Clustering analysis
helps to extract useful knowledge from such data, and
there are many real-world applications where trajecto-
ries must be analysed in a density-based manner, such
as movement anomaly detection [4] or traffic pattern
extraction for vessels [5], vehicles [6, 7] or humans [8].

We focus on a generalisation of DBSCAN designed to
cluster mobile object trajectories, through a partitioning-
and-grouping procedure. This approach is called TRA-
CLUS [9] and is used to cluster parts of trajectories, line
segments in particular. One major drawback of TRA-
CLUS however, is its inability to handle large trajectory
datasets, as it does not scale up well, making big data clus-
tering analysis difficult or extremely slow [10]. This is

mailto:dsc19025@go.uop.gr
mailto:cakasiadis@iit.demokritos.gr
mailto:npelekis@unipi.gr
mailto:dzissis@aegean.gr
https://www.iit.demokritos.gr/el/people/charilaos-akasiadis/
http://www.unipi.gr/faculty/npelekis/
https://www.syros.aegean.gr/en/staff/professors-and-lecturers/associate-professors/dimitris-zisis
https://www.syros.aegean.gr/en/staff/professors-and-lecturers/associate-professors/dimitris-zisis
https://orcid.org/0000-0003-0785-4036
https://orcid.org/0000-0001-7205-5703
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


mainly due to the continuous use of a spatial index to re-
trieve the nearby segments, and to the highly sequential
and repetitive design that is inherited from the DBSCAN
approach. To tackle this issue, paralellization techniques
can be employed, especially in the algorithm parts that
induce the highest runtime cost. Such techniques could
also be integrated to existing analytics engines.

Motivated by these concerns, in this work we propose
two methods to parallelize TRACLUS using the Apache
Spark analytics engine.The first approach employs ran-
dom partitioning of the dataset, while the second per-
forms spatial partitioning, based on the position of the
trajectory segments in the two-dimensional space. To
show the validity of the results, a distance-based statis-
tical significance measure is used to assess the overall
clustering efficiency. This measure can be interpreted
as an indicator of the algorithm’s confidence regarding
the formation of a particular cluster. The proposed dis-
tributed variants are both compared against the original,
single-threaded implementation of TRACLUS, in terms
of runtime and clustering accuracy. Our experimental
evaluation illustrates the improved execution time of our
approach as input datasets grow in size.

The rest of this paper is organised as follows: Sec-
tion 2 presents the related work on trajectory clustering
and distributed density-based techniques; Section 3 in-
cludes a detailed description of the proposed distributed
TRACLUS approach. Then, Section 4 presents the ex-
perimental evaluation of the methods using real-world
datasets and, finally, Section 5 presents the conclusions
and some future work directions.

2. Related work

2.1. Trajectory clustering methods
Moving object trajectories is data of a particular form
with distinct characteristics, which can be simply de-
scribed as finite sequences of geolocations with times-
tamps [11]. Due to this unique form, special algorithms
are designed for trajectory analysis that often incorporate
trajectory clustering techniques. MovCloud [12] follows
the MapReduce paradigm in cloud-based infrastructures,
to index trajectory data hierarchically and proceed with
the clustering using semantic information along with
location coordinates. Considering trajectories as stream-
ing data, the work of [13] utilizes both an online and an
offline phase; trajectory clusters are updated dynamically
to reflect incoming changes and are clustered to extract
the final clustering result respectively. The method intro-
duced in [14] is also based on the MapReduce paradigm
to solve distributed tasks, such as the joining of subtrajec-
tories, trajectory segmentation and clustering, and out-
lier detection. The approach of [15], adopts an indexing

scheme for subtrajectories that groups them into nodes,
in the philosophy of spatio-temporal partitioning tech-
niques. This way, clustering results are calculated by sim-
ply applying query operators to the particular index. The
knowledge discovery process presented in [16], extracts
popular routes and movement patterns, and is shown to
scale with big, real-world vessel mobility data, managing
to detect real maritime incidents amongst them.

TRACLUS [9] has been considered as one of the state-
of-the art algorithms for trajectory clustering [14, 17],
as it is a generalisation of DBSCAN for density-based
line segment clustering. TRACLUS partitions the trajec-
tories to line segments before the clustering step, which
in turn incorporates a specially designed distance metric.
After clusters are extracted, representative trajectories
are generated for the ones that fulfil particular criteria.
This algorithm also inspired the design proposed by [18]
that is an implementation less sensitive to input parame-
ters, as well as [10], where a version of TRACLUS with
partitioning and clustering routines designed for GPUs
was introduced. In these approaches the trajectories
are partitioned to line segments using the MDL princi-
ple [19] and are organized in graphs where breadth-first
search is executed in parallel during the clustering task.
A multi-threaded implementation of TRACLUS is also
implemented for benchmarking. However, there is no
openly available sourcecode of this variant and, further-
more, this is not a fully parallelized implementation as
it only splits the distance between segment pairs related
computations, by assigning different threads to different
pairs. Instead, the approach that we propose aims to
fully parallelize particular phases of the algorithm that
influence its overall runtime performance.

2.2. Distributed DBSCAN
Many DBSCAN parallelization methods have been pro-
posed in the literature so far, which are based on vari-
ous paradigms. Among them, the most popular are the
MapReduce-based methods, as the case of [20], which
uses the disjoint-set data structure to break the sequen-
tial nature of DBSCAN and achieve better load balancing.
The method generates a single tree for each point of the
dataset and merges those generated at different parti-
tions iteratively to calculate the overall clustering result.
In PatchWork [21] the feature space is divided into a
grid, and only cells containing more than a threshold
of points are sorted by density and are kept for further
processing. The most dense cell is considered the first
cluster and nearby cells can extend it if their density over-
passes a sufficient percentage. In [22] authors proposed
a MapReduce method that partitions the dataset with-
out overlapping, and executes DBSCAN in the partitions
during the map phase, while it unifies the datasets and
re-checks the noise points during the reduce phase.



MR-DBSCAN [23] proposes a three-step MapReduce
procedure where the data points are in parallel parti-
tioned, clustered, and then merged and relabelled. This
method uses binary space partitioning (BSP) [24], an
overlapping scheme to dynamically partition the dataset
so that a balanced processing load on the cluster nodes is
achieved, while retaining common points for the cluster
merging phase. Moreover, a new partitioning method,
CBP is introduced, which splits the dataset based on cost
criteria. In [25] a similar procedure is followed, where
clustering occurs in parallel in small data blocks of equal
size and the results are combined during the reduce phase,
using intermediate key-value pairs and hierarchical merg-
ing of the local clusters. For varying density cluster-
ing, VDMR-DBSCAN [26] uses MapReduce to divide the
dataset into overlapping groups, perform the clustering
step, and merge the resulting local ones according to their
density and to partition adjacency criteria.

TRACLUS’s relation to DBSCAN, along with its limited
scalability and the absence of a published MapReduce-
based parallel implementation to handle big data, led us to
combine elements of some of the existing parallelization
techniques of DBSCAN we discussed. In particular we
incorporate BSP [23], the MapReduce strategy [22, 26],
and intermediate key-value pairs [25], in order to achieve
improved performance for larger datasets.

3. Methodology
We now present our distributed approach that is designed
to scale up as the dataset size increases. To begin, the orig-
inal TRACLUS algorithm consists of three main phases:

Trajectory partitioning. The moving object trajectories
are partitioned into line segments, aiming to compress
information without losing precision. To achieve this, the
Minimum Description Length principle (MDL) [19] is used
that minimizes the sum of two costs: the encoding cost
for a hypothesis and, a second, regarding the data that
is encoded according to this hypothesis. In our case, a
hypothesis corresponds to a specific subset of all possible
partitions of a trajectory.

Line segment clustering. At this phase, the clustering
task takes place by applying DBSCAN to line segments,
instead of points. A composite function which combines
perpendicular, parallel and angle distances is used to
calculate the interspace between the line segments and
define neighbourhoods.

Representatives generation. The output of the clustering
phase is a set of line segment clusters. For each one of
them, a representative trajectory is generated based on
the line segments belonging to the cluster.

In theory, the single-threaded implementation of TR-
ACLUS is expected to require more time during the line
segment clustering and the trajectory partitioning phases,

Table 1
Algorithm phases and assignment to the different processes.

TRACLUS phase Random Spatial
partitioning partitioning

Trajectory partitioning Worker Worker
Global spatial index – Driver
Spatial partitioning – Driver

Local spatial indexes Worker Worker
Line segment clustering Worker Worker

Cluster merging Driver Driver
Repr. generation Driver Driver

where all dataset entries are examined. Moreover, the line
segment clustering follows an iterative procedure, which
increases the time complexity as the dataset increases in
size. On the other hand, the representatives generation
phase processes a smaller portion of the dataset, since not
every entry is assigned to the final clusters. Thus, this
step does not induce significant impacts to the runtime
performance. For this reason, only the first and second
phases are selected to be parallelized.

The strategy used for the distributed implementation
is based on the design that most Apache Spark programs
follow. A driver (main) program initiates processing and
a number of workers perform tasks concurrently and
independently during the distributed processing (map)
phases. The workers store their results in accumulator
variables in the driver’s memory and are processed by the
driver when all workers have finished their jobs (reduce
phase). An Apache Spark script may include multiple
distributed processing phases. In our implementation,
the main phases of the algorithm are shown in Table 1.

3.1. Distributed trajectory partitioning
During the trajectory partitioning phase, the dataset is
divided randomly at the trajectory level and each worker
receives a set of trajectories to process. The results are
added to a list accumulator variable, to be unified in a
single line segment dataset by the driver program for
further processing in the next phases, as shown in Fig. 1.

3.2. Distributed line segment clustering
As already explained, line segment clustering is by far the
most time-consuming phase , with its time cost growing
significantly as the input dataset becomes larger. Thus,
a distributed implementation for this part is imperative.
We describe the methods used for dataset partitioning,
i.e. random and spatial partitioning, and the merging
strategies that unify the results produced by the workers.

The DBSCAN algorithm that uses R-tree spatial in-
dexes has a run time complexity of 𝒪(𝑛 log𝑛) [3], where



Figure 1: Distributed trajectory partitioning. The dataset is
split randomly at the trajectory level (a) and is then passed to
the workers, which partition the trajectories to line segments
in a parallel fashion. All resulting line segments are stored in
an accumulator variable managed by the driver program (b).

𝑛 is the number of the dataset entries. TRACLUS inher-
its this complexity [9]. Now, the splitting of the dataset
into 𝑘 > 2 separate and equal partitions yields a time
complexity of:

𝒪(
𝑛

𝑘
log

𝑛

𝑘
)

As 𝑘 · 𝑛
𝑘
log 𝑛

𝑘
< 𝑛 log𝑛, overall, time complexity de-

creases as 𝑘 increases.

3.2.1. Random partitioning (dTRACLUS-R)

In the case of random partitioning of the line segments,
a balanced split of the initial dataset is created, assigning
approximately the same number of members to each
partition (see, Figure 2). Then, partitions are assigned to
separate workers, where local R-tree spatial indexes are
created and used during line segment clustering.

Figure 2: Random dataset partitioning. Dataset line segments
(a.) are randomly assigned to partitions (b.). Each partition is
colored differently.

Random partitioning creates disjoint sets of line seg-
ments, thus any couple of partitions does not contain any
common members. This case can render cluster merging
impossible after line segment clustering, as there will be

no line segments belonging to two different clusters to
be considered as “bridges”, i.e. indicators of meaningful
cluster merges. To avoid this, after partitioning, each
worker receives two partitions of the dataset to build its
spatial index (Figure 3). This leads in double-sized spatial
indexes per worker (as they are created by two different
dataset partitions instead of a single one), containing
common line segments between partitions, as the index
contains the segments of the corresponding partition and
another one. This is useful for merging the local clusters
discovered by each worker individually.

Figure 3: Example using random partitioning (Figure 2). a.
Line segments belonging to the blue partition (partition 1). b.
Line segments used for partition’s spatial index, contain also
line segments from the orange partition (partition 2).

3.2.2. Spatial partitioning (dTRACLUS-S)

In the random partitioning approach, spatial character-
istics of the line segments are ignored, making highly
probable that segments which belong to the same cluster
are assigned to different partitions. Splitting the dataset
using spatial criteria leads to a better partitioning of the
dataset for the purpose of trajectory clustering, as it takes
into account each line segment’s position in the two-
dimensional space and groups nearby line segments to
the same or nearby partitions, keeping the local (neigh-
borhood) density of the dataset unaffected. This leads
to more robust DBSCAN performance, as possible clus-
ter candidates are less dispersed, thus less likely to be
overseen as noise. For these reasons, we expect more
precise results from the spatial rather than the random
partitioning. Visual examples of spatial partitioning and
the common line segments are given in Fig. 4.

The method used to split the two-dimensional space
in partitions is based on the BSP [24] partitioning algo-
rithm. First, all line segments are inserted in a spatial
index structure and their minimum bounding rectangle
is calculated. This rectangle is split in half recursively,
trying to keep approximately the same number of line
segments in each split’s side. To determine the number
of line segments in each side of the split, the previously



mentioned spatial index is used.

Figure 4: Examples of common line segments between spa-
tial partitions. Spatial partitioning borders are depicted by
the grey continuous lines. Common line segments between
partitions are colored with yellow.

However, higher precision comes with some extra run-
time and memory cost. Prior to partitioning, the whole
dataset needs to be indexed in a global R-tree whose in-
sert and search operations are equal to 𝒪(log𝑛). The
R-tree is then queried every time a split on the dataset
is attempted, to check if each side of the split contains
approximately equal number of line segments. Since the
search for better splits may require many iterations to
converge to the most appropriate one, we stop when a
balanced split is found, i.e. the number of line segments
in one partition is between ±5% of the line segments in
the other partition. Let 𝑖 ≤ 2 be the iteration limit, we
anticipate an average of 𝑖

2
tries per split, resulting to 1

in the best case, and 𝒪(𝑖) for the worst.
More formally, if 𝑛 is the number of the line segments

contained in the dataset, 𝑝 the number of partitions, 𝑖
the number of maximum tries per split, 𝑒 the number of
extra splits needed in case the number of partitions is not
a power of 2, then for the spatial partitioning procedure
the time complexity equals to:

(𝑝+ 𝑒− 1) · 𝑖
2
· log𝑛

Thus, the total runtime complexity for the whole spatial
partitioning phase becomes:

𝒪
(︁(︀

(𝑝+ 𝑒) · 𝑖
)︀
· log𝑛

)︁
This constitutes an additional effort that is induced by

the spatial partitioning method, however this increase is
negligible compared to the complexity gain that we have
from the complete distributed implementation.

3.3. Merging local clusters
A crucial step for the integrity of the method’s results
is the merging of the discovered clusters. The process
followed for the merging of local clusters into global ones

is similar for the random and the spatial partitioning
implemetations. The main difference lies in the way
common members of the clusters emerge, which are later
used for cluster merging.

3.3.1. Random partitioning (dTRACLUS-R)

For the random partitioning implementation, to be able
to merge the local clusters we use extra line segments to
build the spatial indexes each worker uses. Note though
that these line segments are not considered as part of the
worker’s dataset. This means that these line segments
can be returned by querying the spatial index, but are
considered as not belonging to the partition dataset. Dur-
ing the line segment clustering phase, each time a cluster
is expanded by one line segment, this line segment is
checked if it belongs to the worker’s dataset. If it does
not belong to it, the line segment ID and the cluster in
which it was assigned are added in a special “duplicates”
accumulator to be further processed by the driver pro-
gram after the end of this distributed phase. When the
line segment clustering phase is completed, duplicate val-
ues are removed from the “duplicates” accumulator and
the final merging couples are determined.

3.3.2. Spatial partitioning (dTRACLUS-S)

In the spatial partitioning case, the merging procedure is
simpler, as each worker contains the same line segments
in both its spatial index and its dataset partition, so there
is no need to store possible duplicates in a special-purpose
accumulator, as was the case in random partitioning. The
common line segments that will be used as “bridges” for
cluster merging are already specified by the spatial parti-
tioning phase itself. This happens because line segments
are two-dimensional objects that can span one or more
spatial partitioning rectangles. This results to few com-
mon line segments between the spatial partitions. Thus,
in the merging phase, the algorithm searches for these
segments to use for the local cluster merging.

The final clusters obtained after the merging phase
are expected to be slightly different from the clusters
extracted from the single-threaded TRACLUS implemen-
tation. This is because in both cases, line segments that
would normally be grouped to the same cluster, are dis-
persed in other partitions. It is possible that some of
these partitions might contain so few cluster members,
that they are considered as noise by the line segment clus-
tering phase and never make it to the cluster merging
phase. The rejected segments could either be considered
as members of bigger clusters, or as common segments
used to merge two or more clusters during the merging
phase. This deviation is expected to be larger for the
random partitioning implementation, as the dispersion
of nearby line segments between the resulting partitions



is higher than dispersion caused by spatial partitioning.

3.4. Clustering significance
The final phase generates the cluster representatives,
which act as cluster medoids and describe the average
movement of the objects included in each discovered
cluster. Intuitively, a representative that lies close to the
segments of its corresponding cluster, describes it better
than one lying further away. Randomly generated data
in the wider area of the representative are expected to be
more distant to the representative than to the real cluster
members, as no spatial criterion is considered for their
generation, contrary to the real data selected by spatial
neighborhood queries during the clustering phase.

To evaluate the clustering efficiency of the single-
threaded version and our proposed distributed one, we
employ statistical significance tests, used to determine if
the distances of the cluster members to the cluster repre-
sentative are similar to the distances of random segments.

Figure 5: Calculation of clustering significance. Initial dataset
(a). Generated representatives (red) with cluster members (real
segments) (b). Random (fake) line segments generation inside
the representatives’ Minimum Bounding Rectangles (c).

To achieve this, for each generated cluster representa-
tive, its minimum bounding box is calculated. We gener-
ate random line segments inside this box, equal in num-
ber to the line segments that belong to the cluster. The
next step is to calculate the Fréchet distance between the
cluster members and each line segment of the represen-
tative, and store the minimum. The process is repeated
for the randomly generated line segments. In the end,
we come up with two distance distributions, which are
tested using Z-test and Kolmogorov-Smirnov test, to ob-
tain a measure of significant difference. This measure
indicates if the randomly generated (fake) line segments
are significantly further and dissimilar to the representa-
tive than the real segments of the cluster and can be used
to distinguish between tightly (significant) and loosely
(non-significant) connected clusters, acting as a measure
of quality for the generated clusters and how well they
are described by their representative. An example of this
process is shown in Fig. 5.

4. Experimental evaluation
To test the proposed methods, we conducted experiments
using a part of NOAA vessels dataset, with data of June
2019. The datasets used for the experiments contained ap-
proximately 50, 100, 200, 500, 1000, 2000, 5000 and 10000
trajectories, representing a total of 35K to 6M points.
The average length of the datasets’ trajectories spanned
between 587 to 734 points, having a standard deviation
ranging between 311 to 321 points.

Experiments were run on an Apache Spark standalone
cluster installed on a VirtualBox virtual machine running
Linux Ubuntu 18.04 with 14 CPU cores and 28 Gigabytes
of RAM. Our implementation was based on Alex Pol-
cyn’s TRACLUS implementation in Python [27], which
was properly modified to run in a distributed manner
using PySpark according to the approaches we propose
in Section 3. For the spatial indexing part, we use the
Pyrtree [28], an R-tree implementation written in pure
Python. Our implementation is openly available online.1

4.1. Line segment clustering runtime
The main goal of the distributed implementation is to
make TRACLUS run faster for large trajectory datasets.
By evaluating the single-threaded implementation we
observe that the line segment clustering phase requires
most of the overall runtime to complete (Figure 6).

0 2000 4000 6000 8000 10000
No. of Trajectories

100

101

102

103

104

105

Ru
nt

im
e 

(s
ec

on
ds

)

Single-thread TRACLUS phases

Partitioning
Indexing
Clustering
Representatives

Figure 6: Single-threaded implementation runtimes.

Now, the distributed implementation of the line seg-
ment clustering phase significantly reduces the total run-
time cost, as we can see in Figure 7. This outcome is
anticipated based on the complexity analysis of the dis-
tributed implementation (cf. Section 3.2). The smaller
size of the spatial indexes sent to the workers, enables
them to complete respectively smaller processing tasks
during the clustering phase in less time.

1https://gitlab.com/stamostef/traclus_pyspark

https://gitlab.com/stamostef/traclus_pyspark


102 103 104

No. of Trajectories

0

20000

40000

60000

80000

100000

Ru
nt

im
e 

(s
ec

on
ds

)

TRACLUS
dTraClus-S (14 workers)
dTraClus-R (14 workers)

Figure 7: Total runtime performance.

4.2. Representatives and significance
A way to determine the quality of the algorithm’s output
between the presented implementations is the number
of the representative trajectories generated at the final
phase, compared to the number of representatives gener-
ated by the base line (single-threaded) implementation.
A number of representatives close to the baseline im-
plies both successful cluster discovery and good perfor-
mance on local cluster merging. However, as mentioned
in Section 3.3, there can be deviations between the single-
threaded and the distributed implementation results due
to the dispersion of line segments to different partitions.

Evaluation of the clustering significance shows that in
most of the cases, significant scores for both the Z-test
and Kolmogorov-Smirnov statistical significance tests
are achieved. This phenomenon is due to the given TR-
ACLUS hyperparameters (big neighborhood ratio) and
the sparsity and nature of the dataset (vessel trajectories)
which led to fairly dense clusters, compared to their sur-
roundings. For the committed experiments, the highly
significant clusterings illustrate tightly-connected clus-
ters when plotted on a map, as shown in Figure 8.

Figure 8: Examples of significant clustering. Clusters are
tightly connected and the generated representatives (red) fall
close to the cluster members (blue).

Clusterings of no significance were also present in
some rare cases. Plotting their structures reveals loosely-
connected clusters, often dispersed across multiple “sub-
clusters” and not assigned to coherent ones (Figure 9).

Figure 9: Examples of non-significant clustering. Clusters are
loosely connected and the generated representatives (red) fall
far away from the cluster members (blue).

This measure of statistical significance can be used for
hyperparameter tuning, as a better choice for the epsilon
TRACLUS parameter and can lead to more significant
clustering in cases such as the ones presented in Figure 9.
There, the inclusion of the remote line segments in the
clusters could be avoided. Moreover, this measure can
be used as a filtering criterion to indicate cases where
representatives lie away from their corresponding cluster
members and should be rejected.

4.3. Overall performance and scalability
We compared the total runtime results of the baseline
single-threaded implementation with the distributed
ones and, as we can see in Figure 7, the distributed imple-
mentations outperform by far the single-threaded one.
We can also see that the difference in execution time in-
creases as the datasets grow with respect to the number
of trajectories and, consequently, the points they contain.
To improve the distributed implementation performance
for big data and achieve better scalability, more workers
can be added. To take full advantage of the extra workers,
the dataset partitions should be equal or more than the
number of the available workers.

5. Conclusion and future work
In this paper we proposed two distributed TRACLUS
implementations, based on random and spatial partition-
ing of the initial dataset. Experiments conducted on an
Apache Spark cluster revealed that the proposed meth-
ods significantly outperform the original single-threaded
TRACLUS implementation in terms of execution runtime
as the dataset size increases. The clustering results of
the distributed implementations maintain an acceptable
clustering performance, which was evaluated using sta-
tistical significance tests. Possible improvements of the
proposed methods could be a faster, possibly distributed,
merging strategy for the local clusters. Moreover, study-
ing the performance of the proposed methods with even



larger datasets on multi-node, distributed Apache Spark
clusters can reveal more about the scalability of the pro-
posed implementations.

Acknowledgments
This research is supported by European Union’s Hori-
zon 2020 RIA programme under grant agreement No
957237, project ENABLING MARITIME DIGITALIZA-
TION BY EXTREME-SCALE ANALYTICS, AI AND DIGI-
TAL TWINS (VesselAI).

References
[1] D. Xu, Y. Tian, A comprehensive survey of clus-

tering algorithms, Annals of Data Science (2015)
165–193.

[2] A. Jain, R. Dubes, Algorithms for clustering data,
Prentice-Hall, Inc, Upper Saddle River, 1988.

[3] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-
based algorithm for discovering clusters in large
spatial databases with noise, in: Proc. of the Sec-
ond Int. Conf. on Knowledge Discovery and Data
Mining, KDD’96, AAAI Press, 1996, p. 226–231.

[4] R. Barnwal, S. Baride, S. Majumder, S. Ghosh, A
density-based algorithm for detecting anomalous
trajectories, in: Int. Conf. on Microelectronics, Com-
puting and Comm. (MicroCom), IEEE, 2016, pp. 1–4.

[5] I. Kontopoulos, I. Varlamis, K. Tserpes, A dis-
tributed framework for extracting maritime traffic
patterns, Int. Journal of Geographical Information
Science 35 (2020) 1–26.

[6] X. Li, J. Han, J. Lee, H. Gonzalez, Traffic density-
based discovery of hot routes in road networks, in:
Advances in Spatial and Temporal Databases: 10th
Int. Symposium, 2007, pp. 441–459.

[7] H. Munaga, M. Sree, J. Murthy, Dentrac: A density
based trajectory clustering tool, Int. Journal of
Computer Applications 41 (2012) 17–21.

[8] D. Das, D. Mishra, Unsupervised anomalous trajec-
tory detection for crowded scenes, in: IEEE 13th
Int. Conf. on Industrial and Information Systems
(ICIIS), 2018, pp. 27–31.

[9] J. Lee, J. Han, K. Whang, Trajectory clustering:
A partition-and-group framework, SIGMOD ’07,
ACM, New York, NY, USA, 2007, p. 593–604.

[10] H. Mustafa, C. Barrus, E. Leal, L. Gruenwald, Gtr-
aclus: A local trajectory clustering algorithm for
gpus, in: 2021 IEEE 37th Int. Conf. on Data Engi-
neering Workshops (ICDEW), 2021, pp. 30–35.

[11] P. Sun, S. Xia, G. Yuan, D. Li, An overview of moving
object trajectory compression algorithms, Mathe-
matical Problems in Engineering 2016 (2016) 1–13.

[12] S. Ghosh, S. K. Ghosh, R. Buyya, Movcloud: A cloud-
enabled framework to analyse movement behaviors,
in: IEEE Int. Conf. on Cloud Computing Technology
and Science (CloudCom), 2019, pp. 239–246.

[13] Z. Li, J. Lee, X. Li, J. Han, Incremental clustering
for trajectories, in: Database Systems for Advanced
Applications: 15th Int. Conf., 2010, pp. 32–46.

[14] P. Tampakis, N. Pelekis, C. Doulkeridis, Y. Theodor-
idis, Scalable distributed subtrajectory clustering,
IEEE Int. Conf. on Big Data (2019).

[15] N. Pelekis, P. Tampakis, M. Vodas, C. Doulkeridis,
Y. Theodoridis, On temporal-constrained sub-
trajectory cluster analysis, Data Mining and Knowl-
edge Discovery 31 (2017).

[16] D. Zissis, K. Chatzikokolakis, G. Spiliopoulos, M. Vo-
das, A distributed spatial method for modeling mar-
itime routes, IEEE Access 8 (2020) 47556–47568.

[17] O. L. Hsu, C. Lee, Common sub-trajectory cluster-
ing via hypercubes in spatiotemporal space, IEEE
Access 8 (2020) 23369–23377.

[18] C. Jiashun, A new trajectory clustering algorithm
based on traclus, in: Int. Conf. on Computer Science
and Network Technology, 2012, pp. 783–787.

[19] E. Keogh, S. Lonardi, C. Ratanamahatana, Towards
parameter-free data mining, 2004, pp. 206–215.

[20] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. Liao,
F. Manne, A. Choudhary, A new scalable parallel
dbscan algorithm using the disjoint-set data struc-
ture, in: Int. Conf. on High Performance Comp.,
Networking, Storage and Analysis, 2012, pp. 1–11.

[21] F. Gouineau, T. Landry, T. Triplet, Patchwork, a
scalable density-grid clustering algorithm, in: Proc.
of the 31st Annual ACM Symposium on Applied
Computing, ACM, 2016, p. 824–831.

[22] X. Hu, L. Liu, N. Qiu, M. Li, A mapreduce-based
improvement algorithm for dbscan, Journal of Al-
gorithms & Computational Technology 12 (2017).

[23] Y. He, H. Tan, W. Luo, S. Feng, J. Fan, Mr-dbscan:
a scalable mapreduce-based dbscan algorithm for
heavily skewed data, Front. of Comp. Science 8
(2014).

[24] M. J. Berger, S. H. Bokhari, A partitioning strategy
for nonuniform problems on multiprocessors, IEEE
Transactions on Computers C-36 (1987) 570–580.

[25] X. Fu, S. Hu, Y. Wang, Research of parallel dbscan
clustering algorithm based on mapreduce, Int. Jour-
nal of Database Theory and Application 7 (2014)
41–48.

[26] S. Bhardwaj, S. Dash, Vdmr-dbscan: Varied density
mapreduce dbscan, in: Big Data Analytics: 4th Int.
Conf., volume 9498, 2015, pp. 134–150.

[27] A. Polcyn, traclus_impl, https://github.com/
apolcyn/traclus_impl, 2016.

[28] A. S. Peleg, pyrtree, https://github.com/Rhoana/
pyrtree, 2018.

https://github.com/apolcyn/traclus_impl
https://github.com/apolcyn/traclus_impl
https://github.com/Rhoana/pyrtree
https://github.com/Rhoana/pyrtree

	1 Introduction
	2 Related work
	2.1 Trajectory clustering methods
	2.2 Distributed DBSCAN

	3 Methodology
	3.1 Distributed trajectory partitioning
	3.2 Distributed line segment clustering
	3.2.1 Random partitioning (dTRACLUS-R)
	3.2.2 Spatial partitioning (dTRACLUS-S)

	3.3 Merging local clusters
	3.3.1 Random partitioning (dTRACLUS-R)
	3.3.2 Spatial partitioning (dTRACLUS-S)

	3.4 Clustering significance

	4 Experimental evaluation
	4.1 Line segment clustering runtime
	4.2 Representatives and significance
	4.3 Overall performance and scalability

	5 Conclusion and future work

