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Abstract
Vessel Traffic Flow Forecasting (VTFF) is vital for maritime harbor supervision, safety management and collision avoidance.
Previous works approach the VTFF problem from two different perspectives: a) directly - by predicting the future traffic based
on sequence analysis of historical traffic flow,and b) indirectly - by estimating the future traffic based on future vessel locations
produced by vessel route forecasting algorithms. In this work, we introduce the Unified Approach for VTFF (UA-VTFF)
method by taking advantage of both the indirect and direct paradigms. Our method, in order to predict the future vessel
traffic flow in a time horizon of up to 30 min for a specific space, utilizes the results of the indirect paradigm by feeding them
into a model that approaches the VTFF problem directly. UA-VTFF is validated over real Automatic Identification System
(AIS) data and compared to baseline methods with quite promising results.
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1. Introduction
In the maritime domain, it is vital to ensure safe and
efficient sailing as the traffic on the waterways increases
[1]. Vessel Traffic Flow Forecasting (VTFF) is important
in the maritime field. For instance, forecasting vessel
flows is crucial for the maritime industry to plan fleet
routes and for maritime authorities to manage safety and
assist effective collision avoidance.

Maritime traffic information systems can monitor ves-
sel traffic in sea waters. Although such commercial sys-
tems often provide proactive traffic management, their
forecasting capability is based mainly on linear predic-
tion methods [2], controlled mostly by domain experts.
Also, on the one hand, linear prediction methods are fast
and robust when vessels stably sail in straight track, but
on the other hand, they are unreliable, as they lack the de-
sired accuracy when vessels are in a maneuvering phase
(changes on their course and/or speed) [2].

Over the last decade, Machine Learning (ML) based
techniques have attracted research interest to develop
traffic-related models for the maritime industry as ML
methods are very effective in modeling nonlinear plants
[3][4]. An advanced monitoring system is presented in
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[5, 6]. Monitoring and analysing vessel traffic assists in
understanding vessels’ navigation patterns [7] and, as
a result, managing maritime traffic [8]. In order to im-
prove maritime traffic management and, at the same time,
collision avoidance, future vessel traffic flow prediction
methods were introduced [9].

In the literature, the most promising methods used in
predicting vessel traffic flow mainly employ grid-based
representation analysis [10], which approach the VTFF
problem from two different perspectives [11]: a) indi-
rect - as a Vessel Route Forecasting (VRF) application
via employing predicted vessels locations in the future,
and b) direct - as a flow sequence forecasting problem.
In [11] a comparative analysis between the indirect and
direct cases was presented, and both strategies efficiently
forecasted the traffic flow in the maritime area in a short
time horizon (up to ∆𝑡 = 15min.) and a spatial granu-
larity ranging from 5km to 15km. However, in order to
assist effective management of sea safety and collision
avoidance [12], a longer prediction time horizon in finer
granularity is necessary.

In the indirect VTFF case, it is obvious that the
method’s performance depends on the prediction per-
formance of the underlying VRF method. The underly-
ing VRF method that was used in [11] was presented in
[13], which operates as a multipoint location forecasting
model. As a result, in order to predict r future points, the
time needed for VRF model execution is multiplied by
r. However, for collision avoidance purposes, fast execu-
tion times are necessary. Hence, in order to increase the
prediction time horizon and decrease the execution times,
a novel VRF method is introduced in this work, which is
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able to predict r future points in a single execution.
In the direct VTFF case, the method’s performance

depends on the feature vector included in the sequential
forecasting model. The ML algorithms that were imple-
mented in [11] focused on the traffic of each spatial grid
cell on previous timestamps disregarding the traffic that
occurs in neighbor-surrounding grid cells on previous
timestamps. Hence, in this work we enhance the feature
vector by adding new features, such as characteristics
derived from neighbor-surrounding grid cells and the
time characteristics of traffic flow.

More importantly, UA-VTFF unifies the direct and in-
direct VTFF cases by utilizing the results of the proposed
VRF method within the abovementioned feature vector
analysis, i.e. this feature vector analysis is applied to
the available historical vessel flows and at the same time
to the future vessel locations produced by the proposed
VRF method. The traffic flows resulting by the proposed
feature vector analysis are being fed to an ML method,
which is being trained appropriately in order to predict
the future vessel traffic flow up to 30 min. We experiment
with different ML methods, such as XgBoost [14][15], Au-
toregressive Integrated Moving Average (ARIMA) models
[16][17], Facebook Prophet [18], and Neural Networks
(NNs) [19] (static [20] and dynamic [13]).

In summary, this work builds upon our previous work
presented in [11] and substantially improves it in terms
of accuracy on smaller sea areas and prediction horizon
(from 15 min. to 30 min.).

The rest of this paper is organized as follows: Section 2
discusses related work; Section 3 provides background
and preliminary terms; Section 4 presents the proposed
unified VTFF methodology; Section 5 describes the avail-
able AIS data, presents the experimental setup, and dis-
cusses the results of our experimental study; Section 6
concludes the paper and discusses future extensions.

2. Related Work
Research on ML models has created impressive achieve-
ments in the past few years [21]. A number of studies
covering VTFF problem have been published in the rel-
evant literature. We briefly present the relevant works
during the last two years, while an overview of less recent
related works can be found in [11].

Li and Ren [22] introduced a multi-step vessel traf-
fic flow prediction method based on a Long Short-Term
Memory Encoder-Decoder architecture. Also, they pro-
posed a statistical approach of vessel traffic flow based on
AIS data. This method was tested on traffic flow during
April 2019 of the Liuhe Waterway in the Jiangsu section
of the Yangtze River; this area is about 9km x 11km.

Gargari et.al. [23] presented an approach for long-term
traffic forecasting on a container port based on learn-

ing similar traffic patterns as a reference for estimating
future traffic. They employed seasonal autoregressive
integrated moving average (SARIMA) and NN models to
predict long-term container vessel traffic at the whole
area of the Rajaee port in Iran. The experimental results
showed that the NN outperforms the SARIMA models.

In [24] a combined prediction framework based on
wavelet decomposition and deep NNs was introduced
for predicting vessel traffic flow with time frame interval
equal to three hours. The method was applied to traffic
flow data derived during July 2017 from the Caofeidian
Port bounded by parallels 38.76°N and 39.21°N, and by
meridians 118.16°W and 118.79°W; i.e. the tested area
was about 50km x 55km.

Wang et al. [25] presented the DWT-Prophet, a hybrid
prediction model for vessel traffic flow that combines the
discrete wavelet decomposition and the Prophet frame-
work; data were decomposed into an approximate compo-
nent and several high-frequency components by wavelet
decomposition, and then the Prophet framework was
trained to predict every component. This method was
tested on vessel traffic flow data during January 2018 of
the whole area of Wuhan Port Yangtze River Bridge.

In [26] a multimodal learning method named Prophet-
and-GRU was proposed for vessel traffic prediction,
which focuses on predictions with time interval within an
hour. This method is based on a Prophet model to decom-
pose traffic flow sequence into components of different
periods and on Gated Recurrent Units (GRU) to make ac-
curate forecasts. For evaluation purposes, a dataset was
employed that includes vessel traffic every 30 min in Xi-
azhimen channel, Ningbo-Zhoushan Port during March
2020. Also, the observation rectangle is of length and
width equal to 3.19 and 1.04 nautical miles, respectively.

Rong et al. [27] presented an approach for forecast-
ing long-term maritime traffic that takes into account
vessel destination prediction (by using a Multinomial Lo-
gistic Regression model) and trajectory prediction (by
using Gaussian Process) within a certain route. The ag-
gregation of all ships’ positions predictions results in a
probabilistic picture of the future maritime traffic charac-
teristics and hotspot areas. The method was tested on an
area near the coast of Portugal (bounded by parallels 36°N
and 42°N, and by meridians 7°W and 11°W), which was
divided into four traffic-groups. According to the authors
their model cannot be used for collision avoidance.

In [28], Xu and Zhang proposed a method for forecast-
ing traffic volume in wind farm locations based on Pear-
son’s Correlation Coefficient (PCC) and on GRU model.
The GRU model takes as input the spatial impacts of
vessel traffic flow on different routes. To verify model’s
effectiveness and feasibility, the wind farm water area
in Jiangsu Province was selected, where 11 observation
sections were chosen; if a ship passes through the obser-
vation section, the traffic volume increases by 1.



Based on the literature review in [11] and the above-
mentioned research works, we can conclude that valu-
able knowledge from vessels’ behaviour can be extracted
through the analysis of historical data. However, these
works focused on specific places of maritime interest
and/or quite big areas that cannot assist effective colli-
sion avoidance. Also, most of these works are based
on specific VTFF strategies (direct or indirect). On
the other hand, in our work we propose the UA-VTFF
method, which takes advantage both the indirect and
direct paradigms and is capable of predicting traffic flow
in open sea and at the same time in smaller sea areas.

3. Background and Definitions
In this section, background and preliminary terms are
provided. The main definitions employed in this paper
are as follows: Consider a maritime dataset 𝐷 composed
of 𝑆 vessels, where the 𝑠-th vessel consists of 𝑚𝑠 trajec-
tories and the 𝑗-th trajectory is comprised of 𝑛𝑠

𝑗 times-
tamped positions (sampled at asynchronous time inter-
vals) and can be represented as follows:

P𝑠
𝑗 =

[︀
p𝑠
𝑗(1), ...,p𝑠

𝑗(𝑛
𝑠
𝑗)
]︀
=[︀

[𝑡𝑠𝑗(1), o𝑠
𝑗(1)], ..., [𝑡

𝑠
𝑗(𝑛

𝑠
𝑗), o𝑠

𝑗(𝑛
𝑠
𝑗)]

]︀
,

𝑠 = 1, ..., 𝑆, 𝑗 = 1, ...,𝑚𝑠

(1)

where p𝑠
𝑗 is a timestamped position, which consists of

timestamp 𝑡 and location o(𝑥, 𝑦) in the Universal Trans-
verse Mercator (UTM) system.

Definition 1. Route Forecasting:
• Given:

– a set of vessel trajectories D,
– a vessel’s trajectory [p𝑠

𝑗(1), . . . ,p𝑠
𝑗(𝑘

′)]

consisting of 𝑘′ consecutive points,

Figure 1: Example of 4 vessel trajectories in a spatiotemporal
grid of 5 time frames and 4 × 4 space resolution.

– a time duration (prediction horizon) ∆𝑡,
– a number of transitions 𝑟

• Predict: each vessel’s future trajectory up to ∆𝑡,
consisting of a total of 𝑟 transitions with fixed
sampling rate (i.e. 𝑡𝑠𝑗(𝑘

′ + 1) = 𝑡𝑠𝑗(𝑘
′) + ∆𝑡/𝑟,

𝑡𝑠𝑗(𝑘
′ +2) = 𝑡𝑠𝑗(𝑘

′) + 2 *∆𝑡/𝑟, ..., 𝑡𝑠𝑗(𝑘
′ + 𝑟) =

𝑡𝑠𝑗(𝑘
′) + ∆𝑡):[︀

o𝑠
𝑗(𝑘

′ + 1), ..., o𝑠
𝑗(𝑘

′ + 𝑟)
]︀

(2)

Definition 2. Traffic Flow Forecasting:
• Given:

– a time duration (prediction horizon) ∆𝑡,
– a number of temporal transitions 𝑟,
– a set of vessel trajectories D spanning in

Ds (minimum bounding box of locations)
in space and 𝐷𝑇 in time,

– a set of future vessel trajectories 𝐷𝑃 span-
ning in Ds and 𝐷𝑇 ∪∆𝑡,

– a spatiotemporal (i.e., 3D) grid that splits
a) Ds into grid cells of resolution 𝐺 × 𝐺,
and b) 𝐷𝑇 ∪∆𝑡 into 𝑟 time frames

• Predict: the volume of vessels in each cell of the
spatiotemporal grid.

Fig. 1 presents an example of a spatiotemporal grid
of 5 time frames and 4 × 4 space resolution. There are 4
trajectories evolving in 3 time frames, and the goal is to
forecast the vessels’ volume in each grid cell during the
2 time frames in the future.

4. Methodology
In this section, our approach is presented including the
enhanced VRF model and the UA-VTFF methodology. An
overview of the proposed methodology is illustrated in
Fig. 2. More specifically, first, historical AIS data pass
through processing operations. Then the VRF method
is applied. The processed historical data along with the
produced points of the VRF are arranged into a spatiotem-
poral grid. Subsequently, the resulting traffic flows pass
through a feature vector analysis, which are then fed to
an ML method for VTFF prediction purposes.

4.1. The enhanced VRF model
In this work, we consider the VRF problem as a direct
trajectory forecasting problem. More specifically, in or-
der to train the model, the output data are interpolated
on the trajectory’s 𝑟 transitions. Also, the NN consists
of 𝑟 * 2 outputs, where for one predicted point, there are
necessary two neurons for the two coordinates for space
and, as a result, each pair of output neurons gives one



Figure 2: Overview of the UA-VTFF methodology.

forecast for each trajectory’s transition. Thus, after the
training procedure, we need to execute the NN model
only one time in order to produce the desired predictions.

As far as the input information is concerned, three
features are given including information regarding the
time and the two space coordinates, actually the dif-
ferences in time and space between consecutive times-
tamped positions. More specifically, for each timestep
𝑘 = 1, . . . , 𝑛𝑗−1, where 𝑛𝑗 is the length of the 𝑗-th
trajectory, the NN is fed with the input vector:

∆u𝑠
𝑗(𝑘) =

[︀
∆𝑥𝑠

𝑗(𝑘),∆𝑦𝑠
𝑗 (𝑘),∆𝑡𝑠𝑗(𝑘)

]︀
. (3)

Regarding the NN architecture it consists of an in-
put layer of three neurons, a Long Short-Term Memory
(LSTM) [29] hidden layer, a fully-connected hidden layer
and an output layer of 𝑟 * 2 neurons. Also, the model
parameters can be updated through the Backward Prop-
agation Through Time (BPTT) algorithm [30] and the
synaptic weights can be optimized according to the Adam
approach [31] in the training set. Overall the NN training
phase is followed by a validation phase and, eventually,
model selection; the use of a validation set results in
measuring the model’s generalization ability.

It should be noted that the VRF problem in [11] was
considered as a multipoint location forecasting task and
the model presented in [13] was employed for predicting
the vessel’s future locations. This model (after following
the training procedure) needs to be executed 𝑟 times in
order to provide predictions for the 𝑟 transitions forming
the future trajectory. On the other hand, our proposed
method needs to be executed only one time to produce
the desired trajectory and thus the time prediction du-
ration significantly decreases, as it will be shown in the
experimental study (in Section 5).

4.2. The Unified Approach for VTFF
(UA-VTFF)

UA-VTFF method starts by giving the available vessels’
historical trajectories into the proposed VRF algorithm

(described in the previous section) in order to predict the
future trajectories. Subsequently, the vessels’ historical
and future trajectories are assigned into the spatiotem-
poral grid (presented in Section 3) and the calculation of
the amount of vessels that are placed in every grid cell is
performed. The resulting amounts indicate the volume
of the historical vessels 𝑛 and the predicted vessels 𝜂
(produced by the proposed VRF model), which represent
the traffic sequence in a specific cell-region and time
frame. Then, these traffic sequences for every grid cell 𝑏
are enhanced with additional features, including infor-
mation regarding timestamp and the volume of vessels
in surrounding cells. Finally, the produced sequences are
fed to an ML algorithm for predicting the future traffic
flow in the grids, i.e. the vessels’ amount in a particular
cell in future time frame ∆𝑡. Fig. 2 presents the above
pipeline.

It should be noted that for training purposes the data
in the output are also processed as the data in the input.
More specifically, in order to predict the vessels’ amount
in the 𝑏-th grid cell in the future time frame 𝑡 + 1, i.e.,

to produce the model output 𝑛�̂�
𝑡+1, the corresponding

model input 𝑁𝑏
𝑡+1 for the 𝑏-th cell within the grid that

comprises 𝑙 total cells is composed of the following fea-
tures:

• 𝑛𝑏
𝑡−𝑙, ..., 𝑛

𝑏
𝑡−1, 𝑛

𝑏
𝑡 : the vessels’ amount 𝑛 in time

frame 𝑡 in the 𝑏-th cell grid
• 𝑛𝑏′

𝑡−𝑙, ..., 𝑛
𝑏′
𝑡−1, 𝑛

𝑏′
𝑡 : the vessels’ amount 𝑛 in time

frame 𝑡 in the neighbor-surrounding cell grids 𝑏′

of 𝑏-th cell grid
• 𝑛𝑏′′

𝑡−𝑙, ..., 𝑛
𝑏′′
𝑡−1, 𝑛

𝑏′′
𝑡 : the vessels’ amount 𝑛 in

time frame 𝑡 in the neighbor-surrounding cell
grids with high traffic 𝑏′′ of 𝑏-th cell grid

• 𝜂𝑏
𝑡+1: the vessels’ amount produced by the en-

hanced VRF in the future time frame 𝑡+ 1 in the
𝑏-th cell grid

• 𝜂𝑏′
𝑡+1: the vessels’ amount produced by the en-

hanced VRF in the future time frame 𝑡 + 1 in
the neighbor-surrounding cell grids 𝑏′ of 𝑏-th cell
grid



Figure 3: Example of 7× 7 neighbor-surrounding traffic cells
of a spatial grid.

• 𝜂𝑏′′
𝑡+1: the vessels’ amount produced by the en-

hanced VRF in the future time frame 𝑡+ 1 in the
neighbor-surrounding cell grids with high traffic
𝑏′′ of 𝑏-th cell grid

• 𝑚𝑑𝑏𝑡−𝑙, ...,𝑚𝑑𝑏𝑡−1,𝑚𝑑𝑏𝑡 : the day of the month
𝑚𝑑 in each time frame 𝑡 in the 𝑏-th cell grid

• 𝑑𝑤𝑏
𝑡−𝑙, ..., 𝑑𝑤

𝑏
𝑡−1, 𝑑𝑤

𝑏
𝑡 : the day of week 𝑑𝑤 in

each time frame 𝑡 in the 𝑏-th cell grid
• 𝑡𝑑𝑏𝑡−𝑙, ..., 𝑡𝑑

𝑏
𝑡−1, 𝑡𝑑

𝑏
𝑡 : the time of day 𝑡𝑑 in each

time frame 𝑡 in the 𝑏-th cell grid

Regarding the calculation of the neighbor-surrounding
grid cells and those with high traffic, the neighbor
cells correspond to those cells that surround the center-
targeted. The surrounding grid cells with the highest
traffic are those with the highest correlation with the
center-targeted and are defined based on statistical anal-
ysis and taking into account that these cells should cor-
respond to regions areas associated with a high risk of
accidents [32]. To clarify the above discussion, Fig. 3 illus-
trates a grid with nearby cells only in space of 7× 7. The
green cell illustrates the central-targeted cell for which a
prediction will take place. The yellow cells correspond to
the neighborhood cells, while the pink cells present the
neighborhood cells with high traffic and high correlation
with the center-targeted.

Several ML techniques were used in this study to tackle
the VTFF problem. Particularly, we employ XgBoost
and ARIMA models, which were trained according to
[11]. Also, we employ Facebook Prophet [18], which is a
recently presented forecasting technique inspired by the
nature of time series predicting at Facebook.

Furthermore, we use static and dynamic NNs. Partic-
ularly, for the static NNs, the Multi-Layer Perceptron
(MLP) architecture was employed composed of two hid-
den neurons and trained with the Backpropagation algo-
rithm [19]. Regarding the dynamic NNs, LSTM networks
were used composed of an input layer, an LSTM hid-
den layer, a fully-connected hidden layer and an output
layer of two neurons. The LSTM-based architecture was
trained following the same procedure as it was described
in Section 4.1.

As far as the model parameterization is concerned, var-
ious characteristics of every model type were taken into
account and adjusted with intermediate observation tests

before the final evaluation. In particular, the XgBoost
models were optimized regarding the learning rate, the
minimum leaf size for pruning, the number of features
on a node, and the number of regression trees. Also, the
ARIMA model was optimised regarding the lag order,
the degree of differencing, and the order of the moving
average by evaluating the Partial Autocorrelation plot,
the Augmented Dickey Fuller test and the Autocorrela-
tion plots, respectively. Furthermore, the MLP and LSTM
NNs were optimised regarding the hidden layers’ size,
while an early stopping procedure [33] is employed to
prevent the networks from overfitting by using a valida-
tion set. As far as the Facebook Prophet parameterization
is concerned, two parameters were tuned that express
Seasonality variance and Trend variance: Seasonality
Prior Scale influences the seasonality component of the
time series and the values tested ranged from 0.01 (small
influence) to 10 (very high influence); Changepoint Prior
Scale influences the variance of the trend component and
the values tested ranged from 0.05 (underfitting variance)
to 0.5 (overfitting variance).

5. Experimental Study
This section presents the experimental setup, along with
the results of the tested ML methods.

5.1. Experimental setup
All the methods were implemented using Python and the
experiments were conducted in a workstation composed
of 64 GB RAM, Intel Core i9-9900KX CPU and GeForce
RTX2080Ti GPU.

The proposed method was evaluated on real-world AIS
data provided by MarineTraffic.com. More specifically,
1,757,440 AIS records received from 2344 different vessels
of various types sailing during November, 2018, in the
Aegean Sea rectangle bounded by longitude [23...26] and
latitude in [36...38].

As far as the parameters of the VTFF problem formu-
lation are concerned, we used a spatial grid of 𝐺 = 2km,
a prediction horizon of ∆𝑡 = 30min and a number of
temporal transitions of 𝑟 = 6. The produced traffic flow
is as follows: A number of 14,340 cells was created, with
the traffic flow of min, max, median and mean values
equal to 0, 103617, 25, and 120 vessels, respectively. Of
the whole grid cells, only 768 cells presented traffic flow
of more than 300 vessels across the entire period, while
4,000 cells included less than 10 vessels in the whole pe-
riod. The top 10 grid cells have more than 5 vessels on
average every 5 minutes and include more than 300,000
vessels in the entire period.

It should be noted that we resulted in the abovemen-
tioned parameters (𝐺 = 2km, ∆𝑡 = 30min and 𝑟 = 6)



after experimenting with different values of spatial grid’s
resolution (of 𝐺 equal to 2km, 5 km and 10 km), number
of temporal transitions (of 𝑟 equal to 3 and 6) and predic-
tion horizon (of ∆𝑡 equal to 15 min. and 30 min.; based
on the tested values of 𝑟 the overall corresponding time
frames were of 5 min. and 10 min.). We observed that the
UA-VTFF method is affected by these parameters. More
specifically, the model predicts better when the spatial
resolution (based on 𝐺) is higher and the time frames
(based on 𝑟 in combination with ∆𝑡) are bigger, while
the impact of the prediction horizon is limited.

Regarding the evaluation of the implemented algo-
rithms, it was performed in the busy grid cells [34], which
correspond to regions with regular navigation and heavy
traffic, with a high risk of accidents [32]. Areas with low
vessel density denote a low level of traffic flow complex-
ity, which implies regular and predictable vessel travel
time sequences [35]. This is also confirmed by the ex-
perimental study in [11], where the ML model predicts
better when there are also non-busy regions; the same
ML model was tested on the whole available cells (there
were cells with zero traffic) and only on the busy ones.

For all the algorithms, except the indirect VTFF [11],
the corresponding traffic flow sequences of the busy grid
cells are arranged into input and output data, where for
each grid cell, the initial 75% of the traffic flow sequence
is used for the training purpose, whereas the remaining
25% of the traffic flow sequence, except for the last six
observations (corresponding to 30 min.), is organized in
the testing set. Regarding the indirect VTFF, following
[11] the trajectories derived from the busy grid cells are
then arranged into training, validation, and testing sets of
a 50%–25%–25% percent ratio, respectively. Experimental
results are evaluated using the Symmetric Mean Absolute
Percentage Error (SMAPE) [11].

Table 1
Prediction results (SMAPE) for different alternatives of the
UA-VTFF method in the testing set (𝐺 = 2km)

Method Time prediction horizon (min)
5 10 15 20 25 30

LSTM 12 16 27 26 27 26
MLP 16 21 32 34 37 36

XgBoost 13 19 29 29 29 27
ARIMA 20 24 35 38 47 40
Prophet 21 24 33 33 38 36

Table 2
Prediction results (SMAPE) (𝐺 = 2km)

Approach Train set Test set

UA-VTFF (LSTM) 18 21
UA-VTFF (XgBoost) 19 22

direct VTFF [11] 23 29
indirect VTFF [11] 25 28

5.2. Results and Discussion
Table 1 presents results for the UA-VTFF approach using
different ML techniques. More specifically, LSTM, MLP,
XgBoost, ARIMA and Prophet are employed. Also, Table
2 presents results for the UA-VTFF approach, the indirect
and direct VTFF strategies presented in [11].

The results presented in Table 1 confirm that the LSTM-
based UA-VTFF method can accurately capture the ves-
sel traffic flow in short-term to assist in effective colli-
sion avoidance. This is due to the fact that LSTM have
emerged as an effective technique for several difficult
learning problems [5] and have demonstrated signifi-
cant performance on predicting sequential problems [36].
Also, our proposed UA-VTFF approach (using LSTM or
XgBoost) outperforms the indirect and direct VTFF strate-
gies as summarized in Table 2.

In order to investigate further the performance of the
proposed UA-VTFF, we also present results in the two
highest traffic grid cells. Particularly, figs 4a and 4b depict
the prediction performance of the direct VTFF strategy
[11] and the XgBoost-based UA-VTFF algorithm, respec-
tively in the grid cell with id #19837. Also, figs 5a and
5b depict the prediction performance of the direct VTFF
strategy [11] and the XgBoost-based UA-VTFF algorithm,
respectively in the grid cell with id #19653. More specif-
ically, the figures illustrate the original and predicted
traffic flow in the training and testing sets. The figure
for the training graphic corresponds to the number of
vessels for the first 75% of the 5 min time frames(first
7000 time frames), while the testing graphic corresponds
to the number of vessels for the last 25% of the 5 min-
utes time frames(last 1600 time frames). Finally, we have
included the performance of each method on the last
six observations of the dataset corresponding to the last
30 minutes. Based on figs 4b, 4a, 5b and 5a we can ob-
serve that UA-VTFF has less overfitting in the training
data compared to the direct VTFF [11], since in the lat-
ter method the training graphic seems to have a much
better performance than the testing one. Finally, the
XgBoost-based UA-VTFF method performs better in the
scoring dataset than the direct VTFF [11], which also
uses XgBoost models.

Finally, we should mention that the proposed VRF
method manages to predict a vessel trajectory composed
of 6 transitions with a latency of about 0.5secs on average.
On the other hand, the VRF method used in the indirect
VTFF [11] predicts 6 transitions with a latency of about
2.5 secs on average.

6. Conclusion
An effective method for vessel future traffic flow pre-
diction, in terms of accuracy and execution times, can
provide the fundamental basis for managing safety and



(a)

(b)
Figure 4: Prediction performance in training and testing sets
for grid cell id 19837 of the: (a) XgBoost-based direct VTFF
[11], and (b) XgBoost-based UA-VTFF.

assisting effective collision avoidance at sea. In order to
tackle the VTFF problem, in this paper we build upon
previous work, which investigated two different VTFF
strategies. Particularly, we take advantage of both the
strategies by combining them, we enhance the feature
vector analysis, we propose a VRF method that is able
to predict the desired vessel trajectory in one execution,
and we employ a longer prediction time horizon (up to
30 min.) in finer granularity (of resolution 2km x 2km).
Through our experimental study of a real AIS dataset it
is obvious that the proposed UA-VTFF method can effi-
ciently forecast the traffic flow in terms of high accuracy.
Future work includes the investigation of: a) weather im-
pact on vessel traffic flow, b) tensor factorization analysis,
and c) extreme traffic events to fine-tune the model.
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