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Abstract
We present a survey of AIS data analytics techniques for shipping business decision-making. Our survey provides an indicative
categorization of the areas where AIS data analytics may assist in strategic decision-making, based on the costs that a shipping
business needs to cover. These areas include chartering and freight markets, vessel operation and environmental footprint.
Our survey is useful both as a catalogue of existing research, as well as a critical evaluation of the field. The use of AIS data
has facilitated the state-of-practice in shipping business decision-making. Furthermore, enriching AIS data with other data
sources is necessary more often than not.
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1. Introduction
More than 80% of global trade by volume and over 70%
by value is carried by sea [1]. The shipping business is
a global, highly-competitive and cyclical industry that
involves heavily leveraged assets, exposing shipowners
to various business risks that require timely decision-
making [2]. For these reasons, exploiting the benefits of
maritime informatics [3], primarily through the analy-
sis of Automatic Identification System (AIS) data, forms
an important tool for shipping companies striving to
place themselves in front of the competition and sur-
vive the shipping business cycle [4]. For instance, mar-
itime data analytics can support: a) optimal steaming for
just-in-time arrivals, b) reduction of unnecessary waiting
times by enhancing coordination, c) efficient utilization
of human resources, d) service providers and service con-
sumers while establishing market-based business deals,
e) predictive maintenance based on digital twins of criti-
cal assets and their components, and f) optimized cargo
planning [5].

The International Maritime Organization (IMO), under
the Safety of Life at Sea (SOLAS), has adopted AIS across
several other reporting systems associated with tracking
vessels. There are 64 different types of AIS messages
divided into two main categories: static messages, in-
cluding e.g. the IMO number, name of the vessel, type of
the vessel, dimensions, estimated time of arrival, draught
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and destination, and dynamic messages, including the
Maritime Mobile Service Identity Number (MMSI), rate
of turn, speed over ground, position coordinates, course
over ground, heading and navigational status. The use
of AIS data supports a wide range of applications in the
shipping industry. These include, among others, collision
avoidance, fishing fleet monitoring, maritime security,
infrastructure protection, trade analysis, as well as ship
and port performance. Lee et al [6] reviewed the histori-
cal developments of AIS applications in the management
of waterways, natural resources, freight and ports. In a
similar spirit, Svanberg et al [7] provided a structured
overview of various AIS applications, including interac-
tions with natural resources (e.g., species, fishing and ice),
collision avoidance, oil spills’ investigation, as well as
traffic and logistics analysis. Yang et al [8] reviewed some
applications of AIS data analytics, including navigation
safety, trade analysis, fishing activities, environmental
evaluation, oil spill risk analysis, and ship and port perfor-
mance. Emmens et al [9] and Bereta et al [10] examined
the promises and perils of AIS data, including unrealistic
tracks, vulnerability to external conditions, inaccuracies
by human input, attacks, as well as intentional commu-
nication gaps .

We present survey of AIS data analytics for decision-
making in the shipping business. Due to space limita-
tions, we chose to focus mostly on the literature of the
maritime domain for the benefit of the Data Scientist.
Our survey provides an indicative categorization of the
areas where AIS data analytics may assist in strategic
decision-making, based on the costs that a shipping busi-
ness needs to cover. We discuss how AIS data may be
used for vessel chartering decisions, the assessment of
vessel operation, maritime trade, and environmental im-
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pact calculation. For each area, we provide an overview,
and a synthesis of the main contributions and limitations.
In other words, our survey is useful both as a catalogue
of existing research, as well as a critical evaluation of the
field.

2. Survey Structure
We classify the AIS data analytics approaches into five ar-
eas. Table 1 summarizes, for each approach, the employed
data types, the geographical and temporal coverage of
the empirical analysis, as well as the vessel types for
which the analysis was performed. (All aproaches have
employed AIS data, and thus this is omitted from the
table to save space.) We start the survey by discussing
the area of chartering and freight markets (see Section 3).
Freight rate revenue is the principal source of repayment
in connection with ship financing, impacting liquidity
and profitability ratios that financiers use to monitor the
performance of a shipping loan. In this context, ship-
ping business decisions are influenced by the economic
cycles and the volatility in demand, impacting freight
rates and ship values for different segments of maritime
transport, law regulations, risk profiles and ownership
requirements.

In Section 4, we discuss the vessels’ operation. Ship-
ping companies use key performance indicators (KPIs)
to monitor and analyze the performance of each vessel,
such as the number of overdue planned maintenance
tasks. Due to the high market competition, this process
should be completed quickly. For this reason, the tradi-
tional daily noon reports are insufficient. Instead, AIS
data can contribute to minimizing the time required for
assessing vessel operation.

Maritime trade analysis, discussed in Section 5, can
identify commodity flows and ship trading patterns rep-
resenting the different shipowners’ and charterers’ be-
haviors. Events like the COVID-19 pandemic, Oil Glut
(2014-2016), and the financial crisis of 2008-2009, can be
used to study freight flows as examples to avoid future
crisis situations.

Finally, shipping environmental impact analysis, as
presented in Section 6, demonstrates the increasing inter-
est in sustainability. Shipping companies evaluate ESG
(Environmental, Social, Corporate Governance)-related
KPIs, mainly concerning the investment required to de-
carbonize and operate in terms of reduction of CO2. Sus-
tainability can potentially impact cash flows, the collat-
eral value of a ship, and, therefore, the value-to-loan ratio.
ESG initiatives and investments are opportunity costs
impacting the predictability of capital, operational and
voyage costs. Failure to comply with targets and thresh-
olds may result in fines, higher interest rates, additional
capital injections, higher fees to port agents, delays and

rectification of incidents.

3. Chartering and freight markets

3.1. State-of-the-art
In this section, we discuss the use of AIS data for support-
ing the chartering decisions of shipowners and charterers.
Adland et al [25] provided a theoretical exposition and
empirical analysis of the micro- and macro-economic de-
terminants of vessel capacity utilization in bulk shipping
markets. One step further, Sugrue et al [20] suggested a
linear model to predict vessel capacity based on water
surface elevation. In an effort to gain further understand-
ing of the freight market, it is important to derive the
actual demand and supply balance. Towards this, Proc-
hazka et al [18] provided a prediction of the demand and
supply balance in the freight market, based on historical
and online AIS data. In the same vein, Regli et al [16]
proposed a method for calculating the short-term capac-
ity in the voyage charter market based on the ratio of
available to active vessels. They investigated the percent-
age of vessels available for orders by using AIS draught
measurements.

Bai et al [56] explored the effectiveness of risk man-
agement strategies for mitigating risk exposure to freight
rate and bunker fuel prices, using vessel and voyage-
related data. In this context, Prochazka et al [15] inves-
tigated the factors affecting the preferable fixture loca-
tion, such as market conditions, vessel characteristics,
and charterer’s preferences. Bai and Lam [12] explored
the impacts of selected attributes (i.e., freight rate, com-
modity price arbitrage, bunker price and the number of
ships in a specific area) on the charterer’s destination
choice. Jia et al [13] used machine learning techniques
to predict the destination for crude oil exports. They
investigated the micro- and macro-level determinants of
the preferable destination. In a similar study, Zhang et al
[19] suggested a data-driven model for vessel destination
prediction based on the similarity between the current
trajectory and historical trajectories. Regli et al [17] iden-
tified the vessel specifications that affect the charterer’s
decision to exploit storage arbitrage opportunities using
historical AIS data.

3.2. Contributions
In most cases, the AIS draught measurement has been
used for estimating the cargo payload of a commercial
vessel — this is a key variable calculating revenue for a
particular voyage and estimating global trade flows for
commodities. AIS draught measurement was also used
to distinguish between laden and ballast voyages. More
accurate calculations for cargo payload estimation may
be achieved by combining AIS draught measurements



Table 1
Data types, geographical and temporal coverage

Theme
Subtheme Literature Data types Region Vessel types Period
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[11] Port Brazil Commercial 2008-2014

[12] Freight,cargo Global Commercial 2013-2017

[13] Cargo, vessel Latin America Commercial 2013-2016

[14] Port Australia, Brazil, China, India, and South
Africa

Commercial 2012

[15] Fixtures Persian Gulf area, West Africa, Venezuela Commercial 2019

[16] Port - Commercial 2014-2016

[17] Vessel, fixtures, freight, derivatives Ras Tanura in the Arabian Gulf to Chiba
in Japan

Commercial 2014-2016

[18] Fixtures North-East Asia to Australia Commercial 2016-2019

[19] Port Global Commercial 2011-2017

[20] Vessel load Great Lakes Commercial 2015-2017

[21] Vessel, port Global Commercial 2012-2020

Ve
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n

[22] Freight, fuel Global Commercial 2013-2015

[23] Fuel North Sea Emission Control Area Commercial 2013-2015

[24] Weather Port of Rotterdam Commercial 2009-2011

[25] Port, fuel, freight Global Commercial 2011-2012

[26] Weather Nieuwe Waterwag - 2014

[27] Weather, insurance East Asia and North America Commercial 2013-2019

[28] Fixtures Brazil to China route Commercial 2015-2019

[29] SAR English Channel, UK - 2017

[30] - Denmark Commercial 2022

[31] - Zhoushan Port Commercial 2016
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[32] Cargo Global Commercial 2013-2016

[33] - Netherlands - -

[34] - Qiongzhou Strait - -

[35] - Suez Canal Commercial 2013-2019

[36] - Global Commercial,
Passenger

2016-2019

[37] Vessel, weather Global Commercial 2017

[38] Port Global Commercial 2016

[39] Vessel, freight, fixtures Global Commercial 2017-2020
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[40] Vessel Madura Strait Commercial,
passenger

2008

[41] Vessel, technical, fuel Hong Kong, Pearl River Delta Commercial 2007

[42] Fuel, weather Arctic Seas - 2012

[43] Vessel Global - 2015

[44] Vessel Pearl River Delta - 2015

[45] Technical Yangtze River - 2018

[46] Fuel North and Baltic Sea Commercial,
passenger

-

[47] Vessel, technical Trieste Commercial 2018-2019

[48] Vessel, technical China Commercial 2019

[49] Vessel, technical Singapore Commercial 2016
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[50] Port Port of Gothenburg Commercial 2014

[51] Noon reports Global Commercial -

[52] Weather Global - 2014

[53] Fuel, technical Global Commercial 2018-2019

[54] Vessel, port Ports in European Economic Area and
United Kingdom

Commercial,
passenger

2018

[55] Port Norway Passenger 2018

“-" indicates that there are no available details about the field.



with additional indicators, such as the number of ships
waiting for a contract, the number of days the ships are
waiting, the vessels that are on dedicated routes and do
not contribute to the spot market voyages [18, 12, 17].
The ratio of available vessels to active vessels is a po-
tentially helpful indicator of shipping economic activity
and, as such, may be used more widely as a freight rate
forecast indicator and a proxy for trading and physical
market activity [17].

The analysis of historical AIS data related to opera-
tional risk management strategies (e.g., fleet diversity,
fleet age, relative trip distance, fleet repositioning flexi-
bility and trading diversity), allows shipping companies
to draw valuable conclusions [56]. The models proposed
for AIS data-driven destination prediction may be clas-
sified into two categories: a) the turning point-based
destination prediction methods, and b) the trajectory-
based destination prediction methods [19]. For instance,
predicting oil export destinations allows for better fore-
casting of regional and local market balance, improved
knowledge of inventory levels, and monitoring of the sup-
ply chain. The model proposed by [14] has an accuracy
ranging between 70-90%.

3.3. Limitations
The use of AIS data seems to lead to much better accuracy
than the use of traditional noon reports, as a) errors due
to human input are reduced, and b) information can be
obtained in an online fashion. On the other hand, an im-
portant limitation of several studies examining chartering
decisions concerns the fact that there is no commercial
information available through AIS, such as information
about about the cargo and charter-parties. Publicly avail-
able fixtures and freight derivatives information covers
only a tiny fraction of the voyages observed in AIS data
[21, 18, 15, 17]. Moreover, in many studies the match-
ing process of AIS data and fixtures data is based on the
vessel name because the IMO number is not part of the
fixture reports. This can be problematic since the ship’s
name may change, while many ships may bear the same
name [18]. One way to address this issue is to consider
other static vessel attributes, such as the vessel’s type
and dimensions.

In any case, the methods that estimate the cargo pay-
load by using AIS measurements have additional limita-
tions — consider, e.g., the difficulty of measuring ballast
water and fuel during draught measurement [14].

4. Vessel operation

4.1. State-of-the-art
Vessel monitoring is essential for performance estimation
as well as for controlling her activities. In this section,

we discuss the research focusing on the evaluating vessel
behavior. An important feature when operating a vessel
is speed selection, due to the costs involved as well as
its relevance to commercial and charter-parties’ terms.
Early research by [22, 25] investigated technical, oper-
ational, and macro-economic variables concerning the
vessel’s speed using a regression model. Adland et al
[23] attempted to prove, with the use of dynamic AIS
data, that the introduction of stricter regulations of an
Emission Control Area has no effects on vessel speed.
Prochazka et al [28] investigated how contractual obliga-
tions affect the speed of vessels. Shu et al [24] quantified
the influence of weather conditions and vessel encoun-
ters on vessel speed, course and path within ports and
inland waterways.

In addition to the study of the normal behavior of ships,
the maritime community is also interested in the study of
anomalies [57]. In this context, in a recent study, Zhang
et al [31] proposed a dynamic maritime traffic pattern
recognition model that adapts to the changes in the traffic
environment. Finally, despite the usefulness of AIS data
for monitoring ship behavior, data is often missing due to
human negligence or intention. In this context, Zhou et
al [26] investigated the impact of wind and sea currents
on ship behavior within ports, where vessel trajectories
can be observed, using ship maneuvering information
provided by dynamic AIS data. Rodger et al [29] sug-
gested a methodology to map ships which do not report
their AIS information using SAR ship detection.

4.2. Contributions
In addition to the aforementioned contributions, there
were efforts towards data pre-processing in order to in-
crease data reliability [26, 25, 22]. Furthermore, to distin-
guish between the different vessel’s operational modes,
an effort was made to distinguish stops at anchor and
stops at berth [54]. The efforts to model the behaviour
of dark vessels is also noteworthy, since communication
gaps are increasing over time and often associated with
illicit behaviour.

4.3. Limitations
The use of AIS data alone is rarely sufficient for the as-
sessment of vessel operation. AIS data must be enriched
with information from additional sources, such as meteo-
rological [27, 25, 22], commercial [25], maintenance [22],
technical [24], management, flag and port data [27]. Con-
sequently, the studies based solely on AIS data often have
limited significance. Furthermore, it has been difficult to
determine the point at which a ship passes from laden
to ballast state, thus the semi-laden voyages are ignored
[54, 25]. While the approaches discussed in this section
offer valuable insights on the benefits of AIS data ana-



lytics for vessel operation assessment, their conclusions
are mostly drawn from studying specific geographical
regions (see Table 1). Thus, it is not clear whether they
can be generalised to other or larger areas.

5. Maritime trade

5.1. State-of-the-art
We outline some key empirical studies of the analysis
of commodity flows based on AIS data. Adland et al
[23] compared the accuracy of AIS-derived trade statis-
tics against official customs data in the crude oil market.
Kanamoto et al [38] analysed the global trade flow pat-
tern of dry bulk cargo by commodity. They suggested a
model to forecast the future shipping demand by vessel
type and commodity. Yan et al [37] calculated the oil
trade volume by establishing a model for cargo payload
calculation based on draught and vessel’s technical infor-
mation. Fuentes et al [35] proposed a recognition model
of anchored vessels waiting for transit from Suez Canal.
They identified the access routes from anchorages based
on AIS draught measurements. Li et al [39] proposed
a machine learning technique to predict the cargo type
transported by coated product tankers.

Existing literature has also examined the characteris-
tics of maritime trade during crisis events. For instance,
Millefori et al [36] analysed the effects that the COVID-19
pandemic and containment measures had on the shipping
industry per type of commercial shipping.

5.2. Contributions
The empirical analyses of historical maritime trade can
help forecast future activity — this is particularly helpful
during rare crisis events [36]. To scale to large volumes
of maritime trade, trajectory reconstruction techniques
have been employed and customized [19, 34, 33]. The pro-
posed algorithms maintained only the minimum number
of trajectories reflecting current traffic patterns. More-
over, there are techniques that handle routes with missing
data and give the best possible estimation from the avail-
able input [33]. Finally, cargo type prediction may also
help promote data transparency in the maritime industry,
because the type of product a vessel carries is typically
private information [39].

5.3. Limitations
Several commodities are often handled at the same port
(i.e., multi-purpose terminals), or even at the same berth
[38]. Moreover, a vessel often transports several com-
modities. Consequently, estimating the commodities car-
ried by dry bulk carriers with AIS data only has proven
difficult [38, 37, 32]. On another issue, matching all the

fixtures records to AIS data is not often possible , because
not every reported fixture is eventually realized [39].

There are differences from the official customs statis-
tics related to imports and exports in countries whose
other transport modes (i.e., pipelines) are important too.
Monthly trade statistics are generally available for some
countries but not all. Future research could combine AIS
data and oil pipeline data to calculate the marine trade
volume, and thus improve the accuracy of the oil trade
volume calculated with the use of AIS data.

6. Environmental impact

6.1. State-of-the-art
6.1.1. Emissions calculation

Early research estimated the ships’ air pollution emis-
sions during different operation modes, i.e., berthing,
maneuvering and hotelling [40]. In a similar
study, Winther et al [42] calculated the past and
future emissions by combining dynamic AIS data
with ship engine power functions and technology-
stratified emission factors. In a more recent study,
Schwarzkopf et al [46] constructed future scenarios about
ship emissions based on a virtual shipping fleet. The way
of calculating pollutant emissions in the open sea differs
from the way of calculating them in ports. Tran et al [49]
investigated the container vessel segment by compiling
a comprehensive emission profile by vessel size, port call
and carriers.

The approaches for emission calculation are often hin-
dered by the absence of some static AIS data, or vessel
technical information. To address these issues, Peng et
al [45] calculated ship emission inventories based on
sampling statistics, using individual vessels with all the
necessary data for estimating the population’s emissions.
In the absence of engine specifications, Zhang et al [44]
calculated emissions from vessels through categorical
regression based on vessels with similar characteristics.
Johansson et al [43] proposed a route generation algo-
rithm to compare emission calculations with previous
inventories. They introduced the “most-similar-vessel"
to complete the missing ship technical information.

6.1.2. Fuel consumption measurement and savings

Bai et al [58] investigated, for each ship type, the factors
that affect the shipowners’ choices regarding different
feasible schemes for reducing sulfur emissions. Safaei
et al [51] suggested a prediction model to estimate fuel
consumption based on multiple linear regression. Kim
et al [52] used big data techniques to optimize data pro-
cessing and computing time of the Energy Efficiency Op-
erational Indicator. To estimate fuel consumption, they



used static and dynamic AIS data. Watson et al [50] pro-
posed a methodology to estimate the carbon savings by
assuming that a ship sails at her lowest observed speed.
Stolz et al [54] investigated the time that ships spend at
berth by using AIS data, in order to estimate the auxiliary
power demand at berth. Sundvor et al [55] investigated
route requirements and energy demands of high-speed
passenger vessels, aiming to identify the candidates for
zero-emission replacement.

6.2. Contributions
The use of AIS data has facilitated emissions and fuel con-
sumption calculation. A noteworthy contribution, in this
area, concerns the efforts towards reducing the impact of
missing static data, using primarily sampling techniques
[45, 59, 43]. Moreover, simplification techniques for dy-
namic AIS data have been proposed, in order to take
advantage of large volumes of data [48].

6.3. Limitations
For the auxiliary engines and boiler, the ship registry
database does not always provide the full specifications
of installed power; thus, engine usage in various oper-
ational modes may not always be calculated [49]. Un-
certainty about voyage parameters, such as cruising and
maneuvering distance, has also affected the impact of the
reported empirical results [41].

For further work, Safaei et al [51] proposed the use
of non-linear regression methods, because there is a
non-linear relation between speed and fuel consump-
tion. Waves, sea currents and ice cover can increase the
required main power; therefore their influence should
be examined. Other data sources may also be used for
load profiles and distinguishing between loading and un-
loading at berth, to estimate the distribution of power
demand over time [54]. Peng et al [45] suggested examin-
ing the uncertainty induced by AIS communication gaps.
Finally, there is a plethora of dynamic AIS simplification
techniques that may be taken into consideration [60].

7. Summary and Further Work
We have carried out a survey AIS data analytics tech-
niques for shipping business decision-making. Our sur-
vey provides a categorization of the areas where AIS data
may assist in strategic decision-making, based on the
costs that a shipping business needs to cover. Moreover,
our survey is useful both as a catalogue of existing re-
search, as well as a critical evaluation of the field. The use
of AIS data has facilitated the state-of-practice in ship-
ping business decision-making. Furthermore, enriching
AIS data with other data sources is necessary more often
than not.

Due to space limitations, we could only present a frag-
ment of our survey here. We chose to focus mostly on
the literature of the maritime domain for the benefit of
the Data Scientist. We are currently finalizing the com-
plete survey, that presents a detailed discussion of the
literature, including work from the fields of Data Science
and Artificial Intelligence.
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