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Abstract
Building a real-time spatio-temporal forecasting system is a challenging problem which has many practical applications such
as traffic and road network management. Most forecasting research typically focuses on the average quality of predictive
models, with much less attention paid to building a practical pipeline and achieving timely and accurate forecasts when the
network is under heavy load. Additionally, transport authorities face the issue of how to effectively leverage various dynamic
data sources, such as urban events (e.g., scheduled roadworks on the road network, cultural events) and vehicle-level flow data.
In this paper, we investigate the practical challenges of real-time forecasting, and present Foresight, a cloud-based system
for spatio-temporal forecasting developed in collaboration with Transport for the West Midlands (TfWM). Foresight can
ingest, aggregate and process streamed traffic data to produce road network forecasts continuously. We adapt spatio-temporal
machine learning methods to incorporate dynamic urban events and vehicle-level flow data, and experimentally evaluate
a variety of predictive models in our setting. We employ a data-driven approach to identify peak times in the network,
and provide insights on how the performance of forecasting solutions varies for these times when accurate forecasts are
most important. We observe that incorporating roadworks into a Graph Neural Network (GNN) model can provide up to a
29.1% performance improvement (MAPE) at a 60-minute forecasting horizon. Further, modelling traffic propagation using
vehicle-level flow data in order to support graph-based learning can yield performance gains of 8.8% (MAE) at peak times.
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1. Introduction
Traffic data collected at roadside sensors can offer sig-
nificant value to transport managers. The raw data is
typically transformed into a time series format, captur-
ing a metric such as the vehicle count or average speed
over the road network. This information can be used to
make forecasts about the state of the road network in the
near future, which can enable proactive responses when
heavy or unusual load on the network is predicted.

A wide range of forecasting approaches have been ap-
plied to the traffic prediction task, from statistical meth-
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ods such as ARIMA [1], to Deep Learning (DL) models
such as LSTM [2]. In recent years, Graph Neural Net-
work (GNN) approaches have achieved state-of-the-art
results, due to their ability to capture spatial dependen-
cies between sensors [3, 4, 5, 6, 7]. GNNs typically model
the road sensor network as a graph structure, whose
weighted adjacency matrix reflects the strength of inter-
sensor relationships.

Despite an extensive body of work on traffic forecast-
ing, there are still several major challenges in building a
practical traffic forecasting system. First, there are chal-
lenges around the scalable handling and pre-processing
of the streaming traffic data, as well as in its use for real-
time forecasting. Typically, most forecasting models are
developed offline, without considering the challenges of
producing forecasts on streaming data. The real-time
forecasting problem requires that the forecasting process
takes place continuously within a given time lag of each
real-world traffic event occurring. This is an important
problem to study for practical data-driven systems, as
transport managers need to be able to take action based
on responsive short-term forecasts. It has also been iden-
tified as an open research issue, and entails significant
data management challenges, particularly when DL mod-
els are employed [8]. Second, the focus of many previous
works is the minimization of the average error across
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all test samples. In practice, however, accurate forecasts
are most important when the network is under heavy
load, and/or when the traffic patterns on the network
are unusual compared with historical norms. Finally, in
addition to data captured at roadside sensors, dynamic
urban events (DUE) and vehicle-level flow data should
also be incorporated dynamically into forecasting models
to improve predictive performance.

Towards addressing these challenges, we present Fore-
sight, a cloud-based spatio-temporal forecasting system
developed in collaboration with Transport for the West
Midlands (TfWM). Foresight ingests real-time traffic data,
and constructs a Flow Aggregated Adjacency Matrix
(FAAM) based on the observed vehicle-level flow be-
tween the network sensors, which supports graph-based
learning. To ensure timely inference results, it lever-
ages an automated ingestion, aggregation, and MLOps
pipeline. To focus on the times when forecasting is most
impactful, we develop a data-driven approach to exam-
ine the performance of models at peak times. Finally, we
incorporate roadworks/road closures in Foresight. While
previous works incorporate roadwork information into
predictive models [9, 5], this is usually not done as part
of a real-time pipeline. The dynamic processing of these
DUEs into a format suitable for continuous inference
presents non-trivial challenges.

The contributions of this work are as follows:

• We study the real-time forecasting problem,
which seeks to perform inference (and the neces-
sary data aggregation and pre-processing) within
a given time lag.

• We take a novel approach to the construction
of the adjacency matrix as a core component of
graph-based ML models and leverage vehicle-
level flow data in order to model traffic prop-
agation through the network. Translating this
vehicle-level flow data into a FAAM presents
non-trivial data management challenges. GNN
forecasting errors at peak times are reduced by
up to 8.8% under this scheme.

• We explore several approaches for transforming
real-time DUE data (namely roadworks) into a
time series format, and incorporate them into a
deep learning spatio-temporal forecasting model.
Experiments demonstrate performance improve-
ments of up to 29.1%.

• We present Foresight, a cloud-based system for
addressing the real-time traffic forecasting prob-
lem, which can continuously stream traffic data,
leverage up-to-date roadwork information, and
exploit traffic flow patterns to enhance forecast-
ing performance.

• We perform experimental analysis of a variety of
time series forecasting methods in a new environ-
ment. We compare the performance of multiple

models across both normal and peak traffic con-
ditions. We discover that LSTM is often a viable
alternative to a GNN based approach; although
LSTM produces poorer predictions on average,
it can achieve lower MAPE during crucial peak
time hours, which is typically more important in
practice. This indicates that LSTM yields fewer
large outlier errors, and as such may be better at
capturing unusual traffic patterns.

The rest of the paper is organized as follows. Section
2 presents related work. Section 3 formalizes the traffic
forecasting problem, and describes its real-time exten-
sions. Section 4 illustrates Dynamic Urban Events. Sec-
tion 5 describes the Flow-based GNN Adjacency Matrix.
Section 6 introduces Foresight, our cloud-based real-time
forecasting system. Section 7 covers our experimental
analysis. Finally, Section 8 concludes the paper.

2. Related Work
Numerous forecasting methods have been applied in the
traffic prediction domain. Forecasting is typically under-
taken with the use of statistical and machine learning
models. The Autoregressive Integrated Moving Aver-
age (ARIMA) and its variations are the most widely used
time-series models [1, 10, 11]. In addition, many Machine
Learning (ML) models have been applied, with the Sup-
port Vector Machine (SVM) [12, 13] and the Random For-
est [12, 14, 15] being the most common. Deep Learning
(DL) solutions based on Artificial Neural Networks have
become increasingly popular due to their improved fore-
casting accuracy and the ability to account for non-linear
dependencies [16]. Long Short-Term Memory (LSTM)
and Feed Forward Neural Networks (FFNN) are among
the models most frequently applied to forecast traffic
flows [2, 17, 18], with several hybrid approaches also
investigated [19, 20]. Finally, Graph Neural Networks
(GNNs), which can capture the spatial dependencies be-
tween the traffic monitoring sensors by representing the
road network as a graph structure, have further improved
prediction accuracy. Hence, multiple GNN applications
for traffic flow forecasting have been presented in recent
years [3, 4, 5, 6, 7, 21, 8].

2.1. Dynamic Urban Events
Urban events such as roadworks have been shown to sig-
nificantly impact traffic flow [22, 23]. Hence, the incor-
poration of auxiliary information about such events can
further improve traffic forecasting performance. For ex-
ample, roadwork and accident information has been uti-
lized in traffic simulation systems, ML models and GNNs
[24, 9, 5]. A combination of roadworks and weather con-



ditions have also been added to a bi-directional LSTM
Autoencoder for short-term traffic prediction [25].

2.2. GNN Adjacency Matrix
In GNN models, the underlying graph structures are usu-
ally represented with an adjacency matrix which repre-
sents the spatial relationships between the nodes of a
graph [4]. Although GNN adjacency matrices are typi-
cally binary [26], multiple variations have been proposed
[21]. For example, a real-valued distance-based adja-
cency matrix is a common alternative for representing
the spatial dependencies between nodes, and has been ap-
plied in numerous traffic forecasting studies with GNNs
[27, 28, 29, 30, 31]. The travel time between nodes has
also been considered as an alternative to distance-based
metrics [32]. More recently, the integration of dynamic
matrices has been introduced, that captures the dynamic
changes in spatial dependencies of the graph and tends to
improve forecasting [33, 34]. Coarse origin-destination
(OD) data has been applied as a substitute for a distance-
based adjacency matrix [35]. However, to the best of our
knowledge, no previous work on GNN based forecasting
has leveraged granular vehicle-level flow data to model
inter-sensor relationships.

2.3. Forecasting Systems
In addition to statistical and ML/DL modelling ap-
proaches, forecasting systems have also been developed
as general tools for time series prediction and road man-
agement optimization. For example, the AutoAI for Time
Series Forecasting (AUTOAI-TS) [36] automates fore-
casting techniques and addresses specific requirements
for time series data. DeepTRANS [37] combines the
DeepTTE system [38] with DCRNN [7] for bus travel
time estimation. The system uses archive information
about bus and traffic flow from sensor data, and DCRNN
is used to estimate traffic speed at buses’ locations. The
TrafficStream forecasting system leverages GNNs and
Continual Learning (CL) [39]. It constructs a sub-graph to
capture network expansion, and constraints are applied
on the current training model to integrate information
from historical data.

3. Real-Time Spatio-Temporal
Forecasting

In this section, we first describe the traffic forecasting
problem, before introducing its real-time variant. A key
requirement of this procedure is that the aggregation,
pre-processing and inference of the traffic data must take
place within a certain time lag of the real traffic events
occurring. These practical aspects of forecasting have

attracted relatively little attention in the large body of
research on the topic.

3.1. Traffic Forecasting Problem
We first present the definition of the traffic forecasting
problem, where the goal is to predict the future state
of the road network, given a sequence of previously ob-
served time series readings. Traffic information is typi-
cally obtained from roadside sensors, which can capture
features such as traffic flow or average speed, to form a
(multivariate) time series. Given a set of sensors 𝑆, we
denote the traffic information observed across all sen-
sors as 𝑋 ∈ R|𝑆|×𝑃 , where 𝑃 is the total number of
predictive features used. Let 𝑋(𝑡) ∈ R|𝑆|×𝑃 denote the
traffic signal observed at time 𝑡, and 𝑌 (𝑡′) ∈ R|𝑆|×𝑄

denote the traffic signal to be predicted at time 𝑡′. Note
that the number of target features 𝑄 may be different to
𝑃 . We aim to learn a function 𝑓(·) which maps from 𝑇 ′

historical traffic signals to 𝑇 future traffic signals:

[𝑋(𝑡−𝑇 ′+1), . . . , 𝑋(𝑡)]
𝑓(·)−−→ [𝑌 (𝑡+1), . . . , 𝑌 (𝑡+𝑇 )]

(1)

3.2. Real-Time Forecasting
The real-time variant of the traffic forecasting problem
adds the constraint that all processing takes place within
a specified duration following the end of each time bin.
In Foresight, anonymized streaming data is collected at
road cameras and ingested into the platform via an API
endpoint. Further details of this procedure are illustrated
in Section 6.1.

The real-time forecasting inference routine begins at
the end of each time bin, which are each 𝐵 minutes long.
First, the raw vehicle-level data (held in cloud storage)
is aggregated for the most recent time bin (i.e., the 𝐵
minutes from 𝑋(𝑡−1) to 𝑋(𝑡)). We denote the time taken
for this aggregation as 𝑇𝐴𝑔𝑔 . Next, the aggregated data is
pre-processed so that it is in the correct format for model
inference. This includes fetching and processing the ag-
gregated traffic count information for the last 𝑇 ′ time
bins, as well as retrieving any additional model-specific
data used for inference (e.g., roadwork time series, adja-
cency matrix). The time taken for this phase is referred
to as 𝑇𝑃𝑟𝑒𝑃𝑟𝑜𝑐. Once the required data have been pro-
duced, the inference API endpoint is invoked to perform
the forecast. The time taken for inference processing to
occur, as in Equation 1, is denoted by 𝑇𝐼𝑛𝑓 .

We require the following expression to be satisfied for
a system to be capable of real-time forecasting:

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐴𝑔𝑔 + 𝑇𝑃𝑟𝑒𝑃𝑟𝑜𝑐 + 𝑇𝐼𝑛𝑓 ≤ 𝐵 (2)



A value of 𝑇𝑇𝑜𝑡𝑎𝑙 ≤ 𝐵 ensures that the shortest fore-
casting horizon still pertains to information that is yet to
be aggregated in the system, and is therefore relevant to
network managers.

4. Dynamic Urban Events
Foresight is able to leverage DUE data dynamically to
improve the accuracy of its forecasts. We use roadworks
data as an illustrative example, but other such informa-
tion (e.g., social event data) could readily be applied in
a similar fashion. In the context of traffic forecasting,
planned and unplanned roadworks frequently influence
the volume and nature of traffic propagation through the
road network [22, 23], and so incorporating information
about them into predictive models is important for ac-
curate predictions. Foresight automatically ingests DUE
data and processes it into a format which forecasting
models can easily exploit.

Roadworks data is ingested into Foresight via the Street
Manager API1, which is invoked daily to receive a feed
of planned roadwork events. We denote the set of all
roadworks listed by a given daily API call as 𝑅. For
each roadwork 𝑟 ∈ 𝑅, we obtain its latitude/longitude,
as well as its start and end dates 𝑇𝑠 and 𝑇𝑒. In order
to associate the live roadworks on a given day 𝑇 with
the road sensor network 𝑆, we first select only those
roadworks where 𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑒. Next, we calculate the
road network distance (using an indicative driving speed
over a shortest path calculation on the road network)
between each 𝑟 ∈ 𝑅 and each 𝑠 ∈ 𝑆. These distances
populate an |𝑅| * |𝑆| matrix 𝑊 , with each entry (𝑖, 𝑗)
denoting the road network distance from live roadwork
𝑖 to traffic sensor 𝑗 in the network.

To incorporate this roadwork-to-camera influence in-
formation into the forecasting models, we convert 𝑊
into a time series format at the same temporal granu-
larity as the observed traffic data. This has been shown
to be an effective method for adding roadwork data to
forecasting models [5]. We define this as a new feature
set with the same dimensions as 𝑋 , formally �̂� ∈ R|𝑆|.

Each entry 𝑥�̂� ∈ �̂�
(𝑡)

has a value between 0 and 1 which
denotes the strength of the influence of the nearest active
roadwork to sensor 𝑖 at time 𝑡.

We consider two approaches to approximate this influ-
ence. The first is a binary thresholding approach, where
entries are activated if there is a roadwork within thresh-
old distance 𝑑 metres of the sensor. The second method
involves first calculating the distance from each sensor
to its nearest live roadwork, before normalizing these dis-
tances into [0, 1]. We perform this normalization using a
thresholded Gaussian kernel, with threshold 𝑘.

1https://www.gov.uk/guidance/find-and-use-roadworks-data

Combining 𝑋 and �̂� , a new matrix �̃� =

[︂
𝑋

�̂�

]︂
is

constructed, which is the new feature vector passed to
the forecasting models. We evaluate these approaches
within the context of a GNN model in Section 7.

5. Flow Aggregated Adjacency
Matrix

Graph Neural Networks (GNNs) are popularly used in
state-of-the-art forecasting models [27, 28, 29, 30, 31, 3,
34, 7]. These methods typically represent the traffic sen-
sor network as a graph structure, whose adjacency matrix
aims to capture spatial relationships between the sensors.
The principle of GNN message passing and node aggrega-
tion approaches in the context of traffic forecasting, such
as diffusion convolution [7], is to simulate traffic propa-
gation in the network. This method of extracting features
is typically embedded into a wider learning structure so
that temporal features can be learnt along with spatial
features in an integrated fashion.

The graph structure which models the traffic sensor
network is described by an |𝑆|×|𝑆| (weighted) adjacency
matrix. The value at position (𝑖, 𝑗) approximates the
strength of the relationship between sensor 𝑠𝑖 and sensor
𝑠𝑗 . A popular method to assign weights in the adjacency
matrix is to calculate pairwise sensor distances measured
in the road network [31, 3, 7].

The aim of this approach is to more realistically re-
flect the actual flow of traffic in the network, compared
to blunt sensor separation measures such as Euclidean
distance. However, these measures alone are insufficient,
as sensor separation per-se does not necessarily indicate
traffic flow levels. Even though two sensors are spatially
co-located, traffic might rarely pass between them consec-
utively, or may flow in one direction significantly more
than the other; these properties cannot be easily captured
by this approach.

We therefore develop a method for computing the ad-
jacency matrix weights which uses vehicle-level flow
data to more accurately determine the relationships be-
tween sensors. By leveraging the properties of granular
ANPR (Automatic Number Plate Recognition) data, our
method can anonymously capture (in order) the sequence
of sensors which the cars pass as they traverse the road
network. By aggregating this information at the network
level, we are able to determine actual flows within the
network. The new adjacency matrix is designed to re-
tain the same dimensions used in most GNN methods for
spatio-temporal forecasting, so it can be directly applica-
ble within these methods.

The Flow Aggregated Adjacency Matrix (FAAM), de-
noted as 𝐹 ∈ R|𝑆|×|𝑆|, is constructed by aggregating ob-
served flow between cameras within a given time frame.
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Figure 1: High-level architecture of the Foresight cloud-based forecasting system

1 unit of flow is recorded between cameras 𝑖 and 𝑗 when
a car is observed at camera 𝑠𝑖 ∈ 𝑆 at time 𝑡, and is
then next observed 𝑠𝑗 ∈ 𝑆 no later than 𝑡 + 𝜏 , where
𝜏 is a parameter given in seconds which denotes the ac-
ceptable transition period. To construct 𝐹 , each entry
𝐹𝑖,𝑗 is incremented by 1 for each observed unit of flow.
𝐹𝑖,𝑗 is then averaged over all the time periods during
which flow was observed, before being normalized into
[0, 1]. Each entry 𝐹𝑖,𝑗 thus approximates the likelihood
of a vehicle transitioning directly from 𝑠𝑖 to 𝑠𝑗 within
transition period 𝜏 . This can be periodically updated to
reflect changes in the network over time, such as sea-
sonality. We note that a more granular time scale would
be possible in this formulation, e.g., to capture shifting
traffic patterns throughout the day, but we leave this to
be explored in future work.

6. System Architecture
In this section we present an overview of the Foresight
system, as illustrated in Figure 1. The overall goal of
Foresight is to provide continuous forecasts for transport
managers by leveraging streaming traffic data as well
as dynamic urban event and flow information. We will
first describe how streaming traffic data is ingested and
aggregated, before presenting the MLOps pipeline and
forecasting inference procedure. Details of how DUE data

and flow information are processed are given in Sections
4 and 5 respectively.

6.1. Streaming Data Ingestion,
Aggregation and Storage

Foresight’s primary data source is anonymized ANPR
vehicle capture information in the West Midlands road
network managed by TfWM. This data flows into Fore-
sight using a POST request to an API endpoint, before
being forwarded to a streaming ETL service (Kinesis Data
Firehose2). Individual vehicle captures (including a times-
tamp, salted hash of vehicle registration, camera/lane of
observation and vehicle type) are buffered using this
service, and are periodically flushed to object storage
(once the buffer fills, or a short time period elapses).
The buffered file is also converted to a columnar format
(Apache Parquet3) for improved query performance.

We next use a serverless data integration offering (AWS
Glue4), to crawl the object storage buckets containing
these intermediate files periodically. This enables the
use of serverless SQL queries (via AWS Athena5) over
the columnar Parquet data. These queries generate ag-

2https://aws.amazon.com/kinesis/data-firehose/
3https://parquet.apache.org
4https://aws.amazon.com/glue/
5https://aws.amazon.com/athena/



gregated traffic count data, illustrating the total number
of vehicles of each type (e.g., petrol car, HGV) that have
passed each roadside camera within the current time bin,
i.e., the last 𝐵 minutes. We use scheduling functional-
ity in a cloud monitoring service (AWS CloudWatch6)
to trigger the SQL processing (via lightweight server-
less functions) for the current time bin. This procedure
writes a single file to object storage (AWS S37) per the
current time bin, which can later be used as an input to
ML workflows.

6.2. MLOps Pipeline and Training
We leverage an AWS SageMaker8 MLOps pipeline to
create and deploy forecasting models. Data scientists can
run experiments (e.g., in SageMaker Studio Notebooks)
over data held in object storage, using standard libraries
such as NumPy, PyTorch, TensorFlow, etc. Once a model
has successfully been designed, its source code can be
pushed to one of two Git repositories (test, production)
hosted in AWS CodeCommit9.

Once a code update is performed in either reposi-
tory, the MLOps pipeline provisions a compute instance
(whose size is specified by the data scientist) to perform
the necessary pre-processing and training of the model.
The trained model is then deployed to a SageMaker end-
point (which resides on a provisioned compute instance),
where it can first be tested in a ‘staging’ environment
before being made available for live inference (if the pro-
duction repository was updated). The MLOps pipeline
can be configured to re-train the model periodically, e.g.,
once per week, to continually incorporate the latest traf-
fic data.

6.3. Real-Time Forecasting Inference
As described in Section 6.1, the ANPR traffic data is ag-
gregated in periodic 𝐵-minute time bins. We configure a
serverless function (AWS Lambda10) to be triggered each
time a new per-bin traffic file arrives in the specified S3
location. Once the serverless function is invoked, it first
retrieves the latest 𝑇 ′ historical traffic files (see Section
3) and executes the required pre-processing logic. Note
that while this serverless function is lightweight, the
small data volume makes this processing efficient. Next,
any auxiliary data (e.g., adjacency matrices, roadworks
time series) required for inference is also fetched. The
resultant payload is sent to the live inference endpoint
described above, where traffic predictions for the next 𝑇
time bins over all sensors 𝑆 are made. These predictions

6https://aws.amazon.com/cloudwatch/
7https://aws.amazon.com/s3/
8https://aws.amazon.com/sagemaker/
9https://aws.amazon.com/codecommit/
10https://aws.amazon.com/lambda/

are then written to object storage, where they can be
retrieved for downstream visualization.

7. Experimental Analysis
In this section we present the results of our experiments
to test the effectiveness of popular traffic forecasting
methods in a new setting. We then evaluate the impact of
incorporating DUE data as an additional dimension to the
input feature vector. We also consider the performance
impact of using the FAAM, in place of a distance-based
adjacency matrix, in a GNN forecasting model. Finally,
we explore the error profiles of our models, and their
efficiency within Foresight.

7.0.1. Road Camera Dataset

The anonymized and aggregated data used for the ex-
periments is from a set of ANPR cameras in the West
Midlands region of the UK, covering several large conur-
bations including Birmingham and Coventry. The precise
locations of cameras remain private. The set of cameras
are spread over a variety of different road types, including
many roads from inner city locations and smaller con-
necting roads. This is different to many prior datasets,
such as METR-LA [40], where road sensors are typically
located on freeways where one can expect a high volume
of free-flowing traffic. The quality of this data is high; the
rate of missingness is only 2.3%, compared with 8.1% for
METR-LA. We use linear interpolation to impute these
missing values.

7.0.2. Experimental Setup

The vehicle count data used in the experiments was col-
lected between August 5th and December 5th 2021 (in-
clusive), and was aggregated at 15 minute intervals. DUE
data was collected for the same period. The flow was
measured between August and November 2021 in order
to compute the FAAM. The data was split into training,
validation and test sets in a 70/10/20 ratio. We evaluate
performance using mean absolute error (MAE) and mean
absolute percentage error (MAPE). We also calculate the
error distribution’s coefficient of variation, which we re-
fer to as the error coefficient of variation (ECV). We refer
to the set of absolute errors across all test samples as ℰ ,
and hence 𝐸𝐶𝑉 = 𝜎(ℰ)

𝜇(ℰ)
. The ECV allows us to compare

the dispersion of the error terms across different distri-
butions (i.e., the sets of errors made by different models),
as it normalizes by the mean error. A high ECV indicates
that predictions are inconsistent.

We evaluate the results firstly over all time periods
in the test data, which we refer to as ‘Any Time’ (AT)
experiments. We also perform evaluation focusing only
on ‘Peak Times’ (PT). We identify peak times as those that



Table 1
Table of results for all time periods (AT), as well as peak time (PT) periods only. Evaluation metrics include Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and Error distribution Coefficient of Variation (ECV).

MAE MAPE ECV
AT Results 15m 30m 45m 60m 15m 30m 45m 60m 15m 30m 45m 60m
Historical Average 28.22934 28.22934 28.22934 28.22934 1.247711 1.247711 1.247711 1.247711 1.353424 1.353424 1.353424 1.353424
ARIMA 17.21155 20.89709 24.38902 27.32631 0.29155 0.38807 0.484831 0.58018 1.176414 1.182061 1.165117 1.147103
FFNN 22.45165 26.00545 28.01167 30.38627 0.39497 0.475704 0.531725 0.596754 1.074771 1.094029 1.096674 1.086678
LSTM 16.47735 18.32613 21.04601 21.67277 0.263589 0.332847 0.402864 0.481703 1.259913 1.262905 1.247801 1.2313
DCRNN 13.04059 14.54253 15.71616 16.74402 0.321632 0.418699 0.488751 0.536253 1.163956 1.2184 1.260844 1.285605
DCRNN-RW-T 12.93978 14.27762 15.50452 16.62283 0.27605 0.342481 0.383549 0.426135 1.190628 1.252297 1.289899 1.305235
DCRNN-RW-G 12.88376 14.38243 15.75823 17.11553 0.272726 0.31275 0.342886 0.380381 1.181661 1.261551 1.298554 1.307771
DCRNN-F 12.77166 14.13801 15.42213 16.21135 0.27862 0.326762 0.368899 0.40535 1.197509 1.256911 1.28901 1.311176
DCRNN-RW-F 13.03387 14.29395 15.3533 16.29535 0.316565 0.353716 0.392546 0.425808 1.173395 1.250771 1.288463 1.315586

PT Results 15m 30m 45m 60m 15m 30m 45m 60m 15m 30m 45m 60m
Historical Average 46.56269 46.56269 46.56269 46.56269 2.339376 2.339376 2.339376 2.339376 1.085763 1.085763 1.085763 1.085763
ARIMA 24.00209 31.96453 40.5593 49.46829 0.292056 0.377998 0.457831 0.551944 1.100716 1.09567 1.098422 1.05831
FFNN 30.15297 35.27718 37.86231 41.33159 0.386185 0.460063 0.502773 0.575422 1.063224 1.056382 1.07224 1.024506
LSTM 19.82316 21.69737 23.50758 23.81264 0.301443 0.373158 0.414629 0.532906 1.193412 1.206935 1.210903 1.185619
DCRNN 16.1567 18.43098 20.17074 21.84788 0.415111 0.50987 0.585289 0.6306 1.066371 1.08657 1.103456 1.118936
DCRNN-RW-T 15.73651 18.33858 20.46045 22.31611 0.343233 0.450596 0.528813 0.609767 1.08885 1.116707 1.118316 1.124693
DCRNN-RW-G 16.00873 18.6837 21.26546 24.33342 0.318907 0.377966 0.409407 0.457951 1.095381 1.123309 1.131258 1.135483
DCRNN-F 15.28226 16.98344 18.73013 19.91762 0.349778 0.429841 0.485283 0.527475 1.102259 1.127692 1.145436 1.169329
DCRNN-RW-F 15.68353 17.47026 19.70059 21.80648 0.385255 0.43705 0.492557 0.553111 1.106778 1.145753 1.141361 1.142052

have historically shown high average traffic counts, but
also high levels of variability. High average traffic counts
indicate heavy load on the network, which we assume
are periods of interest for transport managers. High
levels of variability are a sign of challenging forecasting
conditions, and may denote periods of unusual traffic
conditions on the network. We identify these periods of
interest by first dividing the dataset into weekends and
weekdays, and then further splitting each of these into
hourly subsets. The mean and coefficient of variation
of each subset is then calculated. Any of these subsets
with both mean and coefficient of variation in the upper
two quartiles is classified as peak time. The only time
periods which satisfy this are 7am-8am, and 8am-9am on
weekdays, hence we select these as our peak times. This
selection also conforms closely to the domain knowledge
of our partners at TfWM.

7.1. Forecasting Models
The following forecasting models have been evaluated
on the road camera dataset.

• Historical Average (HA): We produce a histori-
cal average matrix based on the training set. The
average reading over the training set is calculated
at each sensor in 𝑆 for each of the 672 (4x24x7)
weekly time steps. To perform inference, we give
the historical average value of the target time pe-
riod as our prediction (the notion of 𝑇 ′ historical
traffic signals is not applicable to this method).

• ARIMA: We iterate over all sensors and all test
examples. In each iteration, we train an ARIMA
model11, using the previous 𝑇 ′ = 100 values as

11𝑝 = 1, 𝑑 = 0, 𝑞 = 1

the training input.
• Feed Forward Neural Network (FFNN): We

implement an FFNN, where the input consists of
the previous 𝑇 ′ readings across all sensors 𝑠 ∈ 𝑆.
The model produces predictions for the next 𝑇
forecasting horizons. The network is constructed
with two hidden linear layers, with ReLU acti-
vation functions. Model parameters are learned
using backpropagation, with an L1 loss function.

• Long Short Term Memory (LSTM): This is im-
plemented similarly to FFNN, except using LSTM
layers in place of linear layers. Within the LSTM
layers, input data is treated as a sequence and tem-
poral patterns are learnt using an additional hid-
den layer to capture the cell state, which passes
information along the sequence.

• Diffusion Convolutional Recurrent Neural
Network (DCRNN): We select DCRNN [7] as an
illustrative example of an effective GNN method.
This method has been previously identified as
one of the best-performing (GNN) approaches for
the traffic forecasting on benchmark datasets [8].
The model utilizes a distance-based adjacency ma-
trix to model the spatial relationships between
road sensors, and employs diffusion convolution
and bidirectional random walks to simulate traf-
fic propagation in the network. We utilize the
PyTorch implementation of DCRNN [7].

• DCRNN-RW-T / DCRNN-RW-G: DCRNN
with DUE adaption to include roadwork data.
DCRNN-RW-T associates live roadworks to
all sensors within a 1000m distance threshold.
DCRNN-RW-G uses thresholded Gaussian ker-
nel normalization (threshold 𝑘 = 0.1).

• DCRNN-F: DCRNN with the FAAM representing



the underlying graph structure. An acceptable
transition period 𝜏 between sensors is given as
3600 seconds and thresholded Gaussian kernel
normalization (𝑘 = 0.1) is applied on the matrix.

• DCRNN-RW-F: DCRNN with roadworks (using
Gaussian kernel method) and FAAM.

All models are implemented in AWS SageMaker Studio
using Python 3.6, on a ml.g4dn.xlarge instance. We use
PyTorch 1.8 to implement FFNN, LSTM, and DCRNN
(including all variants). Unless stated otherwise, 𝑇 ′ =
𝑇 = 4, and 𝐵 = 15 minutes. In practice, we make
predictions over horizons of 15, 30, 45 and 60 minutes
(henceforth referred to as 15m, 30m, 45m, 60m). The
more distant forecasting horizons (i.e., 45m, 60m) offer
transport managers more time to implement pre-emptive
interventions on the road network. Hence, performance
gains here are particularly valuable.

7.2. Experimental Results
We describe the key findings from our experimental re-
sults, which are presented in Table 1. First, we com-
pare the performance of several existing forecasting ap-
proaches in our new data setting. We then consider the
impact of incorporating roadworks as an exogenous input
feature, as well as using flow to determine edge weights
in the adjacency matrix. Next, we discuss our findings
pertaining to prediction reliability using ECV. Finally, we
analyze the efficiency of Foresight.

7.2.1. Analysis of Existing Approaches

We first consider the performance of several existing
spatio-temporal forecasting approaches in our new data
setting. During the AT experiments it can be observed
that DCRNN makes more accurate predictions across all
four time horizons (MAE improvements - 15m: 20.9%,
30m: 20.6%, 45m: 25.3%, 60m: 22.7%) compared to the
next closest model (LSTM), with the largest improve-
ments seen at the longest forecasting horizons. Similarly,
during the PT experiments DCRNN remains the most
accurate model. However, it is interesting to note that
the improvements compared to LSTM are now much
smaller (MAE improvements - 15m: 18.5%, 30m: 15.1%,
45m: 14.2%, 60m: 8.3%), and the trend at longer horizons
is reversed where we see the smallest MAE improvements.
ARIMA tends to be a competitive model for shorter hori-
zons, during both PT and AT experiments, however the
performance deteriorates quickly at longer forecasting
horizons, which indicates that this model requires fresh
data to support accurate predictions. HA and FFNN make
the least accurate predictions across all forecasting hori-
zons.

Different trends emerge when MAPE performance is
considered. DCRNN now exhibits poorer performance

than LSTM across all forecasting horizons during the AT
experiments (MAPE degradation - 15m: 22%, 30m: 25.8%,
45m: 21.3%, 60m: 11.3%); these discrepancies are fur-
ther exacerbated in PT experiments (MAPE degradation
- 15m: 37.7%, 30m: 36.6%, 45m: 41.2%, 60m: 18.3%). This
is an interesting result as it suggests that while LSTM
makes poorer predictions on average (i.e., MAE), it also
makes fewer mistakes of a significant margin, leading
to a lower MAPE (this metric is highly sensitive to out-
liers in the error term). It may therefore be inferred that
LSTM is better than DCRNN at predicting unusual traffic
patterns, especially at peak times. In terms of MAPE,
ARIMA was shown to be a highly competitive model
across all forecasting horizons, outperforming DCRNN
in all cases, with more pronounced gains in PT experi-
ments. As ARIMA is retrained on the most recent data
when evaluating each test sample (see Section 7.1), it
will naturally be more responsive to unusual traffic pat-
terns than models trained using a conventional train/test
split. LSTM still largely outperforms ARIMA in regards
to MAPE. HA performs particularly poorly on this met-
ric, due to its inability to dynamically respond to current
network conditions.

7.2.2. DUE Analysis

We also evaluate the impact of adding dynamic urban
events to GNN models. Mixed results are achieved when
MAE is considered. DCRNN-RW-G, which associates
roadworks using a thresholded Gaussian kernel, gener-
ally yields higher MAE than DCRNN across both AT and
PT experiments. These discrepancies in MAE are partic-
ularly pronounced for long forecasting horizons during
peak times (MAE degradation - 45m: 5.4%, 60m: 11.4%).
On the other hand, DCRNN-RW-T (binary thresholding)
achieves lower MAE compared to DCRNN over all AT
experiments. However, it still yields inferior performance
at more distant forecasting horizons at peak times (MAE
degradation - 45m: 1.4%, 60m: 2.1%).

The results for MAPE present a contrasting picture,
where DCRNN-RW-G outperforms DCRNN-RW-T across
all experiments. During AT experiments (especially at
longer horizons), DCRNN-RW-G achieves significant im-
provements compared to DCRNN (MAE improvements
- 45m: 29.8%, 60m: 29.1%). We observe a similar pattern
during peak times. These findings indicate that using a
thresholded Gaussian kernel during the construction of
a FAAM yields a reduction in large outlier errors (likely
resulting in improved performance under unusual road
network conditions).

7.2.3. FAAM Analysis

Our experimental results indicate that using vehicle-level
flow data to model inter-sensor relationships is an effec-



tive strategy. For AT experiments, DCRNN-F achieves
lower MAE than DCRNN across all time horizons, and is
particularly effective at long forecasting horizons (MAE
improvement - 60m: 3.2%). Further, we observe even
larger MAE gains for DCRNN-F compared to DCRNN
at peak times (MAE improvement - 60m: 8.8%). These
findings support the inclusion of vehicle-level flow data
into GNN models for improved predictive performance.

We note that leveraging the FAAM in place of a
distance-based adjacency matrix (i.e., DCRNN) yields
MAPE improvements in all cases. However, the most
significant MAPE gains are still experienced by DCRNN-
RW-G, indicating that incorporating roadworks is a more
effective strategy for minimizing outlier errors. It should
be noted that DCRNN-F mitigates much of the degrada-
tion in MAPE performance at peak times that DCRNN
suffers in comparison to LSTM, while also offering lead-
ing MAE results.

7.2.4. Error Coefficient of Variation

As illustrated in Table 1, DL models, particularly those
which have been enhanced by DUE data or the FAAM,
experience the highest ECV (especially at longer fore-
casting horizons). As shown above, it is at these more
distant horizons that the biggest performance improve-
ments (MAE/MAPE) are observed for our augmented
models. This suggests that while these solutions produce
the best forecasts on average, their errors are the least
consistent. This finding is noteworthy, and we would
recommend further investigation to better understand
its implications.

7.2.5. Efficiency Analysis

As discussed in Section 3.2, the real-time forecasting task
requires that 𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐴𝑔𝑔+𝑇𝑃𝑟𝑒𝑃𝑟𝑜𝑐+𝑇𝐼𝑛𝑓 ≤ 𝐵. In
the current version of Foresight, we allow for 𝑇𝐴𝑔𝑔 ≤ 40
seconds. For all of the implemented forecasting mod-
els, 𝑇𝑃𝑟𝑒𝑃𝑟𝑜𝑐 ≤ 6 seconds. Each model except ARIMA
achieves 𝑇𝐼𝑛𝑓 ≤ 2 seconds. As discussed above, at in-
ference time we train an ARIMA model over the pre-
vious 𝑇 ′ = 100 values for each 𝑠 ∈ 𝑆. For ARIMA,
𝑇𝐼𝑛𝑓 ≤ 16 seconds. Hence, all of the presented mod-
els achieve 𝑇𝑇𝑜𝑡𝑎𝑙 ≈ 1 minute, satisfying Equation 2
with significant headroom for 𝐵 = 15 minutes. Further,
these results conform to alternative notions of real-time
forecasting [41], where predictions were produced in a
single-digit order of minutes.

8. Conclusion
In this work, we study the real-time spatio-temporal fore-
casting problem, and develop a cloud-based system in
collaboration with Transport for the West Midlands. We

utilize this system to develop methods for the incorpo-
ration of Dynamic Urban Event (DUE) and vehicle-level
flow information into predictive models. We consider
several approaches for associating roadworks to the road-
side sensors which they impact, and present a FAAM
based on granular and anonymized vehicle-level flow
data. We implement and evaluate a range of time series
forecasting models in a new urban data setting, enabled
by ANPR infrastructure in the West Midlands region. We
observe performance improvements of up to 29.1% for
GNN models when DUE and flow data are leveraged. Our
experimental results provide further insights on the fore-
casting accuracy during peak times when accurate results
are more critical, compared to the traditional approach
of targeting the average accuracy. Further work may
apply our approach for handling DUEs to more varied
data sources beyond planned roadworks, such as weather
or cultural event information. Our data-driven method
for identifying peak times could be compared to a rele-
vant ground truth. Foresight’s response time could be
improved, particularly via acceleration of 𝑇𝐴𝑔𝑔 . Finally,
an additional temporal dimension could be added to our
flow-based adjacency matrix.
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