
HARVEST: a complete solution for smart agriculture
monitoring
Ioannis Mavroudopoulos1, Theodoros Toliopoulos1, Anastasios Gounaris1,
Georgios Kynigopoulos1, Andreas Andreadis1 and Ilias Kalfas2

1Aristotle University of Thessaloniki, Greece
2American Farm School, Thessaloniki, Greece

Abstract
We present HARVEST, a complete end-to-end solution for smart agriculture monitoring. HARVEST is built using open-source
systems specifically designed for big data applications to efficiently ingest and process real-world measurements collected in
real-time from sensors located in different areas of Greece. The results from the analysis benefit not only the farmers but
also additional roles in smart agriculture, such as data analysts and sensor infrastructure operators. HARVEST encapsulates
advanced analytics to fill missing measurements, detect malfunctioning sensors and produce meaningful insights to support
decision-making thus departing from common data warehousing deployments.

1. Introduction
The agricultural industry nowadays aims transition to
smart agriculture through the use of the Internet of
Things (IoT) and big data technologies. Smart agriculture
applications boost operational efficiency and productivity
[1]. As shown in recent surveys, e.g., [1], smart agricul-
ture applications are typically divided into 4 categories,
namely monitoring, tracking and tracing, smart precision
farming, and greenhouse production. We focus on the
first category that has received the highest attention.Its
core rationale is that important factors affecting farming
and production, such as soil temperature and air humid-
ity, need to be measured by IoT sensors and transferred
into a (typically) cloud-based infrastructure. Then, using
machine learning (ML) and other big data analytics tech-
niques, useful information and insights are mined. The
results of the analysis provide recommendations to the
farmers about their farming and irrigation plans, which
result in optimized production while at the same time
minimizing labour costs.

Some of the monitoring applications do not use a cen-
tral storage. They rather collect, process and visualize
data to a device that is connected with the sensors in
the field. In these applications the processing takes place
either on an edge device (like Raspberry Pi) or on a com-
modity machine, e.g., [2], which poses limitations due
to lack of available compute resources. On the contrary,

Proceedings of the 6th International Workshop on Big Data Visual
Exploration and Analytics co-located with EDBT/ICDT 2023 Joint
Conference (March 28-31, 2023), Ioannina, GR
$ mavroudo@csd.auth.gr (I. Mavroudopoulos);
tatoliop@csd.auth.gr (T. Toliopoulos); gounaria@csd.auth.gr
(A. Gounaris); kynigopo@csd.auth.gr (G. Kynigopoulos);
andreadis.dws@gmail.com (A. Andreadis); ikalfa@afs.edu.gr
(I. Kalfas)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

applications that move data from the sensors to the cloud
enable more advanced analytics and benefit from effi-
cient data storage [3]. In several cases, even though
the data are collected in the cloud, they are processed
separately for each user, which creates limitations regard-
ing the employed analytics methods and is difficult to
compensate for the high costs to set up and manage a
large-scale infrastructure. Therefore, taking advantage
of all the available data to more efficiently support the
end-users’ decision making is the most attractive option.
Data from custom sensors are pushed to the cloud, where
they are processed collectively using ML and AI to learn
and understand the behavior of different crops in differ-
ent parts of the world. However, HARVEST, which is
our proposal, goes one step further, as it enables differ-
ent roles in smart agriculture, like farmers, data analysts,
and network operators, to interact and benefit from this
large-scale monitoring application.

In this work, we introduce HARVEST, a complete so-
lution for smart agriculture monitoring that effectively
supports big data analytics. It is complete in the sense
that it is an end-to-end system and serves the needs of all
main stakeholders: farmers, sensor infrastructure opera-
tors and data analysts. In our scenario, we collect data
from the LoRa IoT Network of the American Farm School
(AFS) of Thessaloniki, Greece, which produces over 70K
measurements per day and covers more than 1/4 of the to-
tal area of Greece. HARVEST can also detect outliers, fill
missing values and extract useful insights, which is typi-
cally not included in data warehousing deployments. To
achieve its objectives, HARVEST aims to fulfil the follow-
ing functional requirements below: R1: Efficiently ingest
and process big data, ensuring low latency and scalability.
R2: Inform infrastructure operators for anomalies and
malfunctioning sensors. R3: Provide easily understand-
able analytical results and visualizations for the farmers
to assist them in the day-to-day activities. R4: Equip data

mailto:mavroudo@csd.auth.gr
mailto:tatoliop@csd.auth.gr
mailto:gounaria@csd.auth.gr
mailto:kynigopo@csd.auth.gr
mailto:andreadis.dws@gmail.com
mailto:ikalfa@afs.edu.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


analysts with built-in functionalities for filling missing
values and automated extraction of insights to facilitate
data exploration.

2. HARVEST Infrastructure
The data used are collected in real time from the Ameri-
can Farm School (AFS) of Thessaloniki’s LoRa IoT Net-
work, which operates in many areas of Greece. The most
important components of the network are the nodes and
the gateways. Nodes are specifically designed to operate
in open environments, like fields and farms, and each
node contains a variety of sensors. These sensors provide
real-time measurements of environmental variables, such
as humidity and temperature. In addition to the nodes,
the AFS network also includes meteorological stations,
which can capture additional measurements like solar
radiation. At the time of the study, the AFS LoRa network
had 254 nodes and 50 meteorological stations, with an
average number of measurements per day of 70K.

Gateways operate as routers between the nodes and
the cloud, where the data are stored. The nodes uti-
lize LoRaWAN[4], a low-power network, to send pack-
ages to the gateways, while the gateways employ a high-
bandwidth network, i.e. WiFi, to transfer these packages
to the cloud. LoRaWAN allows a gateway to receive pack-
ages from nodes that are installed in up to a 25-kilometer
distance. Therefore, with only 62 gateways, the network
coverage is estimated to be 36.6 million acres, which is
more than 27% of the total area of Greece.

2.1. System Overview
Fig. 1 depicts a high-level overview of the proposed infras-
tructure, starting from the sensors and ending with the
analytics. In this section, we briefly discuss the various
components of our solution.

LoRa Network sensors. The network consists of 13
different types of nodes, each with a unique collection
of sensors. The most common type of node is the one
installed in the fields, which accounts for about 68% of
the total nodes. The sensors embedded in this type of
node measure the air pressure, humidity, and tempera-
ture, as well as the dew point, the soil temperature, and
the volumetric water content. All the measurements are
transmitted from the sensors to the cloud through the
gateways in order to be stored. Then, they become avail-
able through an API.

Data Collector. This module is implemented using a
simple Java software and is responsible for periodically
retrieving new measurements from the AFS network API.
Since the measurements come from different node types,
a pre-processing step is required to standardize their
structure. Moreover, additional fields are added to each

Data Warehouse

Storage

Message Bus

Data Collector

Runtime Data Processing

Outlier
Detection

Notification
Component

Sensors

Gateway

Physical Layer

LoRa
Network

API

Farmer

Data Scientist

Offline
Analytics

LoRa
Operator

Notifications

Data Imputation Insights Visualization

Analytics

Figure 1: System overview

measurement, such as the district name in which the sen-
sor operates, in order to provide more meaningful spatial
indexing later. The final measurements are ingested to
the Message Bus.

Message Bus. This component enables information
flow between the various components in HARVEST. Each
component of the Runtime Data Processing component
pulls data from the Message Bus, processes them, and
then writes them back to a different channel. In our
implementation, we use Apache Kafka, an open-source
distributed event streaming platform, widely used in
the industry sector for high-performance data pipelines,
streaming analytics, and data integration (R1).

Outlier Detection. Some of the data ingested by
the Data Collector might have errors or inconsistencies,
which, if left unattended, would have a negative impact
on any produced result. The Outlier Detection compo-
nent is implemented in Apache Flink and is responsible
for eliminating anomalies before the permanent stor-
age of the data in the Data Warehouse. We have imple-
mented two different approaches to anomaly detection.
The first one is a simple rule-based technique that detects
anomalous behaviors, like out of bounds values or inac-
tive nodes, with the rules provided by domain-experts.
The other method uses a simple continuous outlier detec-
tion technique to detect measurements that significantly
deviate from previous measurements of the same node
or from measurements made by similar sensors in other
nodes. This unsupervised technique allows HARVEST to
eliminate more complex anomalies that would have been
missed by the naive rule-based method. All the detected
anomalies are removed from the main stream and written
into a different topic of the Message Bus in order to be
handled by the Notification Component.

Data Warehouse. After removing the outlying mea-



surements, the data are forwarded to the Data Warehouse
(DW) via the Message Bus. DW is responsible for effi-
ciently storing the multi-dimensional measurements and
enabling Online Analytical Processing (OLAP) opera-
tions. Additionally, the stored data are then utilized by
the methods in the Analytics layer. In our implementa-
tion, we have employed Apache Druid, an open-source
real-time database that automatically integrates with
Apache Kafka and provides fast and consistent queries at
high concurrency (R1). For each measurement, except for
the value and the timestamp, we maintain the sensor id,
node id, node type, minimum and maximum values that
are acceptable for this particular sensor type, and spatial
information (longitude, latitude, municipality, prefecture,
and district). This information allows aggregations at
various levels.

Notification Component. It is crucial for the AFS
LoRa operators to get notifications of any anomalous be-
havior. This allows them to detect and fix malfunctioning
nodes and sensors or detect possible natural disasters,
like fires or floods. The Notification Component’s re-
sponsibility is to inform the network operators of any
anomalies discovered by the Outlier Detection compo-
nent (R2). This component is implemented in Python.
The incidents are saved in a relational database to avoid
sending alerts for the same incident more than once, and
notifications (in the form of emails and Viber messages)
are sent periodically.

Analytics. A number of different analytics are applied
on top of the ingested data. Also, a visualization tool that
is easily configurable to match each user’s unique de-
mands has been employed (R3). In our implementation,
we have used Grafana, an open source tool for creating
custom dashboards and that is easily integrated with both
DW and the database that stores the outliers. Next, we
have the Offline Analytics tool implemented in Python,
which extracts statistics (e.g., active nodes and average
measurements per day) about the LoRa network in or-
der to support future decision-making concerning the
infrastructure (R2,R4). Finally, on top of the DW, we
have implemented two advanced analytics methods, top-
k insights extraction and data imputation. We discuss
these methods in the following sections. Note that the
structure of the proposed infrastructure enables the im-
plementation of various other analytical methods, like
the prediction of a sensor failure, without interfering
with the rest of the system. In other words, the system is
modular and extensible by design.

2.2. Data Imputation and Insights
Extraction

Data transmitted over the network may contain missing
values for various reasons. Lost packages due to com-
munication errors between the node and the gateway is

a very common phenomenon. Additionally, hardware
damage and sensor malfunction, which can be caused
by extreme weather conditions, also produce large miss-
ing blocks of data. Therefore, even under continuous
monitoring, the sensors often remain inactive for sev-
eral hours, or even for days, until the engineer fixes
the detected damage. In HARVEST, we employ data im-
putation techniques to fill in the missing values. This
component reads and writes directly to the DW and is
implemented using Python. We have implemented and
evaluated the performance of a number of different meth-
ods, e.g., methods that utilize the temporal dependencies
and correlations between different sensors in the same
node to better approximate the missing values and meth-
ods that take advantage of the structure of the network,
utilizing the correlations between the same variables in
multiple nodes to enhance the accuracy of their predic-
tions. Deep learning techniques are more accurate in
predicting the missing measurements when operating
under the multi-node setting. However, since data impu-
tation is a plug-in to the main system, in the future, we
can easily test additional techniques and re-evaluate our
choice.

Up to this point, we have discussed the data ingestion
along with preprocessing steps, like outlier detection and
data imputation, in order to enhance the quality of the
data. However, another important role of HARVEST is to
extract knowledge from the data to support the end-users
in their daily activities. OLAP, enabled by the DW, can be
used to obtain useful information about the stored data,
but it takes a lot of effort to manually pose queries and in-
terpret the results, particularly for non-expert users like
farmers. Therefore, we need an automated way to obtain
insights, where insights are interesting observations that
derive from aggregated data. Additionally, there should
be a way to rank the various insights with an appropri-
ate score function so that only the most interesting ones
are kept. The extracted information will provide infor-
mative summaries of the data to non-expert users while
also aiding data analysts in data exploration. To satisfy
this requirement, we have integrated and extended the
method described in [5] into our system. This method
extends OLAP tools’ simple aggregations by conducting
analysis operations on them (e.g., rank, difference), re-
sulting in the extraction of valuable information. This
component requires the following input parameters. Par-
ticipating attributes: The user can define a subset of the
available attributes (e.g., the timestamp of the measure-
ments and the region of the sensor that produced them)
in order to generate more meaningful insights. Measure
column: The column on which aggregations will be con-
ducted on (e.g., temperature values). k: The number of
top insights that will be extracted As the value of the
parameter 𝑘 increases, the process time to calculate the
top-k insights increases; typically, a value between 50



Figure 2: Left: average air pressure difference from the pre-
vious hour (point insight). Right: average temperature differ-
ence through-out the day (shape insight).

and 100 yields good results. Aggregator : The aggregation
function, which could be either SUM, COUNT or MEAN.
Extractor: Currently, in our system we support 4 types
of extractor: (1) Previous Difference, which subtracts the
current value from the previous one (this applies to at-
tributes that can be sorted, e.g. years), (2) Rank, which
simply ranks the values, (3) Percentage, which finds the
percentage of each attribute and finally (4) Average Dif-
ference, which subtracts the average aggregated value
from the initial one. 𝜏 -depth: The number of extractors
that will be used. A value of 1 indicates that only the
aggregator will be used. The recommended value is 2
(aggregator + 1 extractor) as more extractors will raise
the complexity exponentially without providing better
results. Insight types: HARVEST supports 5 insight types:
(1) Point insights mark an outstanding outlier, which is
far greater from the other set, (2) Shape insights show a
trend that is increasing or decreasing rapidly, (3) Attri-
bution that shows outstanding percentage of an outlier,
(4) Two Points, which reflects the difference of two points
from the others and finally (5) Last Point which refers to
an outstanding outlier, which is very small compared to
the set [6]. Two examples are given in Fig. 2.

We built a user-friendly interface so that any actor can
log in and quickly run a top-k insights query.1 Insights,
similar to the Data Imputation component, is a plug-
in to the core system, i.e., it connects directly with the
DW and does not interfere with any other component,
making it easy to extend or modify. This component is
implemented in Javascript and is publicly available.2

3. Deployment and Demonstration
The system has been running for over 20 months on a
Linux server with 16GB RAM, a 2.3GHz CPU with 8 cores,
and 200GB of hard disk space. During that period, a to-
tal of 22 million measurements have been successfully
ingested and stored. All the services were containerized
to minimize the installation process and increase inter-
operability. That is, if the AFS LoRa network expands in
the future, the proposed system can be easily transferred
to a new environment that can match the new demands.

1https://kinigopoulos.github.io/top-k-insights/
2https://github.com/Kinigopoulos/top-k-insights

The demonstration will present how the data are ex-
tracted from the network’s API in real-time, processed by
the various components before stored in the data ware-
house. Additionally, we will show how the different ac-
tors can benefit from HARVEST. End-users, e.g., farmers,
can utilize the custom graphs in the Visualization com-
ponent to monitor the crops in real-time and make better
day-to-day decisions, such as deciding when to water the
plants according to the measured soil humidity. Addi-
tionally, they can use the Insights UI to obtain interesting
insights about the collected data without spending any
time configuring the system and/or submitting queries .
Data Analysts can also benefit from the proposed frame-
work in multiple ways. First, insights can be extracted
from both the Offline analytics and Insights components,
in order to provide some initial information about the
data and the network structure. Next, using the OLAP
tool provided by the DW, the analyst can efficiently sub-
mit SQL queries over the multi-dimensional data. Finally,
the HARVEST’s structure enables the implementation
and evaluation of additional components, like CEP-based
smart agriculture and predicting the remaining useful
lifetime of a sensor. We will demonstrate how such ex-
tensions can be realized. Operators of the LoRa Infras-
tructure can continuously monitor the LoRa network in
the Visualization component while also receiving real-
time notifications for possible malfunctions.

References
[1] V. K. Quy, N. V. Hau, D. V. Anh, N. M. Quy, N. T. Ban,

S. Lanza, G. Randazzo, A. Muzirafuti, Iot-enabled
smart agriculture: Architecture, applications, and
challenges, Applied Sciences 12 (2022) 3396.

[2] G. Lee, M. Kim, K. Koroki, A. Ishimoto, S. H.
Sakamoto, S. Ieiri, Wireless ic tag based monitoring
system for individual pigs in pig farm, in: 1st Global
Conf. on Life Sciences and Technologies (LifeTech),
IEEE, 2019, pp. 168–170.

[3] W. Zou, W. Jing, G. Chen, Y. Lu, H. Song, A survey
of big data analytics for smart forestry, IEEE Access
7 (2019) 46621–46636.

[4] S. Ali, T. Glass, B. Parr, J. Potgieter, F. Alam, Low cost
sensor with iot lorawan connectivity and machine
learning-based calibration for air pollution moni-
toring, IEEE Transactions on Instrumentation and
Measurement 70 (2020) 1–11.

[5] B. Tang, S. Han, M. L. Yiu, R. Ding, D. Zhang, Ex-
tracting top-k insights from multi-dimensional data,
in: SIGMOD, 2017, p. 1509–1524.

[6] R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, Quick-
insights: Quick and automatic discovery of insights
from multi-dimensional data, in: SIGMOD, 2019, p.
317–332.

https://kinigopoulos.github.io/top-k-insights/
https://github.com/Kinigopoulos/top-k-insights

	1 Introduction
	2 HARVEST Infrastructure
	2.1 System Overview
	2.2 Data Imputation and Insights Extraction

	3 Deployment and Demonstration

