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Abstract
Recently, Graph Cities [1, 2] have been proposed as scalable 3d visual representations of graph edge partitions where each
subgraph in the partition is a “fixed point of degree peeling”. In this work, we propose “intuitive” primitives to extract
language semantics from the topology of these fixed points aided by provided graph vertex labels. The main approach is
to view the collection of data labels as a set system derived from the graph topology and to derive “intuitive” language
semantics from a specially derived set system intersection meta-graph. Exploration primitives include a glyph grid map
of the distribution of all fixed points in the data set and a textual summary tool. We illustrate our approach with a variety
of fixed points subgraphs extracted from “large” datasets that include a patent citation network (16.5 million edges) [3], a
movie keywords co-occurrence network derived from the Internet Movie Database (5 million edges), a paper citation network
derived from arXiv Computer Science papers (1.5 million edges), and a Parler dataset [4].
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1. Introduction
The proliferation of “large” data sets has made the search
for scalable interactive visual representations an area
of pressing importance. Two of the main questions in
this type of investigation relate to the Screen and I/O
Bottlenecks [5, 6]. The I/O bottleneck refers to the fact
that specialized “external memory” algorithms [7] are
required to process graphs when their edge set resides
on disk but the full adjacency list does not fit in the
computer’s RAM. The screen bottleneck emphasizes the
need to devise visual representations that are aware of
the computer screen size at different levels of resolution
and with different user interactivity requirements. The
overall goal is to amplify the user’s understanding of
the essential properties of a non-RAM resident graph
by offering exploration and summarization tools whose
combination becomes a “graph sense making” machinery.

We invite the reader to consider graphs with several
billion edges (i.e., GigaGraphs) residing on files on a com-
puter disk with 32 GB of RAM for processing. Can we de-
vise a “small” visual representation that can be explored
interactively at different levels of resolution and that
can be used to generate a “summary” of selected graph
properties? Ideally, the visual representation should be
suitable to be used as a “visual stamp” of the overall net-
work “structure”. Graph Cities constitute an example of
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such “small” visual representations.
These representations at the end of the day need to

provide users “intuitive” mechanisms to select data re-
gions at different levels of granularity in order to produce
summaries that incorporate information derived from the
labels associated with the graph data. We report on our
current attempts to provide some algorithmic primitives
that use the layered topology of fixed points to aggregate
vertex labels into a hierarchical set system from which
summaries of the fixed point contents can be obtained.
Our emphasis here is on the algorithmic primitives ap-
plied to small subgraphs of fixed points extracted from
very large graph data. Our intention is to provide “in-
tuitive” data summaries derived from the vertex labels.
Extraction of global-level semantics from billion-edge
graphs is a work in progress. Here we focus on specially
selected fixed points.

1.1. Related Work
The choice of representations that facilitate smooth vi-
sual interaction is a subject of active research [8, 9, 10].
All these previous techniques have algorithms with run-
ning time substantially greater than linear on the number
of graph elements, making them not suitable for massive
graph visualization. Graph Thumbnails, as a mechanism
to identify and compare multiple graphs, are alone the
subject of [11]. Generation of graphs with a predefined
core structure is the focus of [12]. Computational as-
pects of core related graph decompositions and graph
sparsification are studied in [13, 14, 15, 16, 17]. Machine
learning approaches, such as those described in [18, 19],
have been proposed to learn low-level embeddings of
graphs, however, such approaches are not yet suitable
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Figure 1: Set system intersection meta-graph computed for a fixed point 𝐹13 (in red) from a Pandora Papers dataset. A quick
search engine query verifies that some of the detected company names have been dissolved, for example, Teddington Company
Limited.

for the extraction of label semantics from billion-edge
graphs.

1.2. Contribution
We built on previous work on Graph Cities [1, 2] to select
fixed points of degree peeling for extraction of seman-
tics from their vertex labels. We rely on the waves and
fragments decomposition of [20] to hierarchically aggre-
gate the fixed point vertex labels into a set system whose
pairwise intersections are used to compute a maximum
spanning tree from which a hierarchical summary of
the fixed point labels is offered to the user for further
exploration. Concretely, our contributions are:

1. A Visual interface (Figure 1) for hierarchical labels
summary of the fixed point vertex labels.

2. A glyph map (Figure 2) that is used as a visual
index for fixed point selection.

3. Editing facilities for users to select and annotate
subgraph patterns of his/her own interests that
can be incorporated into graph city galleries

The paper layout is as follows: Section 2 presents the
details of global and local views of fixed points as directed
meta-graphs and introduces a glyph map that provides
direct access to any fixed point. Section 3 lays out the
construction of a set system of labels derived from the
layered topology of the input fixed point, and provides
sample results from a citation network [21, 22], the Pan-

dora papers1, a movie keyword co-occurrence dataset2,
and the Parler dataset [4]. Section 4 discusses our cur-
rent work directions on related open problems. Section
5 concludes the paper.

Even though our current results are preliminary they
are very encouraging and we will be focusing in the
near future on the creation at a scale of the fixed point
semantic approach reported here.

2. Global and Local Views of Fixed
Points

2.1. Fixed Points Intersection Set System
The fundamental graph theoretical building units used in
this work are fixed points 𝐹𝑘 of minimum degree peeling
𝑘 [23]. The reason is that the edges of any graph can be
partitioned into maximal subgraphs that are Fixed Points.
To our knowledge, the best algorithm for the iterative
edge decomposition of any graph into fixed points has
complexity 𝑂(√|𝐸||𝐸|) and this follows from the fact that
a graph cannot have more than √|𝐸| different peel values.
Figure 4 depicts a small fixed point. It consists of a se-
quence of waves, and each wave consists of an ordered
sequence of edge sets called edge fragments adjacent to
disjoint sets of vertices called layers.

1https://www.icij.org/investigations/pandora-papers/
2https://www.imdb.com/interfaces/



Figure 2: Glyph map of movies to movies and keywords net-
work, where the x-axis encodes fixed point size buckets, and
the y-axis represents fixed point values. Each glyph represents
a collection of fixed points with the same fixed point value
and size within a logarithmic factor.

An alternative view of an overall edge partition of a
graph into fixed points is to consider the intersection
meta-graph determined by the vertex sets of the fixed
points, i.e. two fixed points < 𝐹𝑖, 𝐹𝑘 > are connected if
their vertex sets intersect and their connecting edge is
weighted by the cardinality of their intersection divided
by the size of their union. A spanning directed subgraph
view of this fixed point intersection meta-graph can be
obtained by collapsing each connected fixed point into a
meta-node and directing all edges from lower fixed point
values to higher fixed point values (Figure 2). This is a
Directed Acyclic Meta-Graph (DAMG) view of the fixed
point decomposition of the entire dataset.
Fixed Points Glyph Grid Map. To provide easy

access to any fixed point subgraph of a graph city, a
grid map is provided, where each point is addressable by
a bucket size indicator (x-axis) and a fixed point value
(y-axis) (see Figure 2).

Figure 3: The top figure depicts a circular glyph representing
a connected fixed point. The internal triangle spikes encode
its waves. The Middle figure is an example of a circular glyph
representing fixed point 𝐹16 in the Parler dataset. It has the
largest number of waves. The bottom figure is a spiral glyph
example summarizing a collection of fixed points with the
same fixed point value and sizes within a logarithmic factor.



Each point in this grid has an associated glyph (see
Figure 3) that summarizes the collection of the corre-
sponding connected fixed points with the same fixed
point value and similar edge size within a logarithmic
factor (i.e., the same bucket). A circular glyph represents
a fixed point, whose area and color of the ring encode the
fixed point edge size and average density, respectively.
Internally, a circular glyph contains a clockwise sequence
of spikes that corresponds to the sequence of waves of
the corresponding fixed point. The number of spikes is
equal to the number of waves. Each spike corresponds to
a triangle that encodes the wave seed set and the number
of wave edges. The wave density is color encoded. The
starting angle from the left to the first spike encodes the
ratio between the fixed point’s average degree and its
peel value. When a set of fixed points have the same
peel value and similar sizes within a logarithmic factor,
a spiral glyph summarization represents the edge size
and density of the union by its area and color. The spiral
length encodes the number of fixed points in the collec-
tion, and the start angle from the left to the outer end
represents the ratio between the average degree of the
union and the peel value.

Since a glyph grid map provides a 2-dimension sum-
mary for a graph city, it can be used as a selector for
“interesting” fixed points. (See Figure 3 (middle).) Hover-
ing on a particular glyph in the grid map displays some
statistics of the corresponding fixed points including the
number of vertices, and edges.

Users can filter “interesting” fixed points by querying
for the largest, densest, or most diverse.

2.2. Fixed Points as Sequence of Waves
and Fragments

Figure 4: A fixed point can be viewed as an ordered sequence
of waves, and each wave is a sequence of fragments

Edge fragments. Given a seed subset S of vertices of a
graph, its edge fragment Fragment(𝑆) consists of all those
edges with at least one endpoint in 𝑆 (i.e. edges touching

𝑆). Those endpoints of edges in Fragment(𝑆) that are not
in 𝑆 are called the Boundary vertexes of Fragment(𝑆).

A fixed point as a stack of edge fragments. A fixed
point 𝐹𝑘 can be viewed as a directed graph by iterative re-
stricted exploration of its edge fragments as follows (see
Figure 4). Take all vertexes of degree 𝑘 as its seed source
set, mark them as visited, and mark all edges “touching”
this source set as visited. Update the degrees by subtract-
ing from each vertex the number of newly visited edges
adjacent to it, i.e. update the leftover out degree. Proceed
iteratively by visiting in parallel the neighborhoods of
those boundary vertexes whose leftover out-degree is
strictly less than 𝑘. If there are no boundary vertices ad-
jacent to the set of visited vertices with leftover degrees
less than 𝑘 it means that a new seed set of leftover degrees
exactly equal to 𝑘 must be used for further exploration.
This is an indication of the beginning of a new subgraph
of the fixed point that is generated by a new seed set of
leftover out-degree 𝑘. (See next subsection). These maxi-
mal subgraphs generated by maximal disjoint seed sets of
vertices of minimum degree 𝑘 are what are called Graph
Waves in [20]. In summary, Fixed points of peel value 𝑘
contain maximal subsets of “seed” vertices of degree 𝑘
that generate edge disjoint maximal subgraphs called the
waves associated with the seed sets. Each of these waves
has a beginning and an ending set of vertices with some
collection of paths interconnecting them [1, 2].
Meta-DAG View of Fixed Points. Associated with

the sequence of edge fragments forming a wave, their
seed sets form an ordered partition of the vertex set of
the wave. We direct edges according to the fixed point
seed set ordering. An edge with both endpoints in the
same seed set is called local, and edges directed from the
lower seed set to the higher seed set are called out-going
edges, otherwise, they are called in-coming edges. The
number of outgoing edges incident to a vertex is called its
left-over degree. With these preliminaries, we can intro-
duce a Directed Acyclic Meta-Graph (DAMG) view of a
fixed point as follows: The connected components of the
subgraphs induced by the seed sets become meta-notes.
Edges running from a connected component 𝐶 in a seed
set to a connected component 𝐷 in a different seed set
are aggregated as a directed meta-edge (𝐶, 𝐷, |𝐸(𝐶, 𝐷)|),
where |𝐸(𝐶, 𝐷)| encodes the number of directed edges
running from 𝐶 to 𝐷.

3. Generating Fixed Point
Summaries

3.1. Generation of Hierarchical
Summaries

Figure 5 illustrates the interface layout. We refer to the
middle area of the screen as the canvas. On the top of



Figure 5: Top figure: Set system intersection meta-graph computed for a fixed point 𝐹25 from the US patent citation network.
The displayed labels have a higher (above the mean) co-occurrence frequency in the labels set system. The selected categories
of patents have a high level of citations to the other selected categories. Bottom figure: Set system intersection meta-graph
computed for a fixed point 𝐹8 from the movies to movies and keywords network. The displayed labels have a higher (above
the mean plus one standard deviation) co-occurrence frequency in the labels set system. Selected movie titles are “similar”
with respect to their viewers’ keyword descriptions. Unfortunately, some of the keyword descriptions are very loose, and this
produces a possible misclassification. For example, “Alice in Wonderland” appears here because the data contains the keyword
“based on novel”.

the canvas, there is a grid map from which users can
select a fixed point (in red). To the left, a textual tree of
hi-frequency labels is derived from a binary tree traver-
sal as explained below. In the canvas of the screen, we

display a maximum spanning tree of the label set sys-
tem intersection meta-graph. When a user hovers over a
link, its corresponding labels are displayed in an infobox.
On the right-hand side, a label frequency bar chart is



displayed and interactively updated according to users’
desired specifications.

The complexity of generating summaries is 𝑂(|𝑉 |2),
where |𝑉 | is the number of vertices in the fixed point.
Please notice that non-quadratic implementations are
possible by using Locally Sensitive Hashing [24].

Assuming that the vertices of a fixed point are labeled
by sets of words, we describe next how we rely on the
layered topological view of a fixed point to generate a
set system of labels whose intersection graph is used
to generate a hierarchical summary of the overall fixed
point vertex labels.
Generating a set system of labels from the

vertex labels. Denote by 𝐹(𝑘, ℎ) a vertex labeled
fixed point 𝐹 with peel value 𝑘 consisting of ℎ frag-
ments with a corresponding ordered sequence of seed
sets 𝑆0, 𝑆1, …, 𝑆ℎ−1 according to their fragment indices
𝑓 𝑟𝑎𝑔0, 𝑓 𝑟𝑎𝑔1, …, 𝑓 𝑟𝑎𝑔ℎ−1. We output a hierarchical sum-
mary of the overall fixed point set of labels by building
a bottom-up aggregation of the vertex labels in the non-
decreasing order of fragment indices. Initially, we com-
pute the connected components of the subgraph induced
by the seed set 𝑆0 and assign to each such component
the union of the sets of labels of its vertices. We derive
a Label Set System from the fixed point layered view
decomposition as follows: Bottom-up, for each vertex
𝑥 ∈ 𝑓 𝑟𝑎𝑔𝑖, 𝑖 = 0, 1, ..., ℎ − 1, update the label set of 𝑥 as
the union of all its incoming neighbors’ label sets. For
each pair of vertices (𝑢, 𝑣) from different fragments, if
there exists a directed upward path from 𝑢 to 𝑣, then
connect (𝑢, 𝑣) with a semantic edge weighted as the car-
dinality of the labels’ set intersection between 𝑢 and 𝑣.
Call this graph IntersectionLabelSetSystem(𝐹(𝑘, ℎ)). From
this intersection label set system, we extract a summa-
rization based on maximum spanning trees and a binary
tree traversal. Visually, we build a color map according
to the distribution of weights in the maximum spanning
tree of the IntersectionLabelSetSystem(𝐹(𝑘, ℎ)). A textual
summary is extracted by a binary tree traversal of the
maximum spanning tree according to the non-increasing
order of weights, and we select from each tree edge being
visited a label that has not been seen during the traversal.

3.2. Sample Results of Hierarchical
Labeling

We illustrate the hierarchical labeling results obtained for
fixed points selected from a patent citation network (Fig-
ure 5 (top)), a movies-to-movies-and-keywords dataset
(Figure 5 (bottom)), a paper citation network (Figure 6
(top)), and the Parler dataset (Figure 6 (bottom)). The dis-
played labels are those that have a “substantial” number
of co-occurrence in the set system of label sets.

4. Current and Future Work
We are currently designing navigation and summariza-
tion tools so that a user can annotate those subgraph
patterns that he/she finds interesting. Currently, a user
can annotate subgraph patterns indicating his findings
and adding the corresponding subgraph patterns to a pat-
tern gallery accessible from the top of the user interface.
A fisheye view on the textural tree

4.1. Open Problems
1. What is the I/O complexity of computing the edge

decomposition of a fully external memory graph?
Namely, neither the vertices nor the edges fit in
RAM.

2. Is there an efficient method to compute the fixed
point edge decomposition in a streaming fashion?

3. What are examples of graph computations whose
solutions can be obtained as compositions of their
solutions on the graph fix points?

4. The decomposition of the edges of a graph into
fixed points defines intrinsically an intersection
graph of the collection of sets of vertices appear-
ing on each fixed point. What are the properties
of the graphs that are the intersection graphs of
fixed point edge graph decompositions?

5. Conclusions
Devising visual representations of very large graphs is a
tantalizing area of research. Coming up with tools that
“explain” the semantics encoded by graph data labels at
different levels of granularity is in our view a comple-
mentary endeavor that deserves more attention from the
community. It opens avenues of interdisciplinary work
involving at least natural language processing (textual
and semantic similarity [25]), computer human interac-
tion, and machine learning. We hope this modest contri-
bution entices other researchers to join us in this quest.
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Figure 6: Top figure: Set system intersection meta-graph computed for a fixed point 𝐹23 from the arXiv Computer Science
paper citation network. The displayed labels have a higher (above the mean) co-occurrence frequency in the labels set system.
The selected terms have a high level of co-occurrence in the paper titles grouped by 𝐹23. Bottom figure: Set system intersection
meta-graph computed for a fixed point 𝐹16 from the Parler dataset. The detailed view of the glyph corresponding to the
selected fixed point (in red) is displayed in Figure 3 (middle). The displayed labels have a higher (above the mean plus one
standard deviation) co-occurrence frequency in the labels set system. The selected terms have a high level of co-occurrence in
the sentences collected in the Parler dataset. Notable selected terms include “Lionel Messi”, “Obama”, “Assange”, “vote”, “fake
news”, “pedophile”, “American state”, “peaceful protest”, and “socialism”.
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