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Abstract
Schema evolution is a crucial activity when managing databases in order to satisfy new requirements and improve data and
code quality. Therefore, a great research effort has been devoted to automate this activity for relational databases, and agile
database development is the most recent innovation. With the emergence of NoSQL systems, the attention has shifted to
study schema evolution for these stores that are characterized by the absence of a declaration of schema, and the use of APIs
instead of the usage of SQL-like languages. Moreover, the number of multi-model database systems and tools is continuously
growing as polyglot persistence becomes the architecture of choice to support the requirements of modern applications. In
this scenario, several works have presented approaches to support schema evolution for relational and NoSQL systems. In
previous work, we presented the U-Schema unified metamodel to represent schemas for relational systems and the four most
widely used NoSQL paradigms. For U-Schema, we defined a taxonomy of schema change operations, and the Orion language
to specify scripts defining sets of schema changes based on operations of the taxonomy. The Orion engine is then able to
automatically update schema and data from Orion scripts. In this paper, we present an ongoing work aimed at adding schema
and code co-evolution to Orion. The novelty of our proposal is to define schema changes in a platform-independent way, and
then automatically generate static code analysis queries to find the statements that need to be updated. These queries are
obtained by using model to text transformations, and they return information about the location of the code fragments to be
updated, and the modifications that need to be applied so the code conforms to the new schema.
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1. Introduction
In the industrial and academic database community, the
idea of “one size does not fit all” has been gaining accep-
tance and polyglot persistence is the scenario foreseen for
the future [1, 2]: relational database systems will be still
predominant but they will coexist with other kinds of
systems, such as NoSQL and NewSQL. In fact, the first
eight databases in the DB-engines ranking 1 are multi-
model, and database tooling provide support for database
systems of different data model paradigms.

When several data models are popular and widely
used, the definition of a unified or generic metamodel is a
well-known approach to reduce the effort of implement-
ing multi-model database utilities and tools: the generic
metamodel is able to represent schemas of all the involved
data models. Some examples of such generic metamodels
are DB-Main [3] and more recently TyphonML [4] and U-
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Schema [5]. In our research group, we created U-Schema
to provide a unified representation for relational and the
four most used NoSQL data models: columnar, document,
key-value, and graph [2]. We have used U-Schema to
design and implement the Orion approach for evolving
databases [6, 7] and the SkiQL language aimed to query
schemas [8]. Here, will focus on the schema evolution
based on the Orion language.

Schema evolution is a crucial task in database appli-
cations: a co-evolution of data and code is required
when schema changes are applied, as illustrated in Fig-
ure 1. Therefore, a great research effort has been de-
voted to deal with this problem in the scope of relational
databases [9, 10]. Since the appearance of NoSQL sys-
tems, a great attention has also been paid to the evolution
of these systems [11, 12], which have two significant dif-
ferences regarding the relational systems: most of them
do not require the declaration of schemas and queries
are based on APIs instead of using a SQL-like language.
Moreover, some approaches have also addressed the poly-
glot persistence scenario [13, 14].

In [6, 7], a taxonomy of schema changes for U-Schema
is proposed, and the Orion language is defined to ex-
press schema change scripts. Co-evolution of schema
and data is automatically applied by the Orion engine. In
this paper, we present an ongoing work intended to add
co-evolution of schema and code to Orion. Developers
will be assisted in two ways: depending on the kind of
schema change, code will be automatically updated or
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Figure 1: Data and code co-evolution when the schema
changes. (Extracted from [7].)

either messages carrying information about the changes
to be applied manually will be shown to developers, in
a way similar to those described in [13]. Here, we will
present the current state of our work. The novelty of
our proposal is to define schema changes in a platform-
independent way, and then automatically generate static
code analysis queries to find the statements to be updated.
These queries are obtained from a Orion script through
model to text transformations. We have validated gener-
ated queries valid for MongoDB APIs and mappers for
the JavaScript language. Our work is described in Sec-
tion 3. Prior to this explanation we briefly introduce the
Orion approach, and we conclude by commenting the
related work and exposing some ideas about the tasks to
be done to complete the approach.

2. U-Schema and the Orion
Language

U-Schema is a unified metamodel that integrates the
NoSQL and relational data models. It includes the
elements traditionally used to create logical schemas,
as those that are part of the Entity-Relationship (ER)
model [15]. However, these elements are structured dif-
ferently because their semantics are not exactly the same,
and additional concepts are considered (e.g. structural
variation of types), as briefly explained below. A detailed
description of U-Schema and the bidirectional mappings
between this unified metamodel and each of the individ-
ual data models can be found in [5].

A U-Schema model (i.e., a logical schema) consists of a
set of schema types that can be entity types, used to rep-
resent domain entities in any database, and relationship
types to represent relationships between nodes in graph
databases. This illustrates that not all U-Schema concepts
are present in all the data models that it integrates.

An entity type is formed by a set of features that can
be structural or logical. The former are simple and multi-

Figure 2: The SoftwareDev schema running example.

valued attributes and aggregation relationships, and the
latter refer to relations between entities, namely keys
and reference relationships. Entity types can be root or
non-root depending on if their objects are the root of an
aggregation hierarchy or are embedded in other objects.

Figure 2 shows a U-Schemamodel example named Soft-
wareDev, which will be used as a running example. We
will suppose that this schema corresponds to a document
database, in particular MongoDB, and therefore it has no
relationship types. The schema is shown by using the
graphical notation described in [16], whose semantics
will be easily understood from the explanation of the
schema. There are three root entity types in Software-
Dev schema: Developer, Ticket, and Repository, and
there is one non-root entity type (DeveloperInfo) that
is aggregated by Developer.

U-Schema allows structural variations of schema types
to be represented. Thus, a schema type is formed by a set
of variations. In the schema example, Developer has two
structural variations that share a common set of features
(e.g., email, permissions, and dev_info) but differ in
two features: The first variation stores a feature named
is_active, and the second one has suspended instead.
The remaining entity types have a single variation with
a set of features.

In the graphical notation, features are specified
by means of a name and a type, but aggregations
and references are also shown by means of the
typical arrows used in UML class diagrams. In
the example, Repository.title is an attribute,
Developer.dev_info aggregates an instance
of DeveloperInfo, Ticket.repository_id and
Ticket.developer_id hold references to the corre-
sponding entity types, and Repository.developers
references the set of developers involved in a repository.



It is convenient to note that references and relation-
ship types are different concepts. The former represent
foreign keys of the relational model or links between
database objects, and they cannot have features, and the
latter represent connections between nodes in a graph
database, which can have features.

Typically, schema evolution approaches define a set of
schema change operations (SCOs) that can be applied on a
particular data model, and classify these changes in a tax-
onomy depending on the element they affect [17, 13, 14].
In [6, 7], we defined a taxonomy for U-Schema, which
classifies SCOs in several categories that correspond to
the U-Schema elements: Schema type, Structural Varia-
tion, Feature (grouping common operations for each kind
of feature), Attribute, emphReference, and Aggregate, as
can be seen in the first column of Table 1, where some of
the most relevant operations are shown.

Once the taxonomy was defined, we developed the
Orion textual domain-specific language (DSL) and the
Orion engine to automate the schema change evolu-
tion. A metamodeling-based technique was applied to
build Orion: a metamodel defines its abstract syntax, and
model transformations implement its semantics (i.e., its
engine) [7]. The Orion engine first injects the input Orion
script into a Orionmodel that conforms to themetamodel,
then the sequence of SCOs are executed in order to up-
date schema and data. Figure 3 shows the components
of the engine: (i) A Schema Updater whose input are
the U-Schema and Orion models and generates the up-
dated schema, and (ii) a Data Updater for each supported
database system, which automatically generates the data
updating code from the input Orion model. Up until now
we provide data updaters for three of the most commonly
used NoSQL stores: MongoDB (document), Cassandra
(columnar), and Neo4j (graph).

An example of an Orion script is shown in Figure 4,
which is intended to apply a refactoring to the Software-
Dev schema. First, an unnecessary feature is deleted and
two more features are renamed. Then, a COPY operation
is applied to copy a field of the Ticket entity into its
corresponding Repository, by using a JOIN condition.
Next, two feature adding operations (ADD ATTR and ADD
AGGR) are used to add a new attribute and a new aggrega-
tion, and a CAST operation is applied to change the type
of the Developer.suspended_acc attribute. The script
example ends with two operations on entities: Ticket
is renamed to textttActive_Ticket, and a new entity is
added to store tickets already resolved.

Given this script, the Orion engine provides a new
version of the SoftwareDev schema (SoftwareDev:2), and
generates code scripts to update the MongoDB database.
We will present now the current status of our work in-
tended to extend the Orion engine with capabilities to
detect code affected by the Orion script, and provide
information to developers about the changes to be made.

Figure 3: The Orion Engine handles schema and data updates.

SoftwareDev_ops operations

USING SoftwareDev:1

DELETE Developer::permissions
RENAME *::num_forks TO rank_forks
RENAME *::num_stars TO rank_stars

COPY Ticket::last_activity_date
TO Repository::last_ticket
WHERE Ticket.repository_id = Repository._id

ADD ATTR Repository::subscribers: Number
ADD AGGR Developer::dev_location:
{ city: String, country: String }&
AS DeveloperLocation

CAST ATTR Developer::suspended_acc TO Boolean

RENAME ENTITY Ticket TO Active_Ticket
ADD ENTITY Archived_Ticket: { +_id: String,
archived_date: Timestamp, message: String }

Figure 4: Orion script applied to the SoftwareDev schema.

3. Detection of Code Affected by
Schema Changes

In this section, we describe the proposed approach in
detail. An overview of the designed and implemented
strategy is firstly presented. Secondly, the mappings
between each Orion operation and the updates to be
performed are discussed. Thirdly, some details about the
code analysis based on CodeQL queries are commented,
and finally the obtained output for the schema of the
running example is shown.



3.1. Overview of the Code Analysis
Strategy

As noted in [13], depending on the semantics of the
schema change operations, four different situations
can be distinguished for the application code accessing
databases: (i) Code may need to be modified according
to the new schema, e.g., when features or entity types
are renamed; (ii) code may become invalid, e.g., when
entity types or features are removed; (iii) code is syntac-
tically correct but should be modified according to the
new schema to return correct values, e.g., when a casting
is applied on an attribute; and (iv) code does not need
to be changed since it is not directly affected, e.g., when
adding a new entity type.

An analysis of the application code involves find-
ing the statements affected by each SCO in an
Orion script (e.g., renaming the Ticket entity type to
Active_Ticket). Once one or more affected statements
are identified, they could be modified to be adapted to
the new schema, or either a message could be generated
and shown to developers.

In order to perform such code analysis and resulting
actions, a mapping should be established between each
SCO of the taxonomy and its impact on the code, based
on: (i) Identifying the statements that need to be updated,
and (ii) providing a suitable solution according to the
new schema. Table 1 shows the mappings for the cur-
rently addressed Orion SCOs. These operations cover the
four categories mentioned above. In the table, the first
column indicates the Orion SCO, and the second column
specifies the actions to be applied on the code, which
are expressed in an abstract way and independent of any
technology. The third and fourth columns are specific to
each programming language, in this case JavaScript, and
they indicate which code should be inspected to detect
warnings and errors, as commented later in this section.

Similarly to [13], our aim is to assist developers to
update code with two kinds of facilities: (i) Automating
all possible code changes, and (ii) generating log files
that carry information about the automatically applied
modification, and the changes that should be manually
introduced by developers. Here, we will focus on the
automatic generation of notification messages to provide
developers with such information.

We have started to build the Code Updater component
of the Orion engine by implementing a 3-step strategy
that uses the CodeQL code analysis engine [18] to dis-
cover the code that is candidate to be changed. This
strategy is outlined in Figure 5 and commented below.

As a preliminary step, the code repository is converted
into a CodeQL database that can be accessed by CodeQL
queries. In the first step, a model-to-text (m2t) transfor-
mation is executed to automatically generate the CodeQL
queries that correspond to the input Orion model. This

Figure 5: The Orion engine extension to handle code update.

transformation consists of a set of rules that implement a
mapping between each Orion SCO and CodeQL queries
able to find the location of the application code to be
updated. Table 1 shows such mappings in the third and
fourth columns. For each Orion operation up to two
CodeQL queries are generated depending on whether
the code has become invalid and needs to be updated
according to the new schema (error queries), or the code
should be modified, but it continues to be valid (warning
queries).

In the second step, the generated queries are applied
to the previously created CodeQL database. As a result of
this application, a log file in SARIF format 2 is obtained.
This file contains information of the analysis process,
the applied queries, the examined files and every match
found in those files by the queries, along with useful
information to locate the code statements to be changed
(e.g., the file where they are located, the line number, and
a custom message).

Because the log file is rather complex and difficult to
navigate, the third step performs a parsing of the log file
and generates a digest useful for the developer where,
for each Orion SCO in the input script, a set of mes-
sages show the statements that need to be changed along
with their location, and which changes should be applied,
e.g., renaming a variable to a new name or deleting an
assignment.

2https://sarifweb.azurewebsites.net/.
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Table 1
Mapping between Orion SCOs, actions to be taken on code and JavaScript statements to query with CodeQL

Orion SCO Actions on code CodeQL JavaScript warning CodeQL JavaScript error

Entity Type Operations

Add 𝐸 Detect and warn access to all
collections.

On MongoDB methods that re-
trieve all collections

—

Delete 𝐸 Detect and delete access and
references to 𝐸.

On assignments with the literal
𝐸.𝑛𝑎𝑚𝑒.

On access to 𝐸 by property,
by method or by Mongoose
schema.

Rename 𝐸 Detect access and references to
𝐸. Update 𝐸.𝑛𝑎𝑚𝑒 with new
name.

On assignments with the literal
𝐸.𝑛𝑎𝑚𝑒.

On access to 𝐸 by property,
by method or by Mongoose
schema.

Feature Operations
(Attribute, Reference and Aggregate)

Delete 𝐸.𝑓 Detect and delete access and
references to 𝐸.𝑓.

— On MongoDB methods involv-
ing 𝐸.𝑓 and on the 𝐸 Mongoose
schema.

Rename 𝐸.𝑓 Detect access and references to
𝐸.𝑓. Update 𝐸.𝑓 .𝑛𝑎𝑚𝑒 with new
name.

— On MongoDB methods involv-
ing 𝐸.𝑓 and on the 𝐸 Mongoose
schema.

Copy 𝐸1.𝑓 to 𝐸2.𝑓 Detect and update the 𝐸2
schema by adding 𝑓 to it.

On 𝐸2 Mongoose schema. —

Move 𝐸1.𝑓 to 𝐸2.𝑓 Detect and delete access and
references to 𝐸1.𝑓, and update
the 𝐸2 schema by adding 𝑓.

On 𝐸2 Mongoose schema. On MongoDB methods involv-
ing 𝐸1.𝑓 and on the 𝐸1 Mon-
goose schema.

Attribute Operations

Add 𝐸.𝑎𝑡𝑡𝑟 Detect and update the 𝐸
schema by adding 𝑎𝑡𝑡𝑟 to it.

On 𝐸 Mongoose schema. —

Cast 𝐸.𝑎𝑡𝑡𝑟 Detect access and references
to 𝐸.𝑎𝑡𝑡𝑟. Update 𝐸.𝑎𝑡𝑡𝑟 .𝑡𝑦𝑝𝑒 to
new type.

— On MongoDB methods involv-
ing 𝐸.𝑎𝑡𝑡𝑟 and on the 𝐸 Mon-
goose schema.

Reference Operations

Add 𝐸.𝑟𝑒𝑓 Detect and update the 𝐸
schema by adding 𝑟𝑒𝑓 to it.

On 𝐸 Mongoose schema. —

Morph 𝐸.𝑟𝑒𝑓 Detect access and references to
𝐸.𝑟𝑒𝑓. Update 𝐸.𝑟𝑒𝑓 for an aggre-
gate.

— On MongoDB methods involv-
ing 𝐸.𝑟𝑒𝑓 and on the 𝐸 Mon-
goose schema.

Aggregate Operations

Add 𝐸.𝑎𝑔𝑔𝑟 Detect and update the 𝐸
schema by adding 𝑎𝑔𝑔𝑟 to it.

On 𝐸 Mongoose schema. —

Morph 𝐸.𝑎𝑔𝑔𝑟 Detect access and references to
𝐸.𝑎𝑔𝑔𝑟. Update 𝐸.𝑎𝑔𝑔𝑟 for a ref-
erence.

— On MongoDB methods involv-
ing 𝐸.𝑎𝑔𝑔𝑟 and on the 𝐸 Mon-
goose schema.

3.2. Analyzing the Application Code
For a first validation of our approach, we have chosen
MongoDB as our target database and JavaScript as lan-
guage of the database code. According to the DB-Engines
ranking, MongoDB is the fifth most popular database
(the first of the NoSQL stores), and the driver for Node.js
JavaScript frameworks is one of the most used to ac-
cess MongoDB databases in Web applications. Finally,

we have also considered the Mongoose object-document
mapper (ODM) [19, 20], which is the most widely used
ODM for MongoDB in JavaScript.

In MongoDB, data on entity types are stored in col-
lections of JSON-like semi-structured documents [21].
Therefore, a document is formed by a set of name-value
pairs of features, and values can be primitives (e.g., Num-
ber and String), another nested document, or arrays.



Figure 6 shows an excerpt of JavaScript code accessing
a MongoDB database for the running example. First, the
Developer collection is retrieved by using a method call
provided by the MongoDB API, and a query is performed
that involves retrieving a single developer and using the
permissions field. Then a variable is created with the
"Ticket" value, and another method call retrieves the
Ticket collection by using this variable, and applies a
deleteMany operation with another query on it.

1 import { MongoClient } from "mongodb";
2 const uri = "<connection string uri>";
3 const client = new MongoClient(uri);
4
5 async function run() {
6 try {
7 await client.connect();
8 database = client.db("software_dev_sample");
9

10 // Try to access Developer.permissions
11 developers = database.collection("Developer");
12 result1 = await developers.findOne(
13 {_id: "13"},
14 {projection: {"permissions": 1}});
15
16 // Query the Ticket entity type
17 collection_name = "Ticket";
18 tickets= database.collection(collection_name);
19 query = { message: { $regex: "error" } };
20 result2 = await tickets.deleteMany(query);
21 console.log(result2.deletedCount);
22 } finally {
23 await client.close();
24 }
25 }
26 run().catch(console.dir);

Figure 6: JavaScript excerpt querying a MongoDB database.

As evidenced in this example, the code analysis should
not only consider just database operations, but also any
other statements such as assignments and variables that
can carry values referring to schema elements (e.g., entity
type names and feature names), and differentiate between
these literal values and function or variable names that
might have the same name. Moreover, the analysis needs
to take into account that in the case of feature names, it
is necessary to identify not only the feature, but also if it
belongs to the entity indicated in the SCO.

On the other hand, Figure 7 shows aMongoose schema
for the Repository entity type of the running example.
A Mongoose schema is composed of a set of fields with a
name and a specific type, such as the num_stars field of
type Number, or the developers field, which references
the Developer entity type stored as a list of Strings.

In Table 1, the third and fourth columns shows which

1 import mongoose from "mongoose";
2 const RepositorySchema = new mongoose.Schema({
3 _id: {type: String, required: true},
4 developers: {type: [String],
5 ref: "Developer", required:true},
6 num_forks: {type: Number, required: true},
7 num_stars: {type: Number, required: true},
8 tags: {type: [String], required: true},
9 title: {type: String, required: true},

10 url: {type: String, required: true}
11 });
12 export default mongoose.model("Repository",

RepositorySchema);

Figure 7: Mongoose schema representing the Repository
entity type.

code statements are involved when applying a Orion SCO.
The third column where a warning should be thrown,
pieces of code which are syntactically correct but might
be semantically incorrect. The fourth column, on the
other hand, indicates errors, those updates that aremanda-
tory to fix code that is now invalid.

According to these mappings, when an SCO that
modifies an entity type is applied (e.g., a DELETE or
RENAME operation), it is necessary to look for state-
ments that access and return the corresponding col-
lection, since those statements are now invalid. In
JavaScript, it is common to use a MongoClient object to
obtain a MongoDB database object by using the .db()
method. Then, obtaining a specific collection from such
database object can be achieved in several ways, clas-
sified in two kinds: (i) By property (e.g., database.E
or database[E], being E the name of the collection),
and (ii) by method (e.g., database.collection("E") or
database.getCollection("E")), as shown in Figure 6,
lines 11 and 18. These statements have in common that
the literal name of the entity is used at some point (in
the examples, E), so when an SCO that modifies an entity
type is applied, this kind of accesses need to be updated.
Moreover, instead of directly using the literal “E” devel-
opers can use variables that hold such value, so we also
need to look for variables that were assigned that value.
Finally, the Mongoose schema corresponding to E must
also be updated.

In the example, the RENAME Ticket TO
Active_Ticket operation will cause the statement in
line 18 to not be valid, and an error message should be
triggered by our Code Updater. Also, a warning should
be issued for the assignment in line 17 because it will not
return the desired results, although such an assignment
is still valid.

Detecting code errors due to an SCO that modifies a
feature of an entity type requires of a different strategy.



To analyze the impact of an operation such as DELETE
Developer::permissions, it is necessary to take into
account that only references to the permissions fea-
ture belonging to Developer should be updated, and
that other entity types might hold a feature with the
same name. Therefore, queries for these operations
are organized as follows. MongoDB API operations
are first searched, such as findOne(), insertOne(), or
deleteMany(). Then, the process checks if the operation
is being applied over the specified entity type (e.g., an ob-
ject storing the Developer collection). Finally, the code
is analyzed to check if the field is referenced in some
of the arguments of the method call, which use to be
expressions or JSON objects containing the feature name.
In our example, the statement in line 12 should be up-
dated to reflect that the permissions field referenced by
projection has been deleted.

Operations that modify features also impact Mon-
goose schemas. For example, the Orion operation RENAME
*::num_forks TO rank_forks would require updating
the Repository schema shown in Figure 7, where the
num_forks field should be modified to reflect the RENAME
operation.

Finally, we have to consider SCOs adding new features
to existing entity types, such as COPY or ADD attr. These
SCOs do not turn invalid code, and therefore do not issue
any errors, but we provide information for developers by
issuing warnings on Mongoose schemas indicating that
the developer should add the new features.

3.3. CodeQL Query Implementation
Once we defined which code statements throw warnings
and errors for each considered SCO, we used CodeQL [18]
to implement queries that return those precise statements
from a code repository. CodeQL is a code analysis engine
developed by GitHub. It generates a database represen-
tation of a code base, so the code can be treated as data.
Code patterns are modeled as CodeQL queries that can
be executed to generate a result set that includes those
lines of code that matches the pattern. We have chosen
CodeQL because it is a semantic code analysis engine, it
supports a wide variety of programming languages, and
it can be integrated with GitHub repositories to analyze
the code they contain.

A CodeQL query includes three clauses, as illustrated
in the example of Figure 8: (i) FROM defines the kind of
element being queried (in this example, Expr, a class
used to get JavaScript expressions), (ii) WHERE is used to
filter only the elements considered in the first clause that
also meet certain criteria, and (iii) SELECT to return the
elements that were filtered and a custom message.

Some Orion SCOs are mapped to similar CodeQL
queries. For example, DELETE and RENAME an entity type
require updating the same statements. The difference

between these operations comes on the solution to be
applied for the update: For DELETE, the involved state-
ments should be removed as the collection being deleted
no longer exists, while for the RENAME operation the in-
volved statements should be updated to reference the
new name. The same case happens for ADD Attribute,
ADD Reference, and ADD Aggregate: In JavaScript and
MongoDB these operations do not turn any code invalid.
Instead, queries for these operations look for Mongoose
schema declarations and suggest updating such schemas
by adding the new fields.

These similarities between SCOs ease the process
of generating CodeQL queries. For this purpose,
we created a library of CodeQL functions which
allows simpler queries, as illustrated in the query of
Figure 8: A CodeQL error query generated from the
RENAME ENTITY Ticket TO Active_Ticket. Here,
the query looks for expressions that meet one of the
following conditions on the Ticket collection: (i) It is
accessed as a property (e.g., database.Ticket), (ii) it
is accessed by using a method that retrieves a col-
lection (e.g., getCollection), and (iii) there is a
Mongoose export statement that generates a Ticket
schema. These conditions are implemented with
three functions of the library: checkPropAccess,
checkExprIsCollectionMethod, and
checkIsMongooseExport, and they can be used
for other SCOs. Finally, a message stating how the code
needs to be updated is shown: “Ticket: Entity renamed to
“Active_Ticket”.”.

IMPORT javascript
IMPORT utils

FROM Expr expr
WHERE
checkPropAccess(expr, "Ticket")
OR
checkExprIsCollectionMethod(expr, "Ticket")
OR
checkIsMongooseExport(expr, "Ticket")
SELECT expr,
"Ticket: Entity renamed to \"Active_Ticket\"."

Figure 8: CodeQL error query generated for the RENAME
ENTITY Ticket TO Active_Ticket operation.

The same principle is followed for generat-
ing a CodeQL query for the operation DELETE
Developer::permissions, shown in Figure 9. Here,
instead of single generic expressions, we look for
MethodCallExpr, a CodeQL class used to get expres-
sions in which a method is invoked. According to
what was stated in the previous subsection, we need
to update expressions that meet one of the following



conditions: (i) A MongoDB method is invoked over
a specific entity (Developer) and the permissions
field shows as one of its arguments (either directly
or embedded as a value in a JSON object), or (ii) a
Mongoose schema for Developer is detected, and it
defines the permissions field in it. In the query, the use
of other functions of the library can be observed, such as
(checkIsMDBDataMethod and checkFeatIsInObject.

IMPORT javascript
IMPORT utils

FROM MethodCallExpr method
WHERE (
checkIsMDBDataMethod(method.getMethodName())
AND (
checkPropAccess(
method.getReceiver(),"Developer")

OR checkExprIsCollectionMethod(
method.getReceiver(),"Developer")

OR checkExprIsCollectionObject(
method.getReceiver(),"Developer")

)
AND (
checkFeatIsInObject(
method.getAnArgument(),"permissions")

OR checkFeatIsInVarRef(
method.getAnArgument(),"permissions")

OR checkFeatIsInArray(
method.getAnArgument(),"permissions")

OR checkExprEvalsToString(
method.getAnArgument(),"permissions")

)
)
OR (
checkIsMongooseExport(method, "Developer")
AND (
checkFeatIsInMongooseSchema(
method.getArgument(1),"permissions")

OR checkFeatIsInMongooseSchemaVarRef(
method.getArgument(1),"permissions")

)
)
SELECT method,
"Developer.permissions: This feature has been

deleted."

Figure 9: CodeQL error query generated for the DELETE
Developer::permissions operation.

Please note that all CodeQL queries generated by the
described process are able tomatch expressions that show
specific string values (e.g., a feature name being modified)
and also solve variables that are found on candidate ex-
pressions, recursively, until those variables are evaluated
to a string value.

3.4. CodeQL Query Output
Once the CodeQL queries have been generated, develop-
ers can use the CodeQL engine to analyze folders with
code files and apply the supplied queries, as shown in
Figure 5. The engine outputs a SARIF file containing
the results of the analysis. This file stores information
such as the location of the analyzed files and the queries
provided, and a section for each match found on those
files. As shown in Figure 10, for each found match the file
stores the rule that found it (‘softwaredev-1/000-op-delete-
feature-developer-permissions-error’), a custom message
informing of the event (‘Developer.permissions: This fea-
ture has been deleted.’), and the location of the match
divided into two blocks: (i) the file in which it was found
(‘models/Developer.js’ in this example), and (ii) the line
and column inside the file content.

{
"ruleId": "softwaredev-1/000-op-delete-feature-

developer-permissions-error",
"ruleIndex": 0,
"rule": { "id": "...", "index": 0 },
"message": {
"text": "Developer.permissions: This feature has

been deleted."
},
"locations": [{
"physicalLocation": {
"artifactLocation": {
"uri": "models/Developer.js",
"uriBaseId": "%SRCROOT%",
"index": 0 },
"region": {
"startLine": 20,
"startColumn": 16,
"endColumn": 60
}
}
}],
"partialFingerprints": {
"primaryLocationLineHash": "f31ed949860b8f:1",
"primaryLocationStartColumnFingerprint": "15"
}
}

Figure 10: A match found by CodeQL stored in SARIF format.

This file is then processed to produce a more readable
output that helps developers to better understand which
statements have been affected by SCOs and how to fix
them. In our case, we opted for a format in which for each
match entry a line such as <file_path>(<line_number>):
<message> is generated.



4. Related Work
In this section, we will contrast our proposal with some
of the most relevant works to co-evolve schema and code.

In [10], Carlo Curino et al. present the PRISM++ tool
to automate the relational schema evolution. A set of
Schema Modification Operators (SMOs) is defined to ex-
press schema changes in form of atomic operations, as
well as a set of Integrity Constraint Modification Oper-
ators (ICMOs). For each SMO, a set of instructions are
generated to change the relational schema, update the
stored data, and rewrite queries under the given database
constraints. Existing SQL queries are adapted by apply-
ing rewritten techniques and creating views.

While PRISM++ only tackles the schema evolution
for relational systems, DB-Main is a database engineer-
ing environment built for relational databases and other
data models prior to the emergence of NoSQL stores [22].
In addition to support schema evolution, DB-Main inte-
grates utilities for reverse engineering, re-engineering,
and maintenance. DB-Main is composed of three basic
pillars: (i) The GER generic metamodel defined by extend-
ing ER, (ii) a transformation-based engineering process,
and (iii) the maintenance of a history of schema changes.

Query rewriting for NoSQL databases, in particular
MongoDB, has been addressed in [12] and [13]. In [13],
Jerome Fink et al. describe a strategy to adapt queries to
schema changes for polystores. This work is part of the
Typhon project intended to offer a solution for design-
ing polystores that can be constituted by relational and
NoSQL databases. In Typhon, a family of languages was
created for defining conceptual schemas (TyphonML),
changing schemas, and querying databases (TyphonQL).
The strategy proposed to adapt queries is the following.
When TyphonQL queries are issued on a polystore whose
schema has changed, they are rewritten according to the
new schema. Query rewriting depends on the change
operations applied, and four actionscan be applied on
queries: (i) no modification is needed, (ii) query is mod-
ified to be valid, (iii) query is modified but a warning
indicates that the result could be incorrect, (iv) and the
query cannot be adapted. The last two actions produce
messages to assist developers to change the code. A pat-
tern matching scheme is used to map each triple <SCO,
schema, query> to a handler function that produces the
query adaptation.

Darwin is a schema evolution platform for NoSQL
databases, which supports schema history extraction,
several data update strategies, and query rewriting [12].
When lazy data migration is applied, several versions of
the same entity can coexist in the database, and existing
queries must be rewritten to be able to access all the
schema versions. To achieve this, a schema history graph
is calculated in form of a set of evolution operations that
specifies the sequence of schema changes. Then, a query

rewriting algorithm is performed which consider all the
versions of the schema. Query rewriting applies forward
and backward query rewriting (i.e., applies SCOs and
their reverse equivalents to queries) to generate different
sub-queries (one for each schema version), execute these
sub-queries and union the obtained results.

Our work differs from previous ones in the following
ways. PRISM++ is probably the most influential work
related to the automation of schema evolution, but it
is focused on relational databases. DB-Main is based
on a generic metamodel and schema transformations,
but NoSQL data models are not considered, and code
updating is mainly focused on SQL queries. Also, GER
and U-Schema are clearly different, and a taxonomy of
changes was not defined. Regarding Typhon, U-Schema
has a richer semantic than TyphonML which allows the
structural variation and graph data models to be repre-
sented, among other differences, as discussed in [5]. Also,
we are addressing different APIs instead of rewriting code
of a query language specific to the Typhon platform, and
we are searching code patterns in the use of APIs in order
to reduce the effort. Finally, when compared to Darwin,
this tool focuses on query rewriting [23], and our ap-
proach is based on a more complex unified metamodel
than the data model underlying Darwin, which relies on
a common interface used to access different stores. This
also entails a richer taxonomy of operations.

5. Conclusions and Future Work
While the first version of the Orion engine supported
the co-evolution of schema and data, the strategy here
presented is a first step to assist developers to update
code when schemas are updated. To this moment, the
effort is being focused on the mapping of each SCO to
the code patterns to be detected, the CodeQL queries to
be generated, the changes to be applied, and the infor-
mation to be provided to developers. As each mapping
is elicited for a SCO, the corresponding rules are imple-
mented and added to the model to text transformation
and the analysis of the query result is extended.

As of future work, we consider the following: (i) Im-
plementing the remaining taxonomy operations for Mon-
goDB and JavaScript, (ii) expanding this implementation
to additional databases to cover all the considered data
models, (iii) integrating our approach with CI systems,
and (iv) extending our current output and adding the pos-
sibility to apply changes directly to code by applying the
generic rewrite approach shown in [24], where a generic
metamodel was created to represent code.

The running example models as well as the generated
queries used to illustrate our approach are available in a
public GitHub repository.3

3https://github.com/modelum/code-scan.

https://github.com/modelum/code-scan
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