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Abstract
In this paper, we describe a solution for a specific Entity Matching problem, where entities contain (postal) address information.
The matching process is very challenging as addresses are often prone to (data) quality issues such as typos, missing or
redundant information. Besides, they do not always comply with a standardized (address) schema and may contain polysemous
elements. Recent address matching approaches combine static word embedding models with machine learning algorithms.
While the solutions provided in this setting partially solve data quality issues, neither they handle polysemy, nor they leverage
of geolocation information. In this paper, we propose GeoRoBERTa, a semantic address matching approach based on RoBERTa,
a Transformer-based model, enhanced by geographical knowledge. We validate the approach in conducting experiments on
two different real datasets and demonstrate its effectiveness in comparison to baseline methods.

1. Introduction
Entity Matching (EM) is the problem of identifying data
instances that refer to the same real-world entities [1, 2].
In this paper, we address a specific EM problem where
entities consist of postal addresses. More precisely, Given
two postal addresses 𝐴 and 𝐵, do those addresses refer
to the same real world (address) entity ? We coin this
problem as Address Matching although that terminology
may also refer to either work based on Geocoding [3], or
to software tools such as PlaceKey1. Address matching
is a crucial task for various location-based businesses
as one may lose clients or prospects in case of delivery
failure. It is a challenging one, especially in absence of a
standard address model.

Formally, the address matching task may be consid-
ered as a binary classification problem [4, 3, 5, 6, 7] where
the predicted class is either Match or No Match. However,
given two companies with the same name, it is impor-
tant to identify addresses that are partially similar, such
as those having the same city and the same road but
differ in the house number or in the case where both
addresses are correct but one of them corresponds to a
former address company, in order to complete addresses
with up-to-date information. As a result, we consider
the problem as a multiclass classification one in adding
a 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑀𝑎𝑡𝑐ℎ class. Table 1 shows examples of ad-
dress matching. Given two Senegalese addresses 𝐴 and
𝐵, the first pair illustrates the case where there is no
similarity between address elements apart from the City
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Dakar (NoMatch label). The second address pair has a
PartialMatch label as there is a similarity between at least
one of its elements (Road: Avenue Lamine Gueye), apart
from the similarity between the City Dakar. The last row
represents an example of a Match between addresses as
all their elements are similar (except the missing PoBox
in address A).

Former address matching approaches [6, 7] are based
on similarity measures and matching rules. However,
these methods perform a structural comparison of ad-
dresses and are unable to identify some relationship be-
tween two addresses when they have few literal overlaps
[3]. In such cases, semantic address matching is required
for identifying/exhibiting semantic similarities between
addresses that have the same location with different rep-
resentations [8].

Recently, semantic address matching solutions have
been proposed [4, 3, 5], based mainly on word embed-
ding models combined with classical Machine Learning
(ML) or Deep Learning (DL). Nevertheless, these solu-
tions may be impacted by the presence of polysemous
words since they are based on static word embedding
models. Polysemy cases may occur in an address when
it contains a place name that refers to different places in
a country or worldwide as illustrated in Table 2. Identi-
fying and resolving polysemic situations is mandatory
to avoid matching distortion. This has led to the advent
of transformer-based solutions [9] which have shown
promising results on general Entity Matching [10, 11]
thanks to their highly contextualized embedding.

This motivated us to explore the effectiveness of Trans-
formers in address matching by proposing an approach
based on RoBERTa [12], a pre-trained Transformer lan-
guage model, for address matching in the context of
French-speaking countries. Nevertheless, since these
models produce address embedding mainly from linguis-
tic contexts, they may miss some (domain) knowledge,
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Table 1
Examples of address pairs with their corresponding matching label

Address A Address B Label
Medina 39 X 18 Dakar 16 Rue Parchappe Dakar NoMatch
25 Avenue Lamine Gueye Dakar 59 Avenue Lamine Gueye X Galandou Diouf Dakar PartialMatch
4373 Sicap Amitie 3 Dakar Sicap Amitié 3 Numero 4373 BP 3110 Dakar Match

Table 2
Examples of Address Matching Challenges

Challenge Address A Address B Description
Semantic
similarity

Immeuble Azur Dakar
Senegal

12 Boulevard Djily
Mbaye Dakar Senegal

Immeuble Azur and 12 Boulevard Djily Mbaye
refer to the same geographic location, in Dakar

Polysemy Les Dunes 9002 Rue
Des Garennes France

Les Garennes 78130
Les Mureaux France

There is no match between A and B although they contain
the same place name "Garennes" which is a polysemous
word as it refers to two different places: a Road and
an industrial zone (in two different cities).

which is difficult to learn from raw texts. Therefore, we
propose to enhance the contextual address embedding
of RoBERTa by two types of geographical knowledge,
obtained from address tag embedding and address geo-
graphic coordinates.

The contributions of this paper can be summarized as
follows:

• We defined GeoRoBERTa, a semantic address
matching approach, which relies on RoBERTa,
a transformer-based model.

• We injected two types of geographical knowledge
into RoBERTa: address tag embedding and geo-
graphic coordinates encoding. This enables better
handling of polysemy and better identification of
semantic similarity between addresses.

• We conducted an extensive experimental study
where GeoRoBERTa is compared to baseline meth-
ods. Real (unstructured and structured) data, con-
sisting of French postal addresses, has been used.

The rest of the paper is organized as follows: Related
work on address matching is reviewed in Section 2. Sec-
tion 3 presents a formalization of the problem. We de-
scribe our solution in Section 4, and present experimental
results in Section 5. Finally, Section 6 concludes the pa-
per.

2. Related Work
Address matching pipeline [13, 14] is generally composed
by three steps: (1) address parsing, i.e., decomposition of
an address into its different components (e.g. street name,
zip code), (2) generation of an embedded address vector
by means of word embedding models and (3) application
of a ML or a DL model resulting in a binary address classi-
fication (Match, No Match). Word embedding techniques

have gained momentum for solving the semantic address
matching problem. They are integrated in address match-
ing pipeline. For example, several studies [13, 14, 3, 5]
adopted the same pipeline with different used techniques
in the three steps: CRF model, Trie syntax tree algo-
rithm, jieba library2 or rule based method [14] as address
parser, Word2vec [15] or fastText [16] as word embed-
ding models and several ML (e.g. SVM, XGBoost) and
DL models (e.g. enhanced sequential inference model,
Bi-LSTM, CNN) as classifiers. These works have shown
the effectiveness of their proposed approaches compared
to baseline methods (non word embedding-based meth-
ods) thanks to their capacity to detect semantic similarity
between address attributes.

However, these approaches may present two weak-
nesses. The first one is related to the management of
polysemous cases. In fact, these approaches are based on
static word embedding models, which cannot handle pol-
ysemy as they generate static vector representations of
words. Contrariwise, contextual word embedding mod-
els, among which the transformer-based ones, resolve
this problem thanks to their highly contextualized embed-
ding as demonstrated in entity matching works [11, 10].
The second weakness is related to the leveraging of ge-
ographic information. Indeed, these approaches are de-
signed without geographic location information, which
ignores the geographic features when performing address
matching. And yet, addresses that belong to the same
geographic area should have intuitively similar geospa-
tial characteristics. However, these assumptions may fail
as existing methods rely only on address text which can
contain vernacular content or place synonyms and does
not follow a standard structure making them inherently
ambiguous. Thus, modelling the problem from linguistic
perspective alone is not enough.

In this context, former approaches have specifically

2https://github.com/fxsjy/jieba
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used geocoding in the address standardization process to
obtain the geolocation followed by a reverse geocoding,
which generates a complete and proper address before
performing the matching. This strategy has been ap-
plied for example in [17]. Recently, some works [18, 19]
focused on the enrichment of Point Of Interest (POI)
embedding using geographic information. The most pop-
ular form of this information is the encoding string of
the geographic coordinates, obtained by the Geohash
geocode system 3. In [19], authors proposed a POI-
Transformers framework to generate POI embeddings in
order to perform POI Matching. A POI is defined as an
entity composed by four attributes: name, category, ad-
dress and geographic coordinates. The proposed match-
ing approach consists firstly in generating an embedding
vector for each POI by fusing the text embedding of the
first three attributes using BERT [20], a Transformer-
based model, and the geographic location embedding
of the last attribute. Then, the similarity between each
pair of POI’s embedding is computed using two tech-
niques: cosine similarity and SentEval toolkit [21]. The
proposed approach achieves results comparable in terms
of performance with those of existing DL-based methods
(e.g. DeepER [22], DeepMatcher [23]) on general Entity
Matching benchmark datasets but it outperforms them
on POI Entity Matching datasets.

In summary, Transformer-based models have proven
their effectiveness in general entity matching but they are
less explored in the address matching task. Their applica-
tion on these domain-specific data should also take into
account geographic information in addition to the lin-
guistic context. From this perspective, some works start
introducing geographical knowledge (geohash encoding)
in Transformer-based model to perform, especially, POI
matching, but they may miss additional domain infor-
mation to effectively deal with polysemy. Therefore, in
this work, we propose GeoRoBERTa a semantic address
matching approach based on a pre-trained transformer-
based language model (RoBERTa) which incorporates
two types of geographical knowledge: address tag em-
bedding and geohash encoding in order to better deal
with polysemous cases and to improve the identification
of semantic similarity between addresses.

3. Problem Statement
As discussed in Section 1, due to the heterogeneity in
address representations, we need to extract some « intu-
itive/hidden » semantic relationships between addresses.
Prior to that, we first present the address model that we
adopted in this paper. Then, we provide a definition of
semantic address matching, along the lines of the one
provided in Xu et al [8].

3http://geohash.org/

3.1. Address model
Definition 1 (Address Schema). Given a set of (entity)
attributes {𝑎1, .., 𝑎𝑁}, an address 𝐴 = 𝑙𝑖𝑠𝑡 {𝑎1, .., 𝑎𝑛}
where 𝑎𝑖 is the i-th address token (word) and 𝑛 is the ad-
dress length, with 𝑛 ≤ 𝑁 , and 𝑙𝑖𝑠𝑡() is a "list" constructor.

More formally, to cope with different address repre-
sentations (e.g., France and Senegal in this paper), we
distinguish between two types of addresses:

1. A Simple Address is a sequence of attributes (Ta-
ble 3) which are defined by the address model
proposed in [24].

2. A Complex Address is a composition of (at least)
two simple addresses by means of a spatial oper-
ator. Table 4 below illustrates the proximity oper-
ator 𝑜𝑝𝑝𝑟𝑜𝑥 and the intersection operator 𝑜𝑝𝑖𝑛𝑡,
while Table 5 shows two complex Senegalese ad-
dresses.

Table 3
Simple Address Attributes

Address Attribute Tag
Country CO

State S
City C

District D
Zone Z
Road RN

HouseNum HN
POI P

ExtBuilding EB
InBuilding IB
Zipcode ZC
PoBox PB

Table 4
Spatial Operators

Spatial Operator Tag
𝑜𝑝𝑖𝑛𝑡 IN
𝑜𝑝𝑝𝑟𝑜𝑥 PR

Table 5
Spatial operators in Senegalese addresses

Examples of Spatial
Operators

Examples of
Addresses

Intersection operator X
(Intersect)

2 Avenue Ballaz X Avenue De
L’Administration Dakar Senegal

Proximity operator Face
(In front of)

Route De La Gare Face Pharmacie
Baol Dakar

3.2. Semantic Address Matching
Definition 2 (Semantic Address Matching).
Given two address datasets: 𝐷1 = {𝐴1, .., 𝐴𝑙} and
𝐷2 = {𝐵1, .., 𝐵𝑙′}, where 𝑙 and 𝑙′ are the size of 𝐷1 and
𝐷2 (respectively), the Semantic Address Matching aims
to find each address pair (𝐴𝑖, 𝐵𝑗), satisfying 𝐴𝑖 = 𝐵𝑗

or 𝐴𝑖 ≈ 𝐵𝑗 , where 𝐴𝑖 and 𝐵𝑗 are simple or complex
addresses such as 𝐴𝑖 ∈ 𝐷1 and 𝐵𝑗 ∈ 𝐷2, = and ≈
represent the equality and the approximation operator,

http://geohash.org/


respectively. The addresses on either side of the equality
operator refer to the same real-world object with the same
geographic location (coincide with relationship). Whereas,
the addresses on either side of the approximation operator
are semantically related: there is a specific relationship
located in between their attributes (i.e. an address 𝐴 is
located in an address 𝐵 or vice versa). In this work, the
address pairs labels are defined as follows:

• Match: it is attributed to an address pair, between
which there is the relationship coincide with

• PartialMatch: it is attributed in two scenarios: (1)
there is a relationship located in between an address
pair or (2) there is a relationship coincide with be-
tween a partial part of an address pair.

• NoMatch: otherwise

4. Proposed Approach
In this section we describe GeoRoBERTa (Figure 1), a
RoBERTa-based approach and model for semantic ad-
dress matching.

GeoRoBERTa consists of three main tasks: (1) Data
Preprocessing in order to clean data, (2) Geographical
Knowledge Generation and (3) Address Matching which
is based on a pre-trained RoBERTa model enhanced by
the geographical knowledge in order to classify each
address pair as either Match, PartialMatch or NoMatch.

4.1. Data Preprocessing
The purpose of this step is to normalize and clean ad-
dresses with removing special characters and expanding
abbreviations. For that, we adopt a dictionary-based ap-
proach which provides the keywords that may be used to
define the components of addresses as well as common
abbreviations of these words. As we are interested in
addresses belonging to French-speaking countries, we
extract French keywords from official sources, in France,
such as the Post Office, the INSEE 4 service and unoffi-
cial sources which generally have common abbreviations,
such as the list of abbreviations recognized by the Open-
StreetMap 5 query tools. In addition, all addresses are
normalized with expanding abbreviations to their corre-
sponding words in the created dictionary which contains
a set of keywords that are likely to be used to define
address’s components (avenue, road, building, etc.) and
their abbreviations.

4https://www.sirene.fr/sirene/public/variable/typvoie
5https://wiki.openstreetmap.org/wiki/Name_finder:Abbreviations

4.2. Geographical Knowledge Generation
4.2.1. Geographic Coordinates Encoding

We augment each address by a geographical knowledge
derived from the encoding of geographical location rep-
resented as a latitude (lat) and a longitude (long) pair.
First, we used Google Geocoding API 6 to convert each
address into geographic coordinates (lat and long). Then,
we translate the two-dimensional location into geograph-
ically meaningful embeddings using Geohash [25] which
is a geocoding system that encodes the geographic loca-
tion of a place into a short string of letters and digits. An
important property of geohash is that two places with
a long common geohash prefix are close to each other
[26].

We append address texts with geohashes to provide
the geospatial context to the RoBERTa model. Figure 2
shows an example of geographic coordinates encoding
of a French address.

4.2.2. Generation of Address Tag Embedding

It consists of two steps: address parsing and address tag
embedding.

(1) Address Parsing: The parsing of an address
𝐴 = {𝑎1, .., 𝑎𝑛} aims to assign a label 𝑙 to each word
𝑎𝑖 of 𝐴 among the corresponding list of address tags 𝑌 =
{𝐼𝐵,𝐸𝐵,𝑃, 𝑍,𝐻𝑁,𝑅𝑁,𝐷, 𝐼𝑁, 𝑃𝑅, 𝑃𝐵,𝑍𝐶,𝐶, 𝑆, 𝐶𝑂}

These tags (Table 3 and 4) are defined following the
address model described in section 3.1.

We applied the address parsing method (Figure 3) pro-
posed in [24], thanks to its effectiveness compared to
several baseline methods, especially in identifying pol-
ysemous address elements. The parsing is based on the
use of a RoBERTa model, which generates firstly a con-
textual representation of an input address 𝐴, following
these two sub-steps:

• RoBERTa calculates the input representations of
𝐴 by summing over the token, position, and seg-
ment embedding.

• Input address representation goes through 12
transformer encoders which capture the contex-
tual information for each token by self-attention
and produces a sequence of contextual embed-
dings.

The resulted representation is then provided to a tag-
ging layer (a Fully Connected Layer) to obtain address
tags, using the IOB (Inside–outside–beginning) tagging
scheme [27], where a token is labeled as B-tag if it is at
the beginning of the address element, or I-tag if inside
the address element but not first, otherwise O-tag.

6https://developers.google.com/maps/documentation/geocoding
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Figure 1: GeoRoBERTa Architecture

Figure 2: Geographic Coordinates Encoding

The tagging layer takes as input the last hidden state
of the obtained sequence of contextual embeddings and
provides as result the prediction of the tags.

(2) Address Tag Embedding: The output of the parsing
step of the address 𝐴 (respectively address 𝐵) is 𝑛 tags
(respectively 𝑚 tags). Since these tags are at the word

level, their length is equal to the length 𝑛 of 𝐴 (respec-
tively the length 𝑚 of 𝐵). We augment these tags by
another tag (B-GC) which represents the corresponding
geohash of each address. Then, we use a look-up table
to map these tags to identifiers and feed a linear layer to
obtain the representations of the tags of the address pair.

Figure 3: Address Parsing Method



4.3. Address Matching
It consists of two steps (Figure 1): (1) generating a fusion
of two vector representations which are the contextual
vector representation of the address pair and the vector
representation of the address pair tags, and (2) a classifi-
cation of each pair according to resulted vectors.

4.3.1. Vectors Fusion

We fuse two embedding vectors as follows:

1. Contextual embedding of address pair: The byte
pair encoding (BPE) tokenizer 7 of RoBERTa was
used to encode the input addresses into tokens.
These tokens and the two geohashes, represent-
ing the address pair (A, B), form the input to the
pre-trained RoBERTa model. Then, this model
generates the contextual vectors representations
of the address pair (A, B).

2. Tags embedding of address pair: They are gen-
erated from the previous step (as described in
Section 4.2.2).

The fusion of vectors is performed by a concatenation
function which is the most popular feature-level fusion
methodology [28, 29].

4.3.2. Address Pair Classification

It is performed using a fully connected layer (a linear
layer), which is the classifier layer by default in RoBERTa
packages. This layer takes as input the resulting em-
bedding fusion vector and generates as output the class
logits (probabilities), knowing that the objective of the
training is the CrossEntropy. Then, the Argmax function
is applied to these probabilities to get the predicted class.

5. Evaluation
In this section, we describe the experiments carried out in
order to evaluate our address matching approach. Source
code is available at the following Git repository: https:
//github.com/MatchSystem/GeoRoBERTa.

5.1. Experimental Settings
5.1.1. Dataset Description

Our experiments are conducted on two real-world
datasets representing addresses from two French-
speaking countries: (1) France and (2) Senegal. Unlike
several known data contest competitions (e.g. Kaggle,
SIGIR), there is no such real dataset for these countries

7https://huggingface.co/docs/transformers/tokenizer_summary

in the context of address matching. Therefore, we pro-
ceed with the following steps in order to create our own
labeled dataset:

1. Step 1: Address collection: The French dataset
has been collected (on July 12, 2022) from the Le-
gal Entity Identifier (LEI) database 8(the French
company’s addresses) and contains 40000 ad-
dresses, whereas the Senegalese dataset is gener-
ated from Senegalese company directories 9 and
contains 5000 addresses.

2. Step 2: Address pairs creation: For each
dataset, we create a labeled set, composed by ad-
dress pairs and their corresponding label using
different strategies based on [3]:

• For Match address pair: the creation of
these pairs are performed using 3 strate-
gies: (1) a simple clone of the address, (2) at-
tribute removal, to create semantic similar
elements such as removing either the street
address (HouseNum+Road) or the ExtBuild-
ing or POI if they both exist, and (3) token
removal, by a deletion of a randomly sam-
pled span of tokens.

• For PartialMatch address pair: we use
mainly the attribute removal strategy to
create the address pairs, while ensuring
that City elements are similar and there is
at least a similarity between another ele-
ment of the address pair.

• For NoMatch address pair: for each address
from the dataset (French or Senegalese),
three strategies are used to choose the sec-
ond address of the pair: (1) Random selec-
tion of an address from the dataset (the two
datasets do not contain duplicate address),
(2) Selection of an address with the same
city and, (3) Selection of an address with
literal overlap.

The frequency of the classes (labels) of address
pairs for the two datasets (French dataset denoted
𝐽𝐹 and Senegalese dataset denoted 𝐽𝑆 ) is given
by the Table 7. Besides, 𝐽𝐹 and 𝐽𝑆 are split into
the training, validation, and test sets using the ra-
tio of 3:1:1. Table 6 shows a sample of the training
set of 𝐽𝑆 , on which RoBERTa is trained.

5.1.2. Compared Methods

We compare GeoRoBERTa with baseline methods used
in some address matching related works [13, 14]. We
8https://www.gleif.org/en/lei-data/gleif-golden-copy/
download-the-golden-copy#/

9https://www.goafricaonline.com/sn
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Table 6
𝐽𝑆 training set (extract)

𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝐴)+𝐺𝑒𝑜ℎ𝑎𝑠ℎ𝐴 𝑇𝑎𝑔𝑠𝐴 𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝐵)+𝐺𝑒𝑜ℎ𝑎𝑠ℎ𝐵 𝑇𝑎𝑔𝑠𝐵 Class
[’Medina’, ’39’, ’X’, ’18’,
’Dakar’, ’edeedbud527v’]

[’B-D’,’B-RN’,’B-IN’,
’B-RN’, ’B-C’,’B-GC’]

[’16’, ’Rue’, ’Parchappe’,
’Dakar’, ’edee7q7yjdmb’]

[’B-HN’, ’B-RN’, ’I-RN’,
’B-C’, ’B-GC’]

NoMatch

[’25’, ’Avenue’, ’Lamine’,
’Gueye’, ’Dakar’,
’edee7pwrhn7s’]

[’B-HN’,’B-RN’,’I-RN’,
’I-RN’, ’B-C’, ’B-GC’]

[’59’, ’Avenue’, ’Lamine’, ’Gueye’,
’X’, ’Galandou’,’Diouf’,
’Dakar’, ’edee7pn94qpv’]

[’B-HN’, ’B-RN’,’I-RN’,
’I-RN’, ’B-IN’,’B-RN’,
’I-RN’, ’B-C’, ’B-GC’]

PartialMatch

[’4373’, ’Sicap’, ’Amitie’, ’3’,
’Bp’, ’3110’, ’Dakar’,
’edeedsueqn5u’]

[’B-HN’, ’B-D’, ’I-D’,’
I-D’, ’B-PB’, ’I-PB’,
’B-C’, ’B-GC’]

[’Sicap’, ’Amitié’, ’3’,’Numero’,
’4373’, ’BP’, ’3110’,
’Dakar’, ’edeedsueqn5u’]

[’B-D’,’I-D’,’I-D’,’B-HN’
,’I-HN’,’B-PB’,’I-PB’,
’B-C’, ’B-GC’]

Match

Table 7
Frequency of labels in French and Senegalese datasets

Label 𝐽𝐹 𝐽𝑆
NoMatch 20000 2500

PartialMatch 10000 1250
Match 10000 1250

also compare with variants of GeoRoBERTa without the
Geographic Tag embedding (GT) and/or the Geohash
encoding (GH) Knowledge to evaluate the effectiveness
of the model after the injection of each knowledge type.
We summarize these approaches below.

• Word2vec + XGBoost [13]: in adopting this ap-
proach, we trained a Word2vec model over an
address corpus (section 5.2.2) using Gensim 10 li-
brary with vectors of dimension 100, a window
size of 15. Then, the model is used to generate
word embedding of each address of the training
dataset. We obtain the embedding of each address
attribute by averaging all their words embedding.
The cosine similarity between the embedding of
the same type of address attributes is used as fea-
tures in a XGBoost classifier implemented using
scikit-learn 11.

• fastText + SVM [14]: fastText model is firstly used
to obtain address embedding. It is trained over
an address corpus (section 5.2.2) using Gensim
library with vectors of dimension 100, a window
size of 15. Then, features are obtained by applying
cosine similarity between embedding of the same
and of the different type of address attributes.
These features serve as input to a SVM classifer.

• RoBERTa: This base form of GeoRoBERTa corre-
sponds to fine-tuning the pre-trained RoBERTa
on address matching. We did not inject any ge-
ographical knowledge. This variant is similar to
the entity matching approach proposed in [11].

• GeoRoBERTa(GT): In this version, only geographic
tags embedding knowledge has been added to

10https://pypi.org/project/gensim/
11https://scikit-learn.org/stable/

RoBERTa, i.e., we removed the Geographic Coor-
dinated Encoding block in Figure 1.

• GeoRoBERTa(GH): This version includes the geo-
hash encoding knowledge only, i.e., we removed
the Generation of address tag embedding block in
Figure 1.

As illustrated in Section 4, GeoRoBERTa takes as in-
put the whole address pairs augmented with the corre-
sponding geohash, to the contrary of the two baseline
approaches [13, 14] where the input is the set of attributes
of each address pair. For a fair comparison, we added
two attributes to each address pair corresponding to its
geohash strings.

5.2. Evaluation Setup
5.2.1. Hardware

The experiments were carried out on a Dell PC with the
following characteristics:

• Processor: Intel® Core 8th (4 core), HT, 1.9Ghz,
8Mo, 15W / UHD 620

• Hard disk: SSD 512Go M.2 SATA
• RAM: 16Go 2400MHz DDR4 (2x8Go)
• Operating system: Microsoft Windows 10 Pro,

64 bits

The compared approaches are executed on "NVIDIA Tesla
K80" GPU using Google Colab (with 12 GB of RAM).

5.2.2. RoBERTa pre-training and fine-tuning

RoBERTa-base architecture (12-layer, 768-hidden, 12-
heads, 125M parameters) is used for pre-training and
fine-tuning. The model is pre-trained to optimize the
Masked Language Modeling objective. RoBERTa pre-
training was performed with the Pytorch framework 12

and Transformers library 13 with a vocabulary size of
30000 tokens. We generated two pre-trained RoBERTa
models corresponding to each of the following corpora:

12https://pytorch.org/
13https://huggingface.co/docs/transformers/index

https://pypi.org/project/gensim/
https://scikit-learn.org/stable/
https://pytorch.org/
https://huggingface.co/docs/transformers/index


(1) French corpora composed of 1,048,575 addresses 14

and (2) Senegalese corpora composed of 31893 addresses
collected from Web business directories 15/16/17/18. These
datasets have been processed according to the steps de-
scribed in Section 4.1.

5.2.3. Hyperparameters Tuning

GeLU activation is used in RoBERTa with the ADAM
Optimizer. For both tasks (parsing and matching), the
dropout and learning rates are set respectively to 0.1 and
3e-5 in such a way as to maximize the accuracy in the
validation set. To avoid overfitting, we use the early stop
technique based on loss validation by setting a maximum
number of training epochs (=12) and a batch size of 32.

5.2.4. Evaluation Metric

To evaluate the performance of our model and all the
baselines, we use the F-measure, which is the harmonic
mean of the precision, the rate of correct predictions, and
the recall, the fraction of correct classes being predicted.

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2× Precision × Recall
Precision + Recall

(1)

Table 8
F-measure of Address Matching Approaches.

Approach Name 𝐽𝐹 𝐽𝑆
Word2vec + XGBoost 0.917 0.9
fastText + SVM 0.931 0.916
GeoRoBERTa 0.949 0.94

5.3. Results
5.3.1. Comparison with baselines

First, GeoRoBERTa is compared to baseline approaches,
using the same address parsing method (RoBERTa). The
evaluation results, illustrated in Table 8, show that
GeoRoBERTa outperforms the other approaches on the
two datasets thanks to the highly contextualized vector
representations of RoBERTa compared to fastText and
Word2vec. Besides, the fastText-based approach outper-
forms the Word2vec-based one due to the richness of the
extracted features in the former approach compared to
the second one. These features represent the cosine simi-
larity between attributes from different types (e.g., Road
vs District) and those from the same type (e.g., Road vs

14https://www.data.gouv.fr/fr/datasets/base-sirene-des-entreprises-
et-de-leurs-etablissements-siren-siret/#description

15https://creationdentreprise.sn/
16http://pagesjaunesdusenegal.com/
17https://www.goafricaonline.com/
18https://www.yelu.sn/

Road). Overall, the performance of the different models,
in terms of F-measure, is higher in the case of French
addresses (vs. Senegalese ones) due to their structured
nature.

Impact of the parsing method To evaluate the im-
pact of the parsing on matching results, we consider three
address baseline parsing methods: rules-based [14], CRF-
based, and RoBERTa. Parsing evaluation results (Table
9) show that RoBERTa is more accurate than the other
methods because it handles polysemous words. Table
10 illustrates the impact of the parsing method on the
performance of the address-matching approaches. We
note that all the matching approaches combined with a
parsing method based on RoBERTa perform better than
the approaches combined with CRF or those based on
Rules. Besides, the impact of the parsing method is more
important with Senegalese data since it contains more
polysemous cases.

Table 9
F-measure of Address Parsing Methods.

Method Name 𝐽𝐹 𝐽𝑆
Rule-based 0.962 0.905

CRF 0.981 0.943
RoBERTa 0.989 0.959

Table 10
Impact of the Address Parsing Method on the Matching Re-
sults.

Matching Approach Parsing Method 𝐽𝐹 𝐽𝑆

Word2vec + XGBoost
Rule-based 0.894 0.87
CRF 0.908 0.888
RoBERTa 0.917 0.9

fastText + SVM
Rule-based 0.913 0.89
CRF 0.924 0.906
RoBERTa 0.931 0.916

GeoRoBERTa
Rule-based 0.938 0.925
CRF 0.944 0.934
RoBERTa 0.949 0.94

Table 11
Computation time (sec.) of Address Matching Approaches.

Approach
Name

𝐽𝐹 𝐽𝑆
Training Evaluation Training Evaluation

Word2vec + XGBoost 1381 32 96 10
fastText + SVM 1870 38 114 12
GeoRoBERTa 7843 127 971 36

Runtime We evaluate the different address match-
ing models on their training and evaluation in the test
set. Results (Table 11) show that the training time of
GeoRoBERTa is costly due to the deep transformer based

https://www.data.gouv.fr/fr/datasets/base-sirene-des-entreprises-et-de-leurs-etablissements-siren-siret/#description
https://www.data.gouv.fr/fr/datasets/base-sirene-des-entreprises-et-de-leurs-etablissements-siren-siret/#description
https://creationdentreprise.sn/
http://pagesjaunesdusenegal.com/
https://www.goafricaonline.com/
https://www.yelu.sn/


architecture of RoBERTa. On the other hand, evaluation
time of GeoRoBERTa takes just few seconds (127s for 𝐽𝐹

and 36s for 𝐽𝑆 ).

Table 12
F-measure of Ablation Analysis.

Approach Name 𝐽𝐹 𝐽𝑆
RoBERTa 0.935 0.926
GeoRoBERTa(GT) 0.94 0.937
GeoRoBERTa(GH) 0.946 0.93
GeoRoBERTa 0.949 0.94

5.3.2. Ablation Study

We analyze the contribution of each type of geographic
knowledge by comparing GeoRoBERTa with its variants
(described in section 5.1.2). The experimental results
are shown in Table 12. We first focus on comparing
GeoRoBERTa(GT) and GeoRoBERTa(GH) to RoBERTa. The
obtained results show that the injection of geographical
knowledge (regardless of their types) slightly improves
the performance as we note an increase of F-measure
in GeoRoBERTa(GT) and GeoRoBERTa(GH) compared to
RoBERTa on the two datasets. In fact, these models are
more robust when dealing with semantic similarities and
polysemy cases.

Next, we note that the precision results of
GeoRoBERTa(GT) and GeoRoBERTa(GH) are close
to each other. Moreover, unlike GeoRoBERTa(GT),
GeoRoBERTa(GH) can detect semantic similarities
between unseen addresses during the pre-training or
the training steps, thanks to the geohash, as illustrated
in Table 13 (first row’s example): There is a Semantic
similarity between Zone Industrielle Les Blanchisseries and
Rue Louis Leprince Ringuet: The road exists in the zone
area (Similar geohash between the two addresses).

On the other hand, GeoRoBERTa(GT) is more efficient
when dealing with polysemy cases thanks to the semantic
labels embedding. Indeed, polysemy cases can represent
examples of ambiguous addresses that are difficult to
geocode as illustrated in Table 13 (second row’s exam-
ple): Rufisque is a polysemous element which may refer
to a Road or a District in Senegal and can be found in
different geographical areas. GeoRoBERTa(GH) did not
consider this polysemy case as the two generated geo-
hash are similar, while GeoRoBERTa(GT) captures the
polysemy and predicts the correct label of the address
pair. Furthermore, the quality of geographic coordinates
can influence the performance of GeoRoBERTa(GH). In
such cases, we note that this model is almost competitive
with RoBERTa for the Senegalese dataset due to the low
accuracy of Google Geocoding API, which is 64 % (Table
14). On the other side, GeoRoBERTa(GH) outperforms

GeoRoBERTa(GT) when dealing with the French dataset
for which the geocoding accuracy is better (89%).

Overall, we can note that GeoRoBERTa outperforms
all its variants against the two datasets as it leverages
the two types of incorporated knowledge. The incorpo-
ration of geohash encoding allowed us to have a more
efficient model able to improve the identification of se-
mantically similar address pairs, mainly when they are
not used in the training of RoBERTa. Incorporating ad-
dress tag embeddings allowed GeoRoBERTa to better deal
with polysemous cases, (e.g., Senegal).

6. Conclusion
In this paper, we described GeoRoBERTa, a transformer-
based address-matching solution that relies on RoBERTa,
a pre-trained transformer language model, leveraging
two types of geographical knowledge during the match-
ing phase. Extensive experimental evaluations on two
real-world datasets show that our solution is effective
and outperforms baseline models. Besides, the ablation
study demonstrated the positive impact of geographical
knowledge injection in improving the matching phase,
especially in semantic similarities and polysemy cases.

In the future, we intend to extend this work in two
directions: (1) evaluating the impact of the geocoding in
the matching result by testing other geocoding solutions,
and (2) studying the performance of GeoRoBERTa on
dirty address datasets (by injecting spelling errors).
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