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Abstract
Estimating the state of charge (SOC) for lithium-ion batteries (LIB) has become a highly desirable task, but also critical,
especially as electrified vehicles become more common. However, due to the non-linear behaviour of these batteries, accurately
estimating SOC remains a challenge. As a result, traditional theory-based methods are often being replaced by data-driven
approaches, thanks to the greater availability of battery data and advances in artificial intelligence. Recurrent neural networks
(RNNs), in particular, are promising methods to be exploited, because they can capture temporal dependencies and predict
SOC without a battery model. Long short term memory (LSTM), a specific type of RNN, can accurately predict SOC values in
real-time and forecast future SOC values within different time horizons.
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1. Introduction
Lithium-ion batteries have gained immense popularity
in various industries, particularly in electric vehicles,
and have become increasingly prevalent in recent years.
LIBs are highly efficient, delivering a greater amount
of energy for the same volume and mass compared to
conventional batteries like lead-acid batteries. Accurately
estimating the state of charge of a battery is crucial for
making informed decisions at all stages of its life. SOC
estimation also helps in enhancing vehicle performance,
safety, and passenger comfort, reducing costs associated
with battery over-sizing, and improving overall vehicle
efficiency. However, direct measurement of SOC is not
possible and must be estimated.

The key technologies for estimating the state of charge
of lithium-ion batteries for electric vehicles can be di-
vided into three main groups: (1) model-based methods
such as simplified electrochemical models and equivalent
circuit models [1][2][3][4], (2) machine learning methods
, including neural networks [5][6] [7][8][9][10]; and (3)
hybrid methods composed of two or more of the previ-
ously mentioned algorithms [2][1]. The most common
model-based methods for SOC estimation are Coulomb
counting and open-circuit voltage, which require many
parameter measurements, usually affected by noise. More
sophisticated models have been developed to deal with
these uncertainties, including an equivalent circuit model
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(ECM) that requires extensive battery test models and
parameters [1].

In recent times, data-driven techniques have gained
significant popularity owing to advancements in artifi-
cial intelligence and machine learning, coupled with the
wider availability of battery data.
The most commonly used algorithms are:

• Artificial Neural Networks (ANN), which have
the ability to function under non-linear condi-
tions, and utilize inputs such as battery terminal
voltage, discharge or charge current, and temper-
ature. Unfortunately, they require large amounts
of training data to derive accurate data-driven
models, thus high computational power and large
memory storage are needed to perform the learn-
ing phase [5] efficiently;

• Support Vector Machine (SVM), which can deal
with noisy data and incorporate knowledge from
other indicators such as energy, power, etc., but
on the other hand, training can be very time-
consuming [6];

• some other data-driven algorithms, e.g., fuzzy
logic and genetic algorithms (see [5] for further
details).

Hybrid techniques are utilized to enhance the precision
and effectiveness of battery models while circumvent-
ing the limitations of a single algorithm. The primary
disadvantage of these techniques is their reliance on sig-
nificant memory and computational power to execute
complex mathematical calculations.

Battery modeling is a crucial step in developing a pre-
cise SOC estimation algorithm. However, the existing
battery modeling approaches proposed in literature have
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limitations in accurately assessing the battery’s aging
process and updating the models continuously. Further
research is required to enhance the precision of battery
modeling. The process of modeling the behavior of bat-
teries and their adaptive control technology involves the
utilization of expert system theories and artificial intel-
ligence. With the huge amounts of data generated by
energy storage systems, it is natural to utilize machine
learning algorithms for state and parameter estimation,
although the accuracy of these approaches is low, which
may become a problem in the optimal monitoring of the
LIB state.

In this paper, we present a data-driven methodology
based on LSTM cells to estimate SOC accurately. The
proposed approach maps battery measurement signals
such as voltage, current, and temperature to the battery
SOC. Specifically, the novel contribution of this paper is
twofold:

• the application of the LSTM network to predict
SOC at different time horizons. SOC works like a
fuel gauge in a car, so an accurate prediction of
SOC at a given time horizon can be critical for
users to know how long they can drive their car
before the battery dies or stops working. On the
other hand, from car manufacturers perspective,
SOC real-time estimation and prediction at dif-
ferent future horizons can help monitor battery
status and plan future maintenance and repair
work. In addition, it is crucial when the battery
reaches the end of its first life, and manufactur-
ers must decide whether it can be used for other
purposes or disassemble it.

• With the proposed method, we show how power-
ful the LSTM is in predicting SOC: the key point
is that data collected at different frequencies can
lead to different results in predicting future val-
ues of SOC. This means that the granularity of
the input data used to train an LSTM must be
determined concerning the time horizon we want
to use to estimate the battery SOC.

The remainder of this paper is organized as follows.
Section 2 contains a literature review, highlighting the
new contribution of this work. Section 3 introduces the
data set and describes the data preprocessing and model-
building steps. Section 4 presents the experimental re-
sults, and Section 5 provides some concluding remarks.

2. Related work
SOC estimation methods can be divided into the fol-
lowing three categories: the simplified electrochemical
models (SEM)[1][2], the equivalent circuit models (ECM)
[4][3][2] and the machine learning models [5][6] which
includes neural network models [7][8][9][10].

By mathematically describing the internal processes
based on electrochemical mechanisms, SEMs are capa-
ble of reflecting the battery characteristics: for example,
Coulomb Counting is an ampere-hour (Ah) counting esti-
mation method that integrates the discharging or charg-
ing current to determine the remaining charge in the
battery; another method is open-circuit voltage (OCV),
which employs the battery’s stable electromotive force
while in the open-circuit state, and uses the correlation
between the OCV and SOC to approximate the SOC value
[1]. The ECMs are created by combining resistors, capac-
itors, and voltage sources to generate a circuit network,
which results in their high level of accuracy, robustness,
and insensitivity to external disruptions [4]: the Kalman
filter is one such example of an ECM that employs mathe-
matical equations to recursively compute a linear optimal
filtering solution for SOC estimation [3].

Machine learning methods for estimating SOC, which
includes neural network methods, are summarized in
[5]. The Support Vector Machine (SVM) is one of them:
it has an excellent generalization capability compared
to neural networks that may have local minimization
problems. A regression SVM is applied by [6] to pre-
dict SOC of a LIB. For estimating SOC, neural network
algorithms can generally be divided into recurrent and
non-recurrent. Recurrent algorithms have a memory
for the past, while non-recurrent algorithms depend on
the data input at the current time step. At McMaster
University, Carlos Vidal and his team have shown that
training a feed-forward neural network is faster than
training a recurrent network and that the error is smaller
[7]. Creating a sufficiently large battery dataset to train
a deep neural network (DNN) for SOC estimation can
be challenging. To reduce the required test data, a Cana-
dian university [9] proposes to use a specific DNN, the
LSTM, which can estimate the SOC of different types of
lithium-ion batteries. In [8], the authors propose a LSTM
network to estimate SOC of a Panasonic 18650 battery
cell, and show that it provides competitive estimation
performance compared to other algorithms reported in
the literature. In contrast to unidirectional RNNs, Yang’s
team at Beihang University proposed a model using a
bidirectional LSTM and the study demonstrated the net-
work’s ability to comprehend the temporal information
present in sequential sensor data obtained from LIBs.
This includes variables such as voltage, current, and tem-
perature measurements captured in both forward and
backward directions. Additionally, the network effec-
tively summarizes temporal dependencies from past and
future contexts. [10].



3. Methodology
In this section, we provide a detailed description of the
steps we took to obtain a SOC estimate: as shown in
Figure 1, the first step is data collection of battery’s pa-
rameters thanks to measurement sensors; the second step
is to preprocess and prepare the data to obtain a training
set and a test set to be fed into the network; the last step
is LSTM training and performance evaluation.

Figure 1: Figure showing the steps followed to obtain SOC
estimation.

3.1. Data collection
Data plays a crucial role in driving innovative advance-
ments in battery development, modeling, and manage-
ment. For instance, the development of a battery manage-
ment system (BMS) to regulate battery operations neces-
sitates the usage of data both for its creation, as well as
for the training and calibration of the models employed
to estimate battery states, such as State of Health (SOH),
SOC, and Remaining Useful Life (RUL). The authors in
[11] presented an overview of publicly available battery
datasets: electric vehicle (EV) battery requirements differ
from those for laptops, cell phones, stationary energy
storage, and other devices. Thus, application-specific
data are needed for:

• cycle aging data: typically, input data include
in-cycle measurements of current, voltage, and
temperature and per-cycle measurements of ca-
pacity and internal resistance or impedance;

• drive cycle data: input data are collected by cy-
cling batteries according to the drive schedules;

• chemistry cell modeling: is mainly based on the
short-term responses of current and voltage and
focuses on the impedance variance at different
battery SOC levels and temperatures;

• calendar aging: data include information related
to battery cycler such as voltage, current, capacity,
and energy from periodic characterization tests.

Various countries and organizations create driving cy-
cles, which are employed to evaluate vehicles’ perfor-
mance in terms of factors like fuel consumption, pollutant
emissions, and traffic impact. Cycling batteries can gather
a lot of data based on these driving schedules, which can
then be utilized for SOC estimation algorithms under
realistic conditions. The universally recognized driving
cycle tables can be classified into European, American,
and Asian driving cycles [11].

Most used in literature are the following American
(US) driving cycles:

• highway fuel economy test (HWFET) is a chas-
sis dynamometer driving schedule representing
highway driving conditions under 60 mph, for
the determination of fuel economy of light-duty
vehicles over highway driving cycle;

• federal test procedure (FTP-75) has been created
by US EPA (Environmental Protection Agency) to
represent a commuting cycle with a part of urban
driving including frequent stops, and a part of
highway driving;

• US06 is a supplemental federal test procedure cy-
cle that represents aggressive, high speed and/or
high acceleration driving behaviour;

• LA92 unified dynamometer driving schedule was
developed as an emission inventory improve-
ment tool, and is for Class 3 heavy-duty vehicles
(power-to-mass ratio is greater than 34);

• urban dynamometer driving schedule (UDDS) is
also known as "the city test" and represents city
driving conditions. It is used for light-duty vehi-
cle testing.

3.2. Data preprocessing
3.2.1. Data gathering

In this paper, the dataset used for training, testing and val-
idation of the network was released by the Department
of Electrical and Computer Engineering, McMaster Uni-
versity, Hamilton, Ontario, and is freely available online
[12].

All tests were performed in a thermal chamber with
cell test equipment showed in Figure 2: the control com-
puter contains the databases with the driving schedules
and then, after the termal chamber is set to the desired
ambient temperature and the cell is fully charged, the
system starts to record the current drive cycle. The 3Ah
LG 18650HG2 battery cell was subjected to four drive cy-
cles, UDDS, HWFET, LA92, US06, and eight drive cycles
(mix 1-8) consisting of a random mix of UDDS, HWFET,
LA92, and US06. Following every test, the battery was
charged at a rate of 1C with 50mA until it reached a volt-
age of 4.2V, after which it was turned off. It was ensured
that the battery temperature remained at or above 22°C



Figure 2: Battery test equipment for data monitoring.

throughout this process. The cycler collects the following
measurements:

• Time (time in seconds)
• TimeStamp (timestamp in MM/DD/YYYY

HH:MM:SS AM format)
• Voltage (measured cell terminal voltage, sense

leads welded directly to battery terminal)
• Current (measure current in amps)
• Capacity (measured amp-hours (Ah), with Ah

counter, typically reset after each charge, test, or
drive cycle)

• Energy (measured watt-hours (Wh), with Wh
counter, reset after each charge, test, or drive
cycle)

• Battery_Temp_degC (battery case temperature,
at the middle of battery, in degrees Celsius)

The training data set consists of the eight mixed driv-
ing cycles and their corresponding charges, while the
test consists of the UDDS, LA92, and US06 driving cycles
and their corresponding charges. All the measurements
refers to tests performed only in a 25°C thermal chamber
since analyzing how different temperatures can affect the
SOC estimation is out of our work’s scope.

3.2.2. Feature selection: correlation

The features relating to the battery are voltage, current,
capacity, energy, and temperature. The response variable,
the state of charge of the battery, is obtained from the
capacity (Ah) of the battery calculated by the battery
cycler (detailed procedure is explained in Section 3.2.5).
To measure how much the relationship between dataset
features and target variable (SOC) is close to a linear
function, the Pearson correlation coefficient is used: the
more the absolute value of the correlation coefficient is
higher, the more the correlation is stronger [13].

From the correlation matrix in Figure 3, the strongest
correlation is between capacity and energy and both are

Figure 3: This figure shows the correlation between features
and response variable (SOC).

strongly correlated with SOC. Unfortunately, as men-
tioned earlier, capacity was used to evaluate SOC, so
both capacity and energy must be excluded as predictors.
So the variables used as inputs are voltage (V), current
(A) and temperature (°C).

3.2.3. Sampling

The collected data from battery cyclers may have dif-
ferent frequencies: in our dataset [12], data related to
driving cycles and mix have a time step of 0.1 seconds,
while data related to the charging phase have a slower
dynamic and were considered less important, so they
were stored at a lower data rate of 1 minute.

As mentioned in Section 3.2.1, both the training and
test data contains drive cycles and charges, so both must
be up-sampled to obtain the same frequency.

3.2.4. Normalization

Since machine learning algorithms generally do not work
well with numerical attributes with different scales, the
dataset must be rescaled. To ensure that input features are
within a bounded range of 0 to 1, a technique called min-
max scaling, or normalization, is employed. While there
are several other methods available, min-max scaling is
preferred specifically for neural networks as unbounded
input features may pose difficulties [14].

3.2.5. Data Labelling

Prediction algorithms require apriori knowledge about
the values to be predicted (i.e., SOC in our research). Un-
fortunately, SOC cannot be measured directly but can



be easily estimated. Following the SOC definition, it is
defined as the battery percentage remaining charge and
is obtained by dividing its remaining capacity (Ah), by
its nominal capacity. Each label (SOC) is associated with
the corresponding features for the real-time prediction of
SOC. On the other hand, when predicting SOC for differ-
ent future time horizons, each label is shifted with respect
to its initial position by the number of rows needed to
reach that time horizon: for example, if we try to predict
SOC within 10 minutes and the data is sampled at 1

60
Hz,

each label will be shifted by 10 rows.

3.3. Data modelling
Long Short Term Memory is a type of recurrent neural
network. RNNs have an internal unit that can form a
cycle to show the state history of the previous input. A
general LSTM unit consists of:

• input gate 𝑖𝑘 = 𝜇 (𝑊Ψ𝑖Ψ𝑘 +𝑊ℎ𝑖ℎ𝑘−1 + 𝑏𝑖)
which controls which value of the input should
be used to modify the memory. The sigmoid func-
tion 𝜇 decides which values to let through 0 or
1;

• memory cell 𝑐𝑘 = 𝑓𝑘𝑐𝑘−1 +
tanh (𝑊Ψ𝑐Ψ𝑐 +𝑊ℎ𝑐ℎ𝑘−1 + 𝑏𝑐) where
tanh function gives weights to the values which
are passed, deciding their level of importance
ranging from -1 to 1;

• forget gate 𝑓𝑘 = 𝜇 (𝑊Ψ𝑓Ψ𝑘 +𝑊ℎ𝑓ℎ𝑘−1 + 𝑏𝑓 )
that regulates the details to be discarded from the
block using the sigmoid function 𝜇;

• output gate 𝑜𝑘 = 𝜇 (𝑊Ψ𝑜Ψ𝑘 +𝑊ℎ𝑜ℎ𝑘−1 + 𝑏𝑜)
that is the result of the input and the memory
cell gate. Again here, the sigmoid function can
be zero-valued, so it can inhibit the flow of infor-
mation to the next computational node;

• state of the cell ℎ𝑘 = 𝑜𝑘 tanh 𝑐𝑘 where tanh
function gives weights to the values which are
passed, deciding their level of importance ranging
from -1 to 1.

Each gate has its set of network weights denoted by 𝑊
and a bias 𝑏 is added at each matrix multiplication to
increase the flexibility of the network to the data. Ψ
denotes the vector of inputs to the network, which are the
voltage, current, and temperature of the battery measured
at time step 𝑘.

3.3.1. Training

The training dataset consists of Ψ𝑘 =
[𝑉 (𝑘), 𝐼(𝑘), 𝑇 (𝑘)] as input and SOC as the response
variable to be predicted. Since neural networks require
large amounts of data to be trained, they are collected in
smaller fixed-size mini-batches to shorten the training

time of the network, and each of these batches is then
fed into the LSTM network [14]. A forward pass begins
when the training data (all batches) are fed into the net-
work, and ends when the SOC estimates are generated
at each time step 𝑘. Each forward pass is followed by a
backward pass where the network weights and biases are
updated: this cycle is referred to as epoch, and is denoted
by 𝜖.

Training a very large neural network can be very slow.
Beyond the mini-batches, one way to speed up training
is to use a faster optimizer than gradient descent [14].
The most commonly used one [8][9][7][10] is adaptive
moment estimation (Adam): it keeps track of an expo-
nentially decaying average of past gradients and also an
exponentially decaying average of past quadratic gradi-
ents of the loss function, when weights and biases are
updated. Once the network has computed all the hidden
states ℎ𝑘 of the last epoch, the estimated SOC is obtained
by a fully (dense) connected layer:

𝑆𝑂𝐶𝑘 = 𝑉𝑦ℎ𝑘 + 𝑏𝑦

where 𝑉𝑦 is the weights matrix and 𝑏𝑦 is the bias corre-
sponding to the last fully connected layer. A loss function
is needed to measure the prediction’s accuracy at each
time step. Mean absolute error (MAE) is chosen because
of its simple structure and easy calculations [14]:

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑘=0

|𝑆𝑂𝐶𝑘 − 𝑆𝑂𝐶*
𝑘 |

where 𝑁 is the length of the sequence and 𝑆𝑂𝐶𝑘 and
𝑆𝑂𝐶*

𝐾 are the estimated and true values of the battery’s
state of charge.

3.3.2. Evaluation

The validation of the algorithm is done using the test
set consisting of the three previously mentioned driving
cycles and their respective charges. Only one forward run
is required here since all parameters have already been
learned during training. The measures used to validate
the results obtained are again MAE and the root mean
squared error [14]:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 𝑁∑︁
𝑘=0

1

𝑁
(𝑆𝑂𝐶𝑘 − 𝑆𝑂𝐶*

𝑘)
2.

3.3.3. Prediction

SOC prediction is performed again with the test set. We
do not show prediction results here because the built-in
model is not properly optimized, and this task is outside
the scope of our work.



4. Preliminary experimental
results

As mentioned above, the vector of collected inputs
is defined as Ψ𝑘 = [𝑉 (𝑘), 𝐼(𝑘), 𝑇 (𝑘)], where
𝑉 (𝑘), 𝐼(𝑘), 𝑇 (𝑘) are the voltage, current, and tempera-
ture measurements of the battery at time step 𝑘, respec-
tively. The train set consists of the eight mix and the
corresponding charges, and the test set consists of the
UDDS, LA92, and US06 drive cycles and the correspond-
ing charges. After performing all the preprocessing steps
explained in Section 3.2, both the training and test set
are split into batches to better feed the network.

The model is implemented in Python 3.10.6 version
with Tensorflow 2.9.1 package: it is built sequentially,
starting with the input layer, then an LSTM layer, and
finally, a dense layer that computes the output. The pa-
rameters of the network, summarized in Figure 4, were
kept constant in all experiments in order not to influence
the results:

Figure 4: Network structure with respective parameters.

The following results are obtained by considering two
different sampling frequencies: 1Hz (one observation per
second) and 1

60
Hz (one observation per minute). Since we

consider two different data granularities, aggregate mean
and standard deviation of voltage and current were calcu-
lated to avoid information loss when down-sampling the
data set: thus, the vector of inputs fed into the network
is

Ψ𝑘 = [𝑉 (𝑘), 𝐼(𝑘),𝑇 (𝑘),𝑀𝑒𝑎𝑛𝑉 (𝑘),𝑀𝑒𝑎𝑛𝐼(𝑘),

𝑆𝑡𝑑𝑉 (𝑘), 𝑆𝑡𝑑𝐼(𝑘)].

4.1. Sampling to 1Hz
Recalling the different frequencies of stored data of drive
cycles (and mix) and charges, to obtain train and test
sampled to 1Hz we down-sample driving cycles from 10
to 1Hz and up-sample charges from 1

60
Hz to 1Hz. The

results obtained are presented in Table (a): the training er-
rors with a time horizon of 0, 10 minutes and 20 minutes

are quite low; on the other hand, when the time horizon
is higher and we predict SOC within the next 30 min-
utes, the training errors doubled with respect to results
obtained for real-time estimation (h = 0), and validation
errors are quite high. This is why we need to up-sample:
considering a dataset with observations every second is
not optimal to predict with reasonable accuracy within a
horizon of 30 minutes.

The results in Table (a) are also confirmed by evalu-
ating the Pearson correlation coefficient between SOC
values corresponding to different time intervals (Lags):

• Lag is of 1 second: 0.9939
• Lag is of 10 minutes: 0.9263
• Lag is of 20 minutes: 0.7968
• Lag is of 30 minutes: 0.5404

When two values of SOC have a difference of half
an hour, the correlation coefficient drops significantly,
confirming that this algorithm with fine-grained data
cannot correctly predict SOC for 30 minutes or larger
time horizons.

4.2. Sampling to 1
60Hz

To obtain train and test sampled to 1Hz, driving cycles
are down-sampled from 10 to 1

60
Hz. The collected results

are shown in Table (b). When predicting real-time SOC
(h = 0), both train and validation errors are lower than the
ones in Table (a). When the time horizon is of 10 minutes,
the training error is bigger, but the validation error is
lower. By looking at results with a time horizon of 20
minutes, there are no significant differences between the
prediction with the fine-grained and coarse-grained data
set. The same happens when the time horizon considered
is of 30 minutes.

By looking at the Pearson correlation coefficient be-
tween SOC values corresponding to different time inter-
vals (Lags):

• Lag is of 1 minute: 0.9965
• Lag is of 10 minutes: 0.9692
• Lag is of 20 minutes: 0.8991
• Lag is of 30 minutes: 0.7938

The coefficients are more significant than the ones
obtained when the frequency of input data is 1Hz, but
for time horizons of 20 and 30 minutes, the coefficients
are too small, confirming that to predict SOC for those
time horizons, a more coarse-grained data set is needed.

The improvements obtained with real-time SOC es-
timation (h = 0) are due to the increasing information
about the past given by the aggregation measures com-
puted. When the time horizon is of 20 and 30 minutes
the algorithm overfits when trying to predict with a fine-
grained dataset: the training error is relatively low, but



h MAE RMSE

Training errors

0min 0.027 0.050
10min 0.026 0.049
20min 0.039 0.070
30min 0.065 0.117

Test errors

0min 0.139 0.304
10min 0.131 0.296
20min 0.145 0.292
30min 0.151 0.267

(a) Table to represent errors obtained with different
time horizons (h) with observations frequency of 1
Hz.

h MAE RMSE

Training errors

0min 0.012 0.035
10min 0.034 0.116
20min 0.040 0.068
30min 0.042 0.067

Test errors

0min 0.128 0.305
10min 0.064 0.286
20min 0.149 0.280
30min 0.168 0.261

(b) Table to represent errors obtained with different
time horizons (h) with observations frequency of
1

60
Hz.

the validation error is very high; moreover, when we try
to up-sample, dataset size reduces a lot, and this aspect
can influence the network performance negatively so
that when we validate the network, we cannot see im-
provements, such as the ones with a time horizon of 10
minutes.

5. Discussion
In the final analysis, this work shows how the input data’s
different granularity can affect the LSTM network’s per-
formance in predicting SOC within different time hori-
zons: the more distant the considered horizon, the more
we need to aggregate the data and collect them in a coarse-
grained dataset. The results are promising, especially for
a time horizon of 10 minutes. A very important aspect
that should be considered for improvements of this work
and future developments is the reduction of the size of
the considered dataset: this can affect the performance
of the estimation, since neural network-based algorithms
always require a significant amount of data to derive
proper models. The more distant the horizon, the larger
the period of the collected data needs to be.

Thanks to a promising estimation, some business de-
velopments can be defined: the integration of anomaly
detection techniques in the battery management system
(BMS) based on future predictions of SOC, a predictive
maintenance plan for the battery, an appropriate target
for the second life of the battery to make the most of
its remaining useful life; the implementation of a user
interface that makes it easier for the owner of an electric
vehicle to monitor the battery parameters.

Even though LSTM can self-learn its own parameters,
the results obtained in this paper are promising and can
be improved thanks to the optimization of LSTM param-
eters, which will be addressed in future work. Further-
more, it is essential to have a kind of regulation that
guarantees the uniformity of electric vehicle battery data,
and accessibility for analysts to train the algorithms to
improve SOC estimation easily: most innovative ideas

have been developed in the laboratory environment, so
further improvements are needed in the area of real-time
vehicle monitoring.
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