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Abstract
Monitoring athletes with wearable sensors allows to gain insights on their technique and physical condition. However,
invasive setups containing a large number of sensors may hinder the mobility of the athletes, leading to under-performance
and possibly inaccurate data collection. In this paper, we show that correlation between data collected by different wearables
can be used to identify a minimal setup. We propose a methodology to remove the least important sensors, and apply it to data
collected by monitoring field hockey players. In this study, the number of sensors was reduced from 23 to 8 by deleting those
exhibiting a correlation above 98%. Additionally, we demonstrate that even with a minimal sensor configuration, a significant
amount of information is retained with regards to predicting the ball speed following a drag-flick, an important technique in
field hockey. Our experiments indicate that the utility of the data for this specific task remains practically unaltered.
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1. Introduction
The utilization of wearable sensors in the study of ath-
letes allows researchers to obtain a comprehensive under-
standing of their physical condition. These sensors are
extensively employed to monitor various health-related
parameters, including workload, hydration levels, and
heart rate [1, 2]. Researchers have started using sensor
setups to not only prevent injuries and illnesses, but also
to boost the athletes’ performance [3]. The latter objec-
tive is mainly achieved through the use of inertial mea-
surement units (IMUs), such as accelerometers and gyro-
scopes, which are positioned on key points of a subject’s
body, such as the head, spine, joints, and limbs. IMUs cap-
ture spatio-temporal and kinematic data, thereby offering
a comprehensive three-dimensional representation of the
subject’s body movement over time.

A typical setup usually involves the attachment of
several IMUs to the subject using a specialized body-
suit. Despite the considerable value of these sensors as
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a source of information for sports data analysts, wear-
ing such a comprehensive setup may negatively impact
the athlete’s performance [4, 5, 6]. As a consequence,
the collected data may not accurately reflect a typical
scenario in which the sensors are not worn, leading to
flawed evaluations.

Previous research has explored the possibility of mini-
mizing the number of sensors worn by subjects to reduce
the impact on their mobility [7, 8]. However, many of
these studies primarily rely on ad-hoc heuristics and ob-
servations specific to the application at hand. In this pa-
per, we propose a method for automatically determining
a minimal setup based on correlations in IMU measure-
ments. The core idea of our algorithm is to eliminate
redundant information by removing sensors that exhibit
correlations above a specified threshold.

The contributions of this work are as follows:

• We demonstrate that it is feasible to reduce the
necessary sensor setup to monitor field hockey
players. Specifically, we focus on the assessment
of players performing a “drag-flick”, a particu-
larly challenging shot that requires significant
coordination.

• We identify the most “insightful” sensors in the
minimal setup. We also establish the groups of
sensors that are greatly correlated and have lim-
ited value for data controllers.

• Finally, we show that the obtainedminimal sensor
configuration can still effectively predict the ball
speed during drag-flick, with only a slight reduc-
tion in performance as compared to the complete
set of IMUs.
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Figure 1: All key events in the execution of a drag-flick. Image obtained from the creators of the dataset [10].

Our experiments are conducted on a real-world sen-
sor dataset, which was collected by field hockey players
while practicing the drag-flick.

2. Background and key concepts
In this section we describe the relevant concepts of field
hockey and stress the importance of feature selection
from raw data.

2.1. Field hockey
Drag-flick. Our work focuses on data collected from
field hockey players during their practice of a technique
known as the “drag-flick”.

The drag-flick is a highly effective shot in which the
ball is lifted above the backboard of the goal rather than
simply being hit, making the shot more aggressive at
penalty corners. It is one of the most important tech-
niques to be mastered in field hockey and requires coor-
dinated action of multiple body parts. The key stages of
a drag-flick can be seen in figure 1. After the acceleration
phase T1-T3, T4 begins with the right foot rotating on
the ground while the left foot leans as far forward as
possible. At T5, the left foot lands on the ground. At
the same time, the onset right wrist flexion begins with
simultaneous maximal knee flexion, followed by exten-
sion. The follow-through of the shot occurs at T6 which
concludes the drag-flick. Prior works have demonstrated
that the greater the maximal knee flexion angle between
T4 and T6, the higher the resulting ball speed. [9].

Examining sensor recordings of a drag-flick shot of-
fers valuable insights into the player’s form. However,
an overly invasive IMU setup can lead to subpar perfor-
mance by the athlete, resulting in inaccurate data. As a
result, drag-flick monitoring constitutes the perfect ex-
ample of a task that could benefit from a reduced sensor
setup.
Ball speed prediction. To measure the loss in utility of our
minimal sensor setup compared to the original one, we
evaluate the performance of ball speed prediction during
drag-flick. The speed of the ball in field hockey is con-
sidered one of the most important metrics to assess the

form of a player. It is typically measured by high-speed
cameras or radar systems, and predicting speed based
on IMU data is an open problem. Rather than focusing
on achieving the lowest possible prediction error, we use
ball speed as a target variable to select important IMUs.

2.2. Feature selection
In machine learning, feature selection is the task of iden-
tifying relevant input variables (features) in the data. Se-
lecting important features improves the generalization
capabilities of models and prevents overfitting. In the
context of medical and sports research, however, feature
selection can also be used to find relevant sensors from
a larger pool of potential IMUs. This allows to reduce
redundancy and increase the accuracy of the analysis by
only focusing on the most informative IMUs.

Feature selection techniques are divided in three main
types: filter methods, wrapper methods, and embedded
methods [11]. Filter methods are “a priori”, meaning that
they are performed independently of the chosen predic-
tion model. These are usually based on metrics such as
correlation or mutual information between individual
features and the target variable. Wrapper and embedded
methods, conversely, choose the most relevant features
based on how much they contribute to the prediction for
a specific model.

A comparison of these three types of techniques has
been done by prior works [12, 13] and is beyond the scope
of this paper. In our work, we aim to show that feature
selection can be used to determine a minimal setup of
wearable sensors. Adopting a minimal sensor setup has
the two-fold advantage of reducing the equipment cost
while making it less invasive for the athletes, leading
to more accurate and realistic measurements. The fea-
ture selection algorithm that we adopted in our analysis
is a combination of a univariate filter method and the
correlation.

3. Related work
Body sensors and athlete monitoring. The advancement of
technology and the continuous need for performance en-



hancement in sports [14] has accelerated the utilization
of wearable sensors in sports data analytics [15, 16, 17].
A sensor network was introduced to monitor important
indicators of world-class rowers for different rowing tech-
niques [18]. Schmidt et al. utilized an IMU wearable
setup to measure stance duration of both track and field
sprinters [19]. The researches managed to identify four
different types of basketball shot with 98% accuracy via
a micro IMU-based wristband [20].

These devices have also been employed in field hockey,
for example to recognize players’ activities [21] and to
improve their technique. Iwamoto et al. [22] proposed
a sensor-based approach to improve the push pass tech-
nique. Eight sensors were applied on several contact
points of the stick and associated with different feed-
back sounds. This enabled players to receive real-time
feedback on the effectiveness of their pass.

Furthermore, other works before ours focused on the
study of the drag-flick technique. Body sensors were
also utilized for assisting new players in executing a suc-
cessful drag-flick [9]. The participants of the study have
reported the improvement in the drag-flick technique,
a decrease of the body load during the shot, and com-
mended the more interactive learning experience.
Minimal sensor setup and feature selection. Previous
works have investigated reducing the number of devices
in body sensor configurations. Typically, in these studies,
relevant sensors were chosen through feature selection,
resulting in an optimal setup for a particular task. In
the field of digital healthcare, Caramia et al. [23] uti-
lized feature selection to determine relevant sensors in
the recognition of Parkinson’s disease using IMU-based
devices. Their approach involved separating the sensors
into various sub-groups and evaluating their significance
in prediction. The significance was determined by calcu-
lating the accuracy of various classification algorithms.
Khademi et al. [24] aimed to minimize the number of
sensors in gait mode recognition. They proposed a novel
gradient-based feature selection method, which intro-
duces a penalty for the number of used features in the
objective function. This method is applicable only to
models that are trained based on gradient descent, such
as neural networks. Amjad et al. [25] published a com-
parative evaluation of feature selection approaches for
human activity recognition (HAR). At present, a mini-
mal sensor setup can be realized via a single advanced
compound device, such as a fitness tracker. A single
wearable devices has been used in a number of lifelog
studies, involving both regular participants [26] and pro-
fessional athletes [27]. Utilizing only a single device for
monitoring various parameters tends to be less invasive
and equally informative for some applications.

Year
2017 2018 2019 2021

Males 14 13 13 18
Females 9 9 12 9
U16 9 5 15 10
U18 5 7 - 10
U21 6 4 - 6

Seniors 3 6 1 2

Table 1
Demographics and temporal statistics of the DragEXT dataset.

4. Dataset
In our experiments, we utilize a private dataset collected
by Kinetic Analysis1 in collaboration with the Royal
Dutch Hockey Association (KNHB). The dataset com-
prises multiple trials per hockey player collected over
four years (2017, 2018, 2019, and 2021), where each trial
represents a full execution of a complete drag-flick. Since
the dataset was collected over multiple years, henceforth
we refer to it as DragEXT (drag-flick extended).

In total, 77 highly capable individuals of various ages
participated in the data collection. The following age
groups are represented in the dataset: U16 (younger than
16 years old), U18 (16-17 years old), U21 (18-20 years
old), and seniors (older than 20 years old). The age and
gender breakdown of the hockey players per each year
is depicted in table 1.

Overall, more than 1, 500 drag-flicks have been
recorded, with ball speed measured for at least 1, 300
trials. Around 350 drag-flicks have been manually an-
notated to contain timestamps for all the events typical
of a drag-flick (as depicted in figure 1). The trials were
recorded using the Moven suit by XSens. In total, 17
IMUs are contained in the suit to monitor various charac-
teristics during the flick, including on the head, sternum,
spine, and pelvis, as well as on shoulders, upper arms,
forearms, hands, feet, and finally on upper and lower
legs. These IMU measurements are combined to form
a total of 23 sensor segments. Throughout the paper,
we test our algorithm to reduce the number of such sen-
sor segments, which we call just “sensors” for simplicity.
We depict the sensors and their on-body placement in
more details in table 2. In addition to objective measure-
ments taken by accelerometers and gyroscopes, sensors
were also calibrated to record derived measurements of
position, velocity, orientation, and some other metrics.
Measurements of position and velocity are recorded as
3D coordinates (x, y, and z), while the orientation is mea-
sured in quaternions2. Sensors were collecting data at the
highest available sampling frequency of 240 Hz. There-
fore, each trial in the dataset is represented as a set of

1https://www.kinetic-analysis.com/
2https://base.xsens.com/s/article/MVNX-Version-4-File-Structure

https://www.kinetic-analysis.com/
https://base.xsens.com/s/article/MVNX-Version-4-File-Structure


Time index T4 T4+1 ... T6
Pelvis_acceleration_x (m/s2) -0.097955 -0.0637 ... -1.764977
Pelvis_acceleration_y (m/s2) -0.192932 -0.062622 ... -0.69426
Pelvis_acceleration_z (m/s2) 0.263944 0.261898 ... -2.795869
⋮ ⋮ ⋮ ⋮ ⋮
Neck_velocity_x (m/s) -0.100449 -0.100892 ... -0.04733
Neck_velocity_y (m/s) -0.002497 -0.000822 ... 1.206778
Neck_velocity_z (m/s) -0.015762 -0.013629 ... -0.026338
⋮ ⋮ ⋮ ⋮ ⋮

Figure 2: Example of trial recording formatted as a multidimensional time series.

Sensor name Position Number
Pelvis Pelvis 1
Neck Neck 1
Head Head 1
T8 Thoracic spine 1
T12 Thoracic spine 1
L3 Lumbar spine 1
L5 Lumbar spine 1

Shoulder Shoulders 2 (Left, Right)
Upper Arm Upper arms 2 (Left, Right)
Forearm Forearms 2 (Left, Right)
Hand Hands 2 (Left, Right)

Upper Leg Upper legs 2 (Left, Right)
Lower Leg Lower legs 2 (Left, Right)

Foot Feet 2 (Left, Right)
Toe Toes 2 (Left, Right)

Table 2
The full list of sensors (segments) utilized in the Moven suit
by XSens. The bottom half of the sensors are duplicated and
placed on both parts of the body. In our reduction methodol-
ogy we aim to identify the most impactful.

time series for all combinations of available sensors and
recorded measurements, totalling 437. For the annotated
kicks it is feasible to associate the above time series with
the respective events of a drag-flick (T1-T6).
Preprocessing. As a preliminary step, we format the trial
recordings as time series data. For all combinations of
sensors, measurements, and coordinates in each trial, we
extract a sequence of data and format them as a multidi-
mensional time series, as shown in figure 2. Throughout
the paper, we refer to the sequences forming the multidi-
mensional time series as “channels”. The name of each
channel follows the format “sensor_measurement_coor-
dinate”, e.g., neck_velocity_x.

Furthermore, for the purpose of predicting the ball
speed, we keep only the samples between the key frames
T4 (right foot touch during pre-stretch phase) and T6
(end of the drag-flick).

5. Methodology
In this section we describe our methodology for sensor se-
lection, the feature extraction procedure and benchmarks
for our models in great details.

5.1. Sensor selection algorithm
Our sensor selection algorithm is divided into two main
parts. In the first part, we extract features from sensor
time series and we rank them individually, meaning that
we only consider how much each feature is related to
the target variable (in our case, the ball speed). Then, we
construct a histogram with the top 𝑘 relevant features
as in figure 3. This is used to do a preliminary ranking
of the sensors, based on the number of highly relevant
features that they produce. The extracted features and
themethod used to rank themmay vary depending on the
application. The specific method adopted in this study is
described in section 6.

In the second part, we discard redundant IMUs based
on their correlation in the time domain. For example, by
examining the velocity measured by two sensors located
on the spine (T8 and T12) in figure 4, one can easily see
that they exhibit a strong correlation during the drag-
flick. When two sensors are highly correlated, we discard
the one lower in ranking. This procedure aims at retain-
ing the sensor which is more likely to produce relevant
features.

To efficiently select sensors for the minimal setup,
we first sort them by their ranking in terms of relevant
features, starting with the top ranked. We delete all
the lower-ranked sensors which are above a correlation
threshold 𝜃𝜌, which is a parameter of our algorithm. We
then repeat the procedure for the non-deleted sensors, or-
dered by their ranking. The remaining sensors at the end
have a pairwise correlation below the chosen threshold.
The complete procedure is detailed in algorithm 1.

Indeed, this is a “greedy” algorithm, based on the in-
tuition that sensors producing more relevant features
provide higher utility. To find the truly optimal combi-
nation of sensors, one would need to try all the possible
combinations of uncorrelated sensors, which however is
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Figure 3: Occurrences of top features extract by each sensor,
considering only the velocity components along the three axes.
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Figure 4: Example of two correlated sensors, T8 and T12,
both located on the subject’s spine. The graph shows the
variation of velocity over time between the beginning of the
pre-stretch phase (𝑇4) and the end of the follow through (𝑇6)
for one specific user and trial. Most examples exhibited similar
behaviour.

exponential with respect to the number of sensors in the
worst-case scenario.

5.2. Ball speed prediction
In order to test our sensor selection algorithm, we as-
sess the performance of basic machine learning models
that predict the ball speed before and after reducing the

Algorithm 1 Sensor selection
procedure SensorSelection(list of sensors 𝑆 ordered
by ranking, threshold 𝜃𝜌)

̄𝑆 ← 𝑆 ▷ Initialize the final list of sensors
for 𝑠 in 𝑆 do

if 𝑠 not in ̄𝑆 then
continue ▷ Skip to the next iteration

for 𝑠′ in ̄𝑆 do
if 𝑠 ≠ 𝑠′ ∧ corr(𝑠, 𝑠′) > 𝜃𝜌 then

Remove 𝑠′ from ̄𝑆
return ̄𝑆

number of IMUs. Ideally, the sensor selection algorithm
should mostly remove redundant information from the
IMUs, leaving the performance of the models almost un-
altered. In other words, a smaller loss in accuracy is
an indicator that our algorithm is effectively removing
duplicate information.
Metrics. Predicting the ball speed is a regression prob-
lem. In order to quantify the performance of regression
models on this task, we adopt two widely used error met-
rics, namely mean average error (MAE) and root mean
squared error (RMSE). Calling 𝑦1, … , 𝑦𝑛 the ball speed
measurements over 𝑛 trials, and ̂𝑦1, … , ̂𝑦𝑛 the correspond-
ing predictions of a regression model, the MAE is com-
puted as

MAE = 1
𝑛

𝑛
∑
𝑗=1

|𝑦𝑗 − ̂𝑦𝑗| (1)

while the RMSE is computed as

RMSE =
√

1
𝑛

𝑛
∑
𝑗=1

(𝑦𝑗 − ̂𝑦𝑗)2. (2)

Both metrics are important to provide an overall un-
derstanding of a regressor’s performance. The main dif-
ference between the two is that RMSE tends to be more
sensitive than MAE to infrequent large errors, meaning
that it can be significant if there are few outliers in the
dataset. As a baseline for both metrics, we consider the
performance of a naive regressor that always predicts the
average ball speed (i.e., 81.52 km/h). This regressor yields
a MAE of 9.68 km/h and a RMSE of 12.09 km/h. Any re-
gression model providing higher error values should be
considered non-informative.

6. Experiments
In this section, we apply our sensor selection algorithm
to the DragEXT dataset. To evaluate the full sensor setup,
we utilize all the IMUs and keep the overall top-100 fea-
tures. The precise procedure for feature extraction is
detailed in section 6.1.
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Figure 5: Correlation matrix showing Pearson’s correlation between different sensor’s velocity. Darker colors imply a higher
correlation.

In order to assess the minimal sensor setup we re-
peat the feature extraction process (again, extracting the
top-100 features) after applying algorithm 1 on the full
set of IMUs.

6.1. Feature extraction and ranking
In order to extract features from our time-series data, we
utilize the TSFresh Python package3. With default pa-
rameters, TSFresh extracts 783 features for each channel
of a multidimensional time series, including peak values,
minima, autocorrelation, quantiles, and more. Count-
ing all the sensors, measurements, and coordinates, each
trial’s timeseries comprises 437 channels. If all the pos-
sible features were to be extracted, they would be over
340,000, making the dataset imbalanced in width and
hard to process.

Therefore, as a preliminary selection, we keep only
the velocity measurements. Since estimation of position,
velocity, and acceleration over time provide an equal
description of the motion, keeping only one of them
should not reduce the amount of information in the time
series. Regarding orientation, preliminary experiments
showed that including it does not have a major impact
on the results. Therefore, we decided to not include such
measurements.

After extracting all the features from the velocity mea-
surements with TSFresh, we select the top 𝑘 = 100 rel-

3https://tsfresh.readthedocs.io

evant ones, ranking them individually. We calculate
Kendall’s tau [28] between each feature and the ball
speed, and rank them according to the obtained p-values.

6.2. Models evaluation
Once the top 100 features are extracted, we evaluate the
performance of multiple regression models using 10-fold
cross-validation. Normally cross-validation is used to
tune the hyperparameters of a model, but in this case we
adopt it to evaluate models without choosing a specific
train-test split. It is important to note that our goal is to
assess the expected performance of several regressors,
not to obtain a ready-to-deploy model.

6.3. Results
Minimal setup. We ran our sensor selection algorithm
using the absolute value of Pearson correlation for the
correlation metric, i.e., for two sensors 𝑠, 𝑠′ we computed

corr(𝑠, 𝑠′) = |
∑𝑇

𝑡=1 𝑠[𝑡], 𝑠′[𝑡]

√(∑
𝑇
𝑡=1 𝑠[𝑡])2(∑

𝑇
𝑡=1 𝑠′[𝑡]2)

| , (3)

where 𝑡 is the time index within the time series. The
time series used for comparing sensors is the magnitude
of the sensors’ velocity. In other applications, Pearson
correlation may not be a suitable metric, since it does not
account for shifts or delays in possibly correlated time se-
ries. However, in the case of DragEXT, IMUs were taking

https://tsfresh.readthedocs.io
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0.57 0.87 0.62 0.88 0.74 0.78 0.96 1.0

Figure 6: Correlation matrix after removing sensors which had over 98% correlation (in absolute value) with other sensors. The
sensor located on the leading knee (right lower leg) is preserved, confirming previous studies that underlined its importance
[10].

measurements synchronously, thus correlated time series
were always aligned. The Pearson correlation computed
between different sensors can be seen in figure 5.

After eliminating all the sensors above a threshold
of 98% correlation, the minimal setup identified by our
algorithm results in 8 sensors, namely those attached
to left toe, right toe, left hand, right hand, left lower
leg, right lower leg, left forearm, and T12 (located on
the spine). The correlation matrix between the IMUs in
the minimal setup is shown in figure 6. Notably, the T8
sensor has been removed, being highly correlated with
T12 as shown in figure 4.
Errors in ball speed prediction. We evaluate a number of
regressors before and after applying our sensor selection
algorithms. These include widely-used machine learning
models such as linear regression, decision trees, random
forests, and k-nearest neighbors. The complete list, along
with the validation performance in terms of MAE and
RMSE, can be seen in table 3.

Theminimal setup obtained by our algorithm generally
provides a slightly higher error, both in terms ofMAE and
RMSE, compared to the complete sensor setup. However,
it is notable that such errors are still considerably smaller
than the baseline, indicating that most of the data utility
has been preserved. Additionally, some simple models
such as ridge and lasso regression (which are essentially
regularized linear regression models) are outperforming
the complete setup. These models are typically more
interpretable, providing practical insights. For instance,

prior works have considered linear models to study the
relationship between lead-knee extension and ball speed
[10]. Finally, our algorithm produces a setup requiring
one third of the sensors compared to the full set of IMUs,
reducing them from 23 to 8.

7. Discussion
Quality and quantity of sensors in the setup. Naturally,
the ideal minimal setup may differ depending on the task
at hand. For example, some problems may require as
many various measurements as possible regardless of the
invasiveness of IMUs. For others it is much more vital to
ensure convenience and mobility of the athletes by wear-
ing limited number of the sensors. Since the proposed
algorithm of sensor selection makes use of the correla-
tion threshold 𝜃𝜌, our approach enables data controllers
to balance the tradeoff between number of IMUs and the
athletes’ comfort.
Varying sensor setups for different sports. Depending on
the required levels of mobility, the setup proposed for
field hockey may not be an ideal solution for other sports.
For instance, for some sedentary disciplines like chess
and racing organizers tend to mandate athletes to wear
specific on-body sensors regardless of their invasive-
ness [29, 30]. Therefore, the likely optimal setups are
discipline-specific and need to be established separately.
We believe our approach may be tuned to other sports



MAE RMSE
All sensors Minimal setup All sensors Minimal setup

Decision Trees 6.0687 6.1921 7.9471 8.6492
Random Forests 4.3685 5.0673 5.7409 6.5677
Extra Trees 4.4192 4.6089 5.7773 6.0308
Gradient Boosting 4.7308 4.9489 6.2820 6.4902
AdaBoost 5.0561 5.2294 6.4369 6.6559
k-Nearest Neighbors 5.3813 7.6121 6.8486 9.7397
Linear Regression 7.8707 6.8092 10.3629 9.1127
Ridge Regression 6.5187 6.3209 8.6161 8.4516
Lasso Regression 6.7009 6.4632 8.2779 7.9538
Baseline 9.6750 12.0863

Table 3
Results obtained by different machine learning algorithms in terms of MAE and RMSE. These results represent the average
performance on the validation set for 10-fold cross-validation.

and encourage researchers from other domains to inves-
tigate the problem of sensor reduction.
Mirroring optimal sensors. Again, we establish the best
8 sensors for the minimal setup to be those attached to
left/right toe, left/right hand, left/right lower leg, left
forearm, and T12 (spine-based). Interestingly, for those
sensors that do have counterparts on the opposite side
of the body, our algorithm recognized both of them as
most important except for the one located on left fore-
arm. Since not all the players who took part in the data
collection were right-handed, it does appear logical for
the optimal setup to be mirrored with respect to both
hands to not overemphasize the dominant hand for the
majority of the players. Therefore, we believe that de-
spite the sensor on right forearm to not be selected by
the algorithm as the top-8 IMUs, it should be added to
the final setup to ensure fairness with respect to minority
players.
Future work. The future research includes experimenting
on other tasks in field hockey. Since, at present, the
problem of annotating the events during drag-flick is
typically being done manually, we consider to extend
our approach to automatically detect stages of the shot.
We further plan to combine the research of minimizing
the number of the sensors in the setup with the event
segmentation tasks. Finally, we would like to collect a
new dataset with both full and minimal sensors setups
for the same users to assess the comfort of players and
measure whether they exhibit any improvement during
field hockey tasks.

8. Conclusion
In this work we explored the possibility of reducing the
required intertial measurement units (IMUs) to moni-
tor field-hockey players. Specifically, we focused on a
minimal setup to assess players’ form while executing
a drag-flick. Our approach eliminates the sensors that

are heavily correlated, retaining only the most important
ones. We showed that it is feasible to reach compara-
ble results for ball speed prediction in field hockey with
both full and minimal sensor setups. We experimentally
demonstrated that for some of the models achieve better
performance with the minimal setup. Our sensor selec-
tion approach can be employed for other sports and other
tasks that require the use of IMUs.
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