
Privacy-preserving Decentralized Learning of Knowledge
Graph Embeddings

Anh-Tu Hoang1,*,†, Ahmed Lekssays1,*,†, Barbara Carminati1 and Elena Ferrari1

1Università degli Studi dell’Insubria, Varese, Italy

Abstract
Knowledge Graphs (KGs) enhance the performance of machine learning applications, such as recommendation systems and
drug discovery. This is achieved through vector representations of KGs semantics, called Knowledge Graph Embeddings
(KGEs). However, obtaining adequate data to train high-quality KGEs can be challenging for individual service providers.
FedE and FedR address this challenge by enabling federated learning of KGEs without sharing local KGs, but they are limited
by their reliance on trusted servers and lack of protection against inference attacks. Recently, FKGE has been proposed to
enable collaboration between providers in the training of KGEs, exploiting differential privacy. Nevertheless, updating KGEs
from all providers is time-consuming, and it does not protect against poisoning and backdoor attacks. Following this research
direction, this paper focuses on the security and privacy requirements for decentralized learning of KGEs, presents a reference
architecture to support these requirements, and discusses its security and privacy limitations.

Keywords
distributed learning, security, differential privacy, knowledge graph embeddings

1. Introduction
Knowledge graphs (KGs) are attracting giant tech compa-
nies thanks to their ability to represent knowledge about
both entities’ attributes and their relationships. The com-
bination of entities’ attributes and relationships in KGs
improves the quality of various AI applications such as
recommender systems (e.g., Amazon Product KGs1) and
drug discovery (e.g., AstraZeneca’s Drug Discovery KGs)
[1]. These applications rely on KGs’ embeddings (KGEs),
which are vector representations of entities in KGs, de-
fined such that the semantics between the entities are
preserved. However, learning embeddings requires com-
bining a large number of KGs, and sharing the KGs di-
rectly can violate the privacy of the entities.

Recently, FedE [2] has been designed to enable multi-
ple data providers to jointly train the embeddings under
federated learning (FL) settings. FedE utilizes a trusted
server to collect the entities of the providers’ KGs, ag-
gregate the providers’ embeddings, and distribute the
aggregated embeddings to all providers. However, even
though the local KGs are not shared, Zhang et al. [3]

EDBT/ICDT 2023 Workshops
*Corresponding authors.
†

These authors contributed equally.
$ anhtu.hoang@uninsubria.it (A. Hoang); alekssays@uninsubria.it
(A. Lekssays); barbara.carminati@uninsubria.it (B. Carminati);
elena.ferrari@uninsubria.it (E. Ferrari)
� 0000-0002-1027-3905 (A. Hoang); 0000-0001-5783-8638
(A. Lekssays); 0000-0002-7502-4731 (B. Carminati);
0000-0002-7312-6769 (E. Ferrari)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.aboutamazon.com/news/innovation-at-
amazon/making-search-easier

showed that relying on the trusted servers is impractical
and introduced a new attack, i.e, a KG reconstruction
attack, able to infer the local KGs by relying on the collu-
sion between the server and one peer. To mitigate this
attack, the authors in [3] proposed FedR. Instead of shar-
ing entities’ embeddings, FedR shares the relations ones.
However, FedR failed to completely mitigate the attack. If
a server is untrusted, it can perform the attack even with-
out collusion with any peers. It can perform inference
attacks on shared relations’ embeddings to infer entities’
existence. Moreover, it can simply refuse to aggregate
model updates which makes the whole framework lim-
ited.

On the other side, Differential Privacy (DP) was pro-
posed by Dwork et al. [4] to ensure that statistics ex-
tracted from relational data do not reveal the existence
of users, even if the attacker exploits any background
knowledge. To that end, DP adds noises to the data so
that the statistics extracted from the data remain the
same whether the user is present or not. DP has been
used to train machine learning and deep learning mod-
els in such a way that the presence of users whose data
are used to train the models is concealed [5, 6, 7]. In
particular, [5] proposed DP-SGD, which adds noises to
the updated weights of the models on data (e.g., images,
text) to ensure that final weights satisfy DP. In this way,
attackers cannot exploit the trained models to infer the
users’ existence. However, DP-SGD decreases the quality
of the models when they are trained with a high number
of epochs. To train a private model on the data with im-
proved quality, PATE [6] and PATE-GAN [7] have been
proposed.

In the context of KGs, recently, FKGE [8] adopted
PATE-GAN [7] to ensure user privacy while allowing

mailto:anhtu.hoang@uninsubria.it
mailto:alekssays@uninsubria.it
mailto:barbara.carminati@uninsubria.it
mailto:elena.ferrari@uninsubria.it
https://orcid.org/0000-0002-1027-3905
https://orcid.org/0000-0001-5783-8638
https://orcid.org/0000-0002-7502-4731
https://orcid.org/0000-0002-7312-6769
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

providers to train their entities’ embeddings in federated
learning settings. FKGE allows each provider to connect
to another provider and improves their entities’ embed-
dings. However, because each provider only connects to
one provider at a time, connecting to and updating their
embeddings from all providers will take a long time.

To address these limitations, we propose a new privacy-
preserving decentralized learning framework for knowl-
edge graph embeddings. Our approach differs from
FKGE [8] in that we enable a peer to enhance its embed-
dings using the embeddings of multiple peers simultane-
ously, whereas FKGE [8] restricts each peer to connect to
only one peer at a time for embedding improvement. Fur-
thermore, FedE [2] relies on a trusted server to aggregate
embeddings, whereas our work is fully decentralized. Be-
cause the training is done asynchronously, the proposed
architecture (1) speeds up the embeddings’ training and
(2) improves the embeddings’ quality because they come
from a variety of sources [2]. The proposed framework is
based on IOTA, a permissionless distributed ledger, where
users can submit the metadata of their trained embed-
dings and store the embeddings on IPFS, a distributed
filesystem. When a user wants to train embeddigns for
the same task (e.g., link prediction, entity classification),
he/she takes the most recent embeddings of the task and
aggregates them with her own ones. In turn, the updated
embeddings are then shared on the distributed ledger. We
use DP to protect the user’s privacy and prevent attackers
from inferring data from the shared embeddings.

This paper is organized as follows. Section 2 reviews
related work. Section 3 illustrates the problem state-
ment, threat model and requirements of the proposed
platform. In Section 4, we introduce the proposed archi-
tecture, whereas we discuss how the platform addresses
the requirements in Section 5. We conclude this work in
Section 6.

2. Related Work
In this section, we review state-of-the-art techniques for
knowledge graph embeddings, differential privacy, and
federated learning.

2.1. Knowledge Graph Embeddings
A Knowledge Graph (KG) is composed of edges (aka
triplets) consisting of a head entity, a tail entity,
and a relationship connecting them. For instance,
(𝐾𝑒𝑛, 𝑗𝑜𝑏, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡) is a triplet expressing that 𝐾𝑒𝑛’s
𝑗𝑜𝑏 is 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. Knowledge graph embeddings (KGEs)
are low-dimensional vectors representing entities and
relations in knowledge graphs (KGs) such that the se-
mantics between the entities and relations are preserved.
The embeddings can be used as inputs in deep learning

models (e.g., Convolution network, Full-connected net-
work) to support various tasks such as link prediction,
and entity classification. To preserve the semantics, the
embeddings must be trained by using KGE models [9],
whose train score functions estimate the plausibility of
KGs’ edges. KGE models can be classified into transla-
tional distance, semantic matching, and neural network
models.

Translational distance models (e.g., TransE [9]) mea-
sure the plausibility of an edge as the distance between its
entities’ embeddings. TransE [9] first represents entities
and relations as vectors with equal dimensions. Then, it
estimates the plausibility of an edge through a scoring
function that measures the distance between the edge’s
head and tail entity’s embeddings which are connected
by the edge’s relation’s embedding. By minimizing the
function, the embedding of the tail entity should be close
to the embedding of the head entity plus the relation’s em-
bedding. TransE has been extended to TransD, TransH,
and TransR [9] to deal with 1-N, N-1, and N-N relations.

Semantic matching models (e.g., RESCAL, DisMult [9])
exploit similarity-based distance to measure the plausibil-
ity of an edge by matching their embeddings’ dimensions.
RESCAL [9] associates each entity with a vector, while
each relation is represented by a matrix. The score func-
tion measures the plausibility of an edge by using the
bilinear function of its entities’ embeddings and its rela-
tion’s matrix. DisMult [9] simplifies RESCAL by using
diagonal matrices.

Neural network models use neural network techniques
(e.g., convolution network, graph convolution network,
neural network) to measure the score functions. In NTN
[9], the neural network takes as input the embeddings of
an edge’s entities. Then, by training the network with
KGs’ edges, it learns the plausibility of KGs’ edges. In-
stead of taking as input an edge, RGCN [10] receives
an entity’s features and its neighbors’ features. Then,
RGCN uses a graph convolution network to infer the
edge’s embedding.

In this work, we implemented a decentralized learning
platform that allows data providers to train all of the
above-mentioned KGEs without sharing the local KGs.

2.2. Differential Privacy
Differential privacy (DP) [4] has been presented to extract
information from a dataset while hiding the existence of
its entities. This is done by adding noises to the informa-
tion before sharing it. The amount of noise required to be
added depends on privacy parameters (e.g., 𝜖, 𝛿), and the
sensitivity of the extraction function. Here, 𝜖 illustrates
how similar the noisy information and the original ones
are, whereas 𝛿 is the probability that DP fails to protect
entities’ privacy. The sensitivity of a function is the max-
imum change of the function’s outputs when removing

a single entity from the dataset.
DP-SGD [5] was developed to avoid making assump-

tions about the presence of entities in KG, whose data
is used to train deep learning models. To this end, it
adds noise to the models at every epoch. However, the
higher the number of epochs, the more noises are added.
Since the noises reduce the quality of the trained mod-
els (e.g., classification accuracy), DP-SGD generates low-
quality models when training with a high number of
epochs. PATE [6] addresses this issue by training mod-
els from privacy-aware datasets, that is, whose data are
non-sensitive and whose labels are generated by DP. In
particular, it creates many models, called teacher models,
each of which is trained on a non-overlapped part of the
original datasets. The teacher models are then used to
generate labels for public datasets. Finally, PATE uses
the public datasets and their generated labels to train the
final models. The higher the size of the public datasets,
the more noise PATE adds. PATE-GAN [7] has been in-
troduced to reduce the amount of added noises by using
GAN to learn the labels. In this paper, we apply PATE and
PATE-GAN to generate privacy-aware KGs’ embeddings.

2.3. Federated Learning
Federated learning allows many providers to collabo-
ratively train their models without trusted centralized
servers [11]. Its great success on image datasets led to
the applications of federated learning in training KGEs.
FedE [2] is the first federated learning technique allowing
providers to train KGEs for link prediction tasks without
sharing their local KGs. The training process starts with
a trusted server finding the set containing all entities
from all of the providers. Then, it initializes a random
embedding for each entity. In each iteration, the server
sends the current version of its embeddings to providers.
Each provider keeps updating the received entity embed-
dings with their local KGs. When the training is finished,
all providers send the updated local embeddings to the
server. The server aggregates all of the local entity em-
beddings to create a new version of the embeddings and
continues the next iteration. The training process stops
after a fixed number of iterations. Although the providers
do not share their KGs, attackers can exploit membership
attacks on the entity embeddings sent from the providers
to infer the existence of entities/triplets used to train
the embeddings. Moreover, the servers can compromise
users’ privacy since they know which local KGs contain
users’ data. If the servers collude with a client, they can
also reconstruct the local KGs [3]. FedR [3] has been
introduced to protect entities’ privacy by not sharing
the entities’ identities and embeddings but the relations’
ones. However, although the identities are not shared,
the providers can still violate entities’ privacy by using
the shared relations’ embeddings. FKGE [8] remedies the

issues by creating a distributed learning platform using
PATE-GAN [7]. In particular, each provider sequentially
connects to another one and uses PATE-GAN [7] to train
its KG’s embeddings. If the trained embeddings have
higher quality than the old ones, the provider updates
its embeddings. However, since FKGE only connects to a
provider at a time, it takes a long time for all providers
to train their KGEs.

In this work, we develop a platform that allows a
provider to use embeddings of many providers at the
same time. Therefore, we can improve the time required
for all providers to train their KGEs while applying PATE-
GAN [7] to protect entities’ privacy.

3. Privacy-preserving
decentralized learning of
knowledge graph embeddings

In this section, we first introduce the problem statement.
Then, we explain the privacy and security requirements.

3.1. Problem Statement
Given a set of providers 𝑃 , each provider 𝑝𝑖 ∈ 𝑃 holds a
knowledge graph 𝐺𝑖, formally defined as 𝐺𝑖(𝐸𝑖, 𝑅𝑖, 𝑇𝑖),
where 𝐸𝑖, 𝑅𝑖, and 𝑇𝑖 are the set of nodes (i.e., entities
and attribute values), relations, and triplets of 𝐺𝑖. Each
triplet (ℎ, 𝑟, 𝑡) ∈ 𝑇𝑖 is an edge of 𝐺𝑖 illustrating the
relations between nodes in 𝐺𝑖, where ℎ, 𝑡 ∈ 𝐸𝑖 and
𝑟 ∈ 𝑅𝑖. Each provider 𝑝𝑖 wants to train embeddings
of its entities (denoted as ℰ𝑖) and relations (ℛ𝑖) for a
specific task (e.g., link prediction, node classification)
without sharing its KG 𝐺𝑖.

To this end, the provider 𝑝𝑖 first initializes its entities’
and relations’ embeddings. Then, at time 𝑡, it collects the
embeddings shared by other providers 𝑃−𝑖 ⊆ 𝑃 ∖ {𝑝𝑖}
whose train their embeddings for the same task. Let E𝑡

−𝑖

be the set of collected embeddings till time 𝑡. It aggre-
gates the embeddings in E𝑡

−𝑖 with its embeddings at time
𝑡 − 1 (ℰ𝑡−1

𝑖 ,ℛ𝑡−1
𝑖) to obtain the initial embeddings at

time 𝑡: ℰ𝑡
𝑖 ,ℛ𝑡

𝑖 . Then, it trains ℰ𝑡
𝑖 ,ℛ𝑡

𝑖 with its local KGs
and evaluates the quality of the trained embeddings. If
the quality is improved, it shares ℰ𝑡

𝑖 ,ℛ𝑡
𝑖 and continues

selecting other providers’ embeddings until it cannot im-
prove its embeddings anymore. In Section 4, we present
our platform’s architecture supporting this scenario.

3.2. Privacy and security requirements
Federated learning and decentralized learning paradigms
were proposed as a first step towards preserving the pri-
vacy of users’ data since the training is done locally and

the users share only the weights of the models 2. Such
paradigms, however, have been shown to be vulnera-
ble to the inference attack [12]. In addition, training
models in federated/decentralized settings are vulnerable
to other security attacks (e.g., poisoning attacks) where
attackers try to manipulate the models to predict spe-
cific classes wrongly or lower its performance regarding
all the classes [13]. Federated/decentralized learning of
KGEs shares the same issues. In this section, we analyze
the privacy and security of decentralized learning of KG
embeddings under the following threat model. We start
by the assumptions on providers and attackers.

Providers’ Assumptions. We assume that the major-
ity of providers in the system are honest, and that, given a
specific model, the majority of actors training that model
are honest and have the same training objective.

The trained embeddings in such paradigms are vulner-
able to several security attacks (e.g., poisoning attacks,
both for data and models, backdoor attacks, etc.) [14].
These attacks can be performed in a coordinated way
which brings up the need to mitigate collusion attacks
as well [15]. In other words, the data providers could
collude with each other.

Attacker’s Goal. For security, the attacker intends to
manipulate the updates of the trained embeddings by in-
jecting malicious updates into the system. These updates
can be random or crafted to manipulate the prediction of
the model using the trained embeddings. For the crafted
updates, we focus on two well-known attacks in decen-
tralized learning, namely label-flipping and backdoor at-
tacks [13]. In a label-flipping attack, the attacker flips the
labels of the local training samples from one source class
to another target class, while keeping the other classes
unchanged. Backdoor attacks involve the attacker embed-
ding special patterns into the original training samples,
such as patches of pixels, and changing their labels to
the target label. The patterns are a trigger for the target
class [16]

For the privacy attacks, we consider inference attacks
[12]. Here, we assume providers can access shared em-
beddings, which are trained on local KGs. Thus, the
privacy attacks allow the providers to infer the existence
of triplets used to train the embeddings.

Attacker’s Capabilities. The attackers can individu-
ally or collaboratively perform the above-mentioned at-
tacks. We assume that each malicious actor (i.e., provider)
can manipulate her own training data (i.e., KGs), but
he/she cannot access or manipulate other actors’ data.

2In this paper, we use models’ weights and embeddings interchange-
ably.

For an attack to succeed, an attacker must have an influ-
ence on a target class more than the total influence of the
honest clients on that class. So, an attacker might try to
collude with other attackers to have the same objective
of manipulating the prediction for a target class. The pro-
posed defense is expected to be robust against colluding
attacks as well.

To perform the inference attacks, a provider must ob-
tain the shared entities’ and relations’ embeddings. Then,
the provider can try to analyze the embeddings with the
background knowledge it has. The proposed defense
must be invulnerable to the analysis without having any
assumption on the knowledge it uses.

4. Architecture
In this section, we proposed the general architecture in
support of privacy-preserving decentralized learning of
KGEs. It relies on a public distributed ledger technology
called IOTA [17] to store embeddings’ metadata and on
a decentralized filesystem called IPFS [18] to store the
embeddings’ weights. Figure 1 shows the overall archi-
tecture of the system.

The proposed system is a fully decentralized learning
framework where users with the same training objec-
tive can train embeddings collaboratively. In addition,
it supports the training of multiple embeddings asyn-
chronously. Training a KGE model begins with submit-
ting a transaction (i.e., message) to IOTA containing the
model metadata (i.e., KG embeddings) such as the model
identifier, the path to model weights in IPFS, and the
parent model updates that were aggregated from3. As
a result, each model update refers to other 𝑘 model up-
dates that came before it. In other words, each model
update aggregates model updates that were submitted be-
fore. This aggregation is done only if old model updates
improve the accuracy of the user’s local model. Hence,
typically, the latest model updates are better versions of
the same model. So, each model will be represented as
a directed acyclic graph as represented in Figure 1. It
is worth noting that the parameter 𝑘 is chosen by the
deployer of the system.

We use DP to prevent privacy attacks on shared em-
beddings. To prevent DP from adding too much noise, we
allow each provider to specify the upper-bound thresh-
old on the privacy budgets (i.e., 𝜖𝑖, 𝛿𝑖 for provider 𝑝𝑖).
When training the updated embeddings with differential
privacy techniques (e.g., DP-SGD[5], PATE-GAN[7]), a
provider can estimate the current privacy costs by us-
ing sequential and parallel composition. In particular,
let 𝜖𝑡𝑖 and 𝛿𝑡𝑖 be the current privacy budgets at time 𝑡 of
provider 𝑖. By training with DP-SGD[5], the provider

3This field is empty for the initial transaction of a model, which is
called a genesis transaction.

Figure 1: The proposed architecture for privacy-preserving decentralized learning of knowledge graph embeddings

can increase 𝜖𝑡𝑖 and 𝛿𝑡𝑖 by its privacy parameters (i.e., 𝜖𝑖
and 𝛿𝑖) every epoch. Training with PATE-GAN[7], the
provider can increase 𝜖𝑡𝑖 and 𝛿𝑡𝑖 according to the number
of triplets of its public KG. Here, DP-SGD and PATE-GAN
generate noises such that the existence of any triplets
in 𝐺𝑖 is hidden. Since privacy budgets can be calculated
before training, the provider can easily estimate whether
they are greater than the upper-bound threshold. If this
is the case, the provider stops the training. Otherwise,
it starts training the new embeddings. After the train-
ing process is finished, it shares the embeddings and the
privacy budgets used to train them.

Honest providers will report their embeddings and the
privacy budgets used to train them. In the case of mali-
cious providers, they might aim to disturb the learning
phase by setting up low 𝜖 and high 𝛿. Thus, DP adds
more noise to the embeddings and the probability that
it cannot prevent privacy attacks is also increased (Sec-
tion 2.2). However, in this case, the malicious providers’
embeddings will be noisy and not be used for training by
honest clients.

5. Discussion
In this section, we show how the proposed platform ad-
dresses security and privacy requirements presented in
Section 3. In addition, we discuss the scalability of our
framework based on the architecture shown in Figure 1.

5.1. Security
The proposed framework ensures transparent, multi-
model, decentralized learning. However, training models
without the validation of shared weights would lead to
manipulating their predictions. Model updates might be

malicious, as they could be crafted to initiate (individu-
ally or collaboratively) poisoning and backdoor attacks
discussed in Section 3.2. In this section, we discuss pos-
sible mitigations of these attacks. Since we assume that
the majority is honest, honest actors can check the va-
lidity of the model updates by considering the actor’s
local model a reference (i.e., global model) and comput-
ing the euclidean distance or cosine similarity to exclude
adversarial updates [19, 13]. These techniques could be
extended to the mitigation of such attacks when per-
formed in a collaborative manner (i.e., Sybil attacks)
[20, 13]. This line of defense is based on the observation
that malicious actors have a similar objective. Hence,
when computing their cosine similarities, the angle be-
tween their model updates will be slight and the cosine
similarity will be higher. However, such defenses fail
when the malicious actors submit random weights (i.e.,
untargeted attacks). In other words, the malicious ac-
tors do not have any common objective. Thus, there is a
need to combine such defenses with other defenses such
as KRUM, Multi-Krum, Trimmed Mean, etc. [21] that
are able to discard such updates. It is worth noting that
such defenses can discard model updates coming from
honest clients with strict privacy budgets since their up-
dates could be considered random, leading to untargeted
attacks. Other defenses based on Trusted Execution En-
vironment [22] or manipulation of the models to reduce
their sizes [23] were proposed. However, they come with
major utility limitations that cannot be extended to a de-
centralized setting. The discussed defenses are designed
to work in centralized environments where there is a
central aggregation server that runs them. So, there is a
need to replace the centralized component when validat-
ing model updates. This limitation could be addressed
by forming a model-specific, randomly and periodically
elected committee that reviews a batch of model updates

using the aforementioned defenses. It is worth noting
that such committees, often called dynamic committees
are used in Proof-of-Stake blockchains such as Algorand
[24].

Since some honest updates with relatively small pri-
vacy budgets could be discarded, selecting the threshold
for discarding model updates is very crucial in maintain-
ing good training performance in decentralized learning.
However, the combination of security techniques with
privacy requirements and their possible side effects re-
main a future work.

5.2. Privacy
The proposed framework prevents the inference attacks
(Section 3.2) by only sharing the privacy-aware embed-
dings that are trained with DP techniques (e.g., DP-SGD
[5], PATE-GAN [7]). Here, providers add noises such that
their trained embeddings are similar whether a triplet
is used to train them. Therefore, according to the DP
Sequential and Parallel Composition [5, 7], the existence
of any triplets they used to train their embeddings is hid-
den, no matter what background knowledge dishonest
providers use.

5.3. Scalability
The scalability of our framework is tied up to the way we
handle model updates. Since each node keeps a directed
acyclic graph of each model, adding nodes (i.e., model
updates) to the graph is not a heavy task since only the
metadata is appended to the nodes. Our framework relies
on IPFS for storing raw model updates and IOTA for
storing metadata. Hence, it does not handle the burden
of storage, but rather it connects through HTTP to both
IPFS and IOTA. So, the clients download only the model
updates that they are interested in.

6. Conclusion
In this paper, we highlight the security and privacy re-
quirements of decentralized knowledge graph representa-
tion and propose an architecture for training such models.
We presented the different privacy-preservation tech-
niques used in knowledge graphs and the security de-
fenses that mitigate various types of attacks in machine
learning, such as poisoning attacks and backdoor attacks,
when performed individually or collaboratively (i.e., Sybil
attacks). We discussed the limitations that the interplay
between security and privacy causes. The solutions and
analysis of this interplay remain a future work.

Acknowledgments
This work has received funding from the Marie
Skłodowska-Curie Innovative Training Network Real-
time Analytics for Internet of Sports (RAIS), supported
by the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 813162.
Additionally, it has been partially supported by CONCOR-
DIA, the Cybersecurity Competence Network supported
by the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 830927.
The content of this paper reflects the views only of their
author(s). The European Commission/Research Execu-
tive Agency are not responsible for any use that may be
made of the information it contains.

References
[1] A. Gogleva, D. Polychronopoulos, M. Pfeifer,

V. Poroshin, M. Ughetto, M. J. Martin, H. Thorpe,
A. Bornot, P. D. Smith, B. Sidders, et al., Knowledge
graph-based recommendation framework identifies
drivers of resistance in egfr mutant non-small cell
lung cancer, Nature communications 13 (2022) 1–
14.

[2] M. Chen, W. Zhang, Z. Yuan, Y. Jia, H. Chen,
Fede: Embedding knowledge graphs in feder-
ated setting, in: The 10th International Joint
Conference on Knowledge Graphs, IJCKG’21, As-
sociation for Computing Machinery, New York,
NY, USA, 2021, p. 80–88. URL: https://doi.org/
10.1145/3502223.3502233. doi:10.1145/3502223.
3502233.

[3] K. Zhang, Y. Wang, H. Wang, L. Huang, C. Yang,
L. Sun, Efficient federated learning on knowledge
graphs via privacy-preserving relation embed-
ding aggregation, CoRR abs/2203.09553 (2022).
URL: https://doi.org/10.48550/arXiv.2203.09553.
doi:10.48550/arXiv.2203.09553.
arXiv:2203.09553.

[4] C. Dwork, Differential privacy, in: M. Bugliesi,
B. Preneel, V. Sassone, I. Wegener (Eds.), Automata,
Languages and Programming, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2006, pp. 1–12.

[5] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, L. Zhang, Deep learning
with differential privacy, in: Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, Association for
Computing Machinery, New York, NY, USA, 2016,
p. 308–318. URL: https://doi.org/10.1145/2976749.
2978318. doi:10.1145/2976749.2978318.

[6] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow,
K. Talwar, Semi-supervised knowledge transfer

https://doi.org/10.1145/3502223.3502233
https://doi.org/10.1145/3502223.3502233
http://dx.doi.org/10.1145/3502223.3502233
http://dx.doi.org/10.1145/3502223.3502233
https://doi.org/10.48550/arXiv.2203.09553
http://dx.doi.org/10.48550/arXiv.2203.09553
http://arxiv.org/abs/2203.09553
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318

for deep learning from private training data, in:
International Conference on Learning Representa-
tions, 2017. URL: https://openreview.net/forum?id=
HkwoSDPgg.

[7] J. Jordon, J. Yoon, M. van der Schaar, PATE-
GAN: generating synthetic data with differential
privacy guarantees, in: 7th International Con-
ference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, OpenRe-
view.net, 2019. URL: https://openreview.net/forum?
id=S1zk9iRqF7.

[8] H. Peng, H. Li, Y. Song, V. Zheng, J. Li, Differ-
entially private federated knowledge graphs em-
bedding, in: Proceedings of the 30th ACM Inter-
national Conference on Information and Knowl-
edge Management, CIKM ’21, Association for Com-
puting Machinery, New York, NY, USA, 2021, p.
1416–1425. URL: https://doi.org/10.1145/3459637.
3482252. doi:10.1145/3459637.3482252.

[9] Y. Dai, S. Wang, N. N. Xiong, W. Guo, A survey
on knowledge graph embedding: Approaches, ap-
plications and benchmarks, Electronics 9 (2020)
750.

[10] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den
Berg, I. Titov, M. Welling, Modeling relational
data with graph convolutional networks, in:
A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler,
R. Troncy, L. Hollink, A. Tordai, M. Alam (Eds.),
The Semantic Web, Springer International Pub-
lishing, Cham, 2018, pp. 593–607. doi:10.1007/
978-3-319-93417-4_38.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson,
B. A. y Arcas, Communication-efficient learning
of deep networks from decentralized data, in:
A. Singh, X. J. Zhu (Eds.), Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, volume 54 of Proceed-
ings of Machine Learning Research, PMLR, 2017, pp.
1273–1282. URL: http://proceedings.mlr.press/v54/
mcmahan17a.html.

[12] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Lud-
wig, R. Zhang, Y. Zhou, A hybrid approach to
privacy-preserving federated learning, in: Proceed-
ings of the 12th ACM workshop on artificial intelli-
gence and security, 2019, pp. 1–11.

[13] S. Awan, B. Luo, F. Li, Contra: Defending against
poisoning attacks in federated learning, in: Com-
puter Security–ESORICS 2021: 26th European Sym-
posium on Research in Computer Security, Darm-
stadt, Germany, October 4–8, 2021, Proceedings,
Part I 26, Springer, 2021, pp. 455–475.

[14] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang,
A. Dehghantanha, G. Srivastava, A survey on se-
curity and privacy of federated learning, Future

Generation Computer Systems 115 (2021) 619–640.
[15] C. Fung, C. J. Yoon, I. Beschastnikh, The limitations

of federated learning in sybil settings., in: RAID,
2020, pp. 301–316.

[16] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang,
X. Zhang, Trojaning attack on neural networks
(2017).

[17] S. Popov, H. Moog, D. Camargo, A. Capossele,
V. Dimitrov, A. Gal, A. Greve, B. Kusmierz,
S. Mueller, A. Penzkofer, et al., The coordicide,
Accessed Jan (2020) 1–30.

[18] J. Benet, Ipfs-content addressed, versioned, p2p file
system, arXiv preprint arXiv:1407.3561 (2014).

[19] D. Cao, S. Chang, Z. Lin, G. Liu, D. Sun, Under-
standing distributed poisoning attack in federated
learning, in: 2019 IEEE 25th International Confer-
ence on Parallel and Distributed Systems (ICPADS),
IEEE, 2019, pp. 233–239.

[20] C. Fung, C. J. Yoon, I. Beschastnikh, Mitigat-
ing sybils in federated learning poisoning, arXiv
preprint arXiv:1808.04866 (2018).

[21] P. Blanchard, E. M. El Mhamdi, R. Guerraoui,
J. Stainer, Machine learning with adversaries:
Byzantine tolerant gradient descent, Advances in
neural information processing systems 30 (2017).

[22] F. Mo, H. Haddadi, Efficient and private federated
learning using tee, in: Proc. EuroSys Conf., Dresden,
Germany, 2019.

[23] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K.
Leung, L. Tassiulas, Model pruning enables efficient
federated learning on edge devices, IEEE Transac-
tions on Neural Networks and Learning Systems
(2022).

[24] J. Chen, S. Gorbunov, S. Micali, G. Vlachos, Algo-
rand agreement: Super fast and partition resilient
byzantine agreement, Cryptology ePrint Archive
(2018).

https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=S1zk9iRqF7
https://openreview.net/forum?id=S1zk9iRqF7
https://doi.org/10.1145/3459637.3482252
https://doi.org/10.1145/3459637.3482252
http://dx.doi.org/10.1145/3459637.3482252
http://dx.doi.org/10.1007/978-3-319-93417-4_38
http://dx.doi.org/10.1007/978-3-319-93417-4_38
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html

	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Embeddings
	2.2 Differential Privacy
	2.3 Federated Learning

	3 Privacy-preserving decentralized learning of knowledge graph embeddings
	3.1 Problem Statement
	3.2 Privacy and security requirements

	4 Architecture
	5 Discussion
	5.1 Security
	5.2 Privacy
	5.3 Scalability

	6 Conclusion

