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Abstract

Information systems have evolved into complex data platforms supporting end-to-end data-intensive needs, aimed at coping
with the different V’s that characterize Big Data. In particular, multi-model databases (MMDBs) have been proposed to
natively support storing and querying data in different (schemaless) models, so as to better handle Variety. In this work
we envision a new data warehouse architecture in which an MMDB is used to enable on-the-fly user-driven extensions of
multidimensional cubes with additional data, while ensuring support to variable and complex data and keeping the impact on
ETL low. After proposing the architecture with the aid of a case study on the management of emerging plant disease, we

discuss the main associated open issues.
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1. Introduction and motivation

The growing availability of data combined to advances
in computational algorithms and statistical modelling is
profoundly changing the practice of research on complex
phenomena. Business Intelligence (BI) tools play a key
role in this evolution by enabling the exploration of huge
volumes of data. They benefit from a growing demand
for these tools in new fields such as agro-ecology. The
purpose of agro-ecology is to develop new farming prac-
tices that respect the environment while maintaining
productivity and biodiversity [1]. Agro-ecology involves
governmental, economic, social, and environmental data
and actors. Traditionally, research in agroecology used
the so-called “hypothesis-driven” process, which consists
in eliciting all the data needed to challenge a testable hy-
pothesis at design time. When some data are not available
(for any reason), then they are excluded from the ana-
lytical process. Recently, with the advent of Big Data,
“data-driven” analysis [2] has been emerging as an alterna-
tive that allows deriving knowledge from data that were
not identified or available at design time. However, in
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the context of complex application domains, data-driven
analysis is poorly feasible since the data collection pro-
cess could become a too wide task. In the context of
agro-ecology for instance, social, economic, agronomic,
and meteorological data can be relevant in theory, but
collecting them all in advance might be an overwhelming
task. Solving this problem requires flexible BI tools that
allow researchers to incorporate new data on-demand,
whenever they need to test their hypotheses.

In the Big Data era, traditional database systems have
evolved into complex data platforms supporting end-to-
end data-intensive needs, such as storage, computation,
and analysis of NoSQL data with heterogeneous struc-
tures. In particular, DBMSs that can handle different
kinds of data, such as polyglot databases [3], have been
introduced to better deal with the different V features that
characterize Big Data, in particular Variety. In the same
direction, multi-model databases (MMDBs) have been re-
cently proposed to natively support storing and querying
data in different models (graph-based, document-based,
relational, etc.), which are often schemaless [4].

Data Warehouses (DW) also belong to this picture. To-
gether with OLAP systems, they are widely recognized
as main citizens of BI, as they enable interactive analyses
of huge multidimensional cubes. While cubes are tradi-
tionally stored in relational databases, NoSQL databases
are now used as well to this purpose. MMDBs have been
also found to represent a suitable solution to enhance
flexibility in DWs; in fact, some very recent works inves-
tigate the usage of MMDBs for storing multidimensional
data [5, 6, 7]. We presented in [5] an extension of the clas-
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Figure 1: Two scenarios for extensibility: schema-on-write
(top) and schema-on-read (bottom)

sical, relational star schema with factual and dimensional
data stored via the document-based, graph-based, and
key-value models, and we discussed the corresponding
design guidelines in [7]. We claimed that multi-model
DWs (MMDWs) simplify the Extraction, Transformation,
and Loading (ETL) process, preserve the performances
of OLAP queries, and encourage flexibility, extensibil-
ity, and evolvability. We proposed a UML profile for
designing multidimensional models supporting variety
in [6]; this profile supports type variability, complex ob-
jects, and extensibility for both dimensional and factual
data. Specifically, extensibility refers to the possibility of
adding new multidimensional elements to the MMDW
that were unavailable or unknown at design time, so they
can be used for future OLAP analysis. Such extensibility
feature appears to be crucial when analyzing complex
phenomena, as previously said for agro-ecology.

Figure 1 depicts two possible scenarios to provide ex-
tensibility in a DW. In the first one, following a classical
schema-on-write approach where all source data are put
into multidimensional form following a schema agreed
at design time, the DW cannot be extended on-demand,;
thus, design and implementation must be redone in order

to include additional data. This is impractical and time-
consuming; in fact, a user-driven integration of new data
in the DW should be easy and fast, requiring no inter-
vention by designers and IT people. Thus, we envision a
second scenario where a MMDW is used for storage and a
schema on-read approach —which leaves data unchanged
in their structure until they are accessed by the user [8]—
is followed for OLAP queries. Here, decision-makers can
launch OLAP queries over new multidimensional data
on-the-fly, so no design and implementation iteration is
required.

In this vision paper we investigate the schema-on-read
scenario to extensible DWs by proposing an architecture
to support it (Section 3) and discussing the main open
issues associated (Section 4), using as a running example
areal agro-ecological case study taken from the BEYOND
project (Section 2). The paper is concluded by Section 5.

2. Case study

The BEYOND project (https://wwwé.inrae.fr/beyond/)
aims at developing new indicators of plant disease risks in
order to improve monitoring and prophylaxis strategies.

A specific goal of this project is the monitoring of
flavescence dorée, an highly contagious quarantine dis-
ease threatening European vineyards [9]. Annual vine-
yard surveys inform the infectious status of plants. These
historical data are gathered and analyzed using a DW
in order to (i) understand the spatial and temporal dy-
namics of the disease, (ii) investigate the field and land-
scape factors that can (un)foster its propagation [10],
(iii) better organize the observations tasks, and (iv) pro-
vide farmers with easily understandable indicators. The
conceptual schema of the INFECTION multidimensional
cube used to this end is shown in Figure 2 by means
of the V-ICSOLAP profile [6]. It presents two mea-
sures, namely, the surface area surveyed (arealnHa)
and the number of plants infected by flavescence dorée
(numberlnfectedWines), and four dimensions: a spatial
Plot dimension, the temporal one, the winegrower one,
and the team of professional organizations in charge of
the detection of flavescence dorée.

The INFECTION cube has been designed taking into
account both the requirements expressed by stakehold-
ers and researchers and the available data. It presents
two main issues. First of all, additional data are needed:
the current dimensions and measures cannot be used to
deeply understand the factors underlying disease spread.
Thus, the multidimensional schema shows some extensi-
bility points, i.e., parts of the schema where we expect that
additional data will be available (the fact can be extended
in terms of measures and dimensions, and new levels can
be added to both the plot and the team dimensions; see
the Extensibility properties in red in Figure 2). Secondly,
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Figure 2: UML conceptual schema for flavescence doreé analysis based on the V-ICSOLAP profile [6]

the data involved are too complex to be seamlessly inte-
grated into a classical relational DW. On the one hand,
they come with variability; indeed, attributes names and
types can change over time while maintaining the same
meaning (e.g., measure numberlnfectedWines can also be
called numberlInfectedPlants, in green), the same for data
structures. On the other hand, these data follow different
models (documents for spatial data, relational tables for
contaminated plants campaigns, graphs for winegrowers,
etc.), as in level Geo of the plot dimensions (in blue).

3. Envisioned architecture

In this section we describe the architecture we envision
for extensible DW. As shown in Figure 3, it is composed
of the following layers:

Data lake, where all data ingested are stored in their
native formats (relational, document, graph, etc.). This
layer is used to feed the next layer and can be defined as
a data lake [11] since it will allow users to explore the
source data as well as to extract/store the additional data
to be loaded on-demand in the next layer.

Multi-model data warehouse, in charge of storing
the warehoused data. An MMDW is used here because,
as argued in [6], the extensibility points of the multidi-
mensional schema can be easily implemented using the
schemaless data structures allowed by MMDWs. As a
result, when new data are fed to these points, no effort to
adapt the DW schema is required for their inclusion in

the decision-making process, and the effort for evolving
the ETL is small. This layer is also in charge of hosting
the additional data that the user selects from the source
layer to discover new multidimensional elements and
enhance the decision-making process.

OLAP, where users not only formulate multidimen-
sional queries and visualize the results, but can also select
additional data to be loaded and drive the process that
discovers new multidimensional elements.

In our case study, the fact table in the MMDW layer is
fed, via ETL, from a JSON collection stored in the data
lake layer and including measurements of the number
of infected wines. Assume that, starting from today, the
JSON documents sent from some plots will also include
some additional fields storing variables measured by sen-
sors (e.g. automatic detection of the insect vector of
flavescence dorée phytoplasma, Scaphoideus titanus). The
fact has been defined as extensible, thus, the fact table
comes with a JSON attribute that can store these new
measures, with no effort to evolve the ETL process. Now,
assume that a new table storing additional geographical
data, e.g., the department each city belongs to, is loaded
in the data lake. Should decision makers be interested in
analyzing infection data by departments, they could (i)
select this table to be loaded in the MMDW and (ii) use
the many-to-one relationship between cities and depart-
ments to extend the plot hierarchy on the fly.

We close this section by remarking that our architec-
ture cannot be classified as a data lakehouse [12], because
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Figure 3: Envisioned architecture

it physically stores multidimensional data to be used for
OLAP rather than letting OLAP queries by directly writ-
ten on source data; indeed, this has been shown to entail
a smaller effort when writing queries as well as better
query performances [5].

4. Open issues

In this section we discuss the main research issues to be
addressed to implement the approach proposed.

Cross-model data-driven multidimensional modeling.
Data-driven methodologies for multidimensional design
are usually based on the discovery of functional depen-
dencies (FDs) in the source data to identify measures and
dimension levels. The approaches proposed so far oper-
ate on source data fitting a single model. When source
data are relational, the proposed algorithms detect ex-
act FDs based on primary and foreign keys coded in the
relational schema [13]. When source data are JSON docu-
ments, some methods have been devised to complement
exact FDs coded in the document schema with approxi-
mate FDs [14] detected by parsing the data [15]. Other
works investigate how to enable OLAP querying over
graph databases [16]. Recently, some works have intro-
duced formal models to give a unified representation of
the schema of multi-model databases [17, 18], but they do
not address the discovery of multidimensional schemata
from these unified models. Overall, to enable on-the-
fly extensions of cubes, there is a need for new algo-
rithms capable of discovering exact/approximate FDs in
multi-model databases by chasing cross-model references.
These algorithms should be incremental, since extensions
are created starting from the multidimensional schema
of the existing cube. Clearly, consistently with what
existing work proposes in schema-on-read approaches,
they should also take into account the requirements of
decision-makers.

Variability. Schemaless models inherently support
variability in data types, names, and structures. However,

most existing works on schema inference from schema-
less data (e.g., [19, 20]) output distinct attributes in pres-
ence of variability, which would not make this variability
transparent to users querying the DW. Type variability
brings an additional problem, since measures are com-
monly identified with numerical attributes. Thus, to
enable multidimensional elements to be correctly rec-
ognized when extending a cube, variability-aware ap-
proaches to properly infer schemata from schemaless
data should be devised.

Complex multidimensional elements. Big Data sources
can include complex data such as streams, trajectories,
graphs, spatiotemporal data, etc. The possibility of defin-
ing measures as complex objects has been considered in
[21], which also proposes a relational implementation
for them, while in [6] a UML profile to model them at the
conceptual level has been presented. However, how to
recognize and design these complex measures —as well
as complex dimensions and levels— starting from data
sources is still an open question.

Multi-model design. Storing warehoused data in an
MMDB gives rise to further questions: Can different mod-
els be mixed to store warehoused data? Which factors im-
pact the choice of the best model to be used for each piece of
data? Which are the benefits of using an MMDW instead
of a single-model implementation? Some preliminary an-
swers are given in [7], which provides some guidelines to
design an MMDW that ensures a good trade-off between
features such as querying performance, storage space,
ETL complexity, and evolvability. However, a complete
set of best practices for multi-model design has not been
devised yet.

OLAP tools. The existing OLAP clients are able to
connect to warehoused data stored in relational form,
typically using star/snowflake schemata. A first issue
here is related to creating clients that can transparently
query DWs under different models while fully support-
ing the OLAP paradigm. Secondly, clients must be able
to properly deal with variability (e.g., as suggested in
[22]) and complex multidimensional elements. Another



challenge is how to ensure that the process of extending
the cubes on-the-fly based on the user’s requirements
is smooth and effective, and at the same time efficient
enough to be compatible with interactive analyses.

5. Conclusion

Several attempts have been made to improve data man-
agement in the Big Data era by moving from traditional
database architectures to sophisticated data platforms.
Among the architectures and technologies conceived to
this end, we mention data lakes [11], lakehouses [12],
polyglot databases [3], and MMDBs [4]. In particular,
using MMDBs to store warehoused data has been found
to ensure interesting features, such as low ETL costs and
improved evolvability and flexibility [5]. However, no
full support to the extensibility, variability, and complex
data that characterize Big Data has been given yet [6]. To
bridge this gap, in this work we have envisioned a new
architecture where an MMDW is associated with addi-
tional data, loaded on-the-fly on the user’s request and
integrated with the existing cubes following a schema-
on-read approach, so as to ensure extensibility. Using
an MMDW also ensures that variability and complex
data are seamlessly supported. The approach we propose
leaves space for addressing several research questions,
mainly related to detecting multidimensional elements
from multi-model sources in presence of variability and
complex data, and to creating OLAP tools that transpar-
ently supports all these features.
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