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Abstract
With the growth of the Internet of Things and the rapid progress of social networks, everything appears to generate data. The
ever-increasing number of connected devices is accompanied by a growth of the volume of data, produced at an ever-increasing
rate, and this massive flow includes data types that are difficult to process using standard database techniques. One of the most
critical scenarios is healthcare, whose activities need to store and manage a variety of data types – reports written in natural
language, medical images, genomic data and waveforms of vital signs – which do not have a well-defined structure. In order
to benefit from this large amount of complex data, Data Lakes have recently emerged as a solution to grant central storage
and flexible analysis for all types of data. However, there is no Data Lake architecture that fits all the possible scenarios, since
the architecture depends heavily on the application domain and, so far, there are no Data Lake architectures that support the
specific needs of the healthcare domain. This work proposes HEALER: a Data Lake architecture that effectively performs data
ingestion, data storage, and data access with the aim of providing a single central repository for efficient storage of different
types of healthcare data. The architecture also enables the analysis and querying of the data, which can be loaded into the
Data Lake regardless of their format and type. To verify the effectiveness of the architecture, a proof-of-concept of HEALER
has been developed, that allows ingestion of various data, performs waveforms processing to make them more interpretable
to researchers and analysts, grants access to the saved data and allows the analysis of natural language reports. Finally we
studied the performance of the system in each of its main phases: ingestion, processing, data access and analysis. The results
lead us to some important considerations to be taken into account when using and configuring the system components.
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1. Introduction
With the evolution and growing popularity of social me-
dia platforms and, in particular, with the birth of the
Internet of Things (IoT), the data traffic has now reached
the zettabyte threshold. For an increasing number of or-
ganizations, it is therefore critical to ingest, process and
save the most important aspects of the generated data
while removing the unnecessary parts.

One of the areas that contribute significantly to the
generation of this data is healthcare. In fact, for the
progress of medical research, and healthcare in general,
it is of paramount importance that the data collected from
patients are saved for immediate and future batch anal-
yses, facilitating the identification of diseases allowing
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for precision treatments [1]. Valuable data about patients
and medications are usually digitized and saved as Elec-
tronic Health Records (EHR). EHR on a large scale enable
researchers to identify opportunities to move healthcare
organizations toward personalized healthcare, that con-
sists in using diagnostic tests to determine which medical
treatments will work best for each patient [2]. Typically,
only a portion of EHR contain data in a structured for-
mat that data scientists can easily use, while most of
them consist in unstructured and semi-structured data
(i.e., with a form of structure that does not follow the
classical tabular one of relational models). It is there-
fore necessary to develop an efficient data administration
pipeline to assist scientists in their efforts to provide
customized prescriptions. An answer to this problem is
represented by Data Lakes, that, according to [3] are a
current and increasingly emerging trend for Big Data
storage and management. However, despite the presence
of well-designed examples of Data Lake architectures in
the literature [4, 5], none of them has been specifically
designed to meet the requirements of the healthcare sce-
nario.

The goal of this work is to implement a proof-of-
concept of a Data Lake for the healthcare scenario, that
can ingest and process data from different types of
sources (medical devices, clinical trial datasets etc.). Data
must be saved in their raw format inside the Data Lake
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storage area, and subsequently be processed and trans-
formed in an easily usable way by scientists and ana-
lysts. The resulting system, named HEALER (HEalthcare
dAta LakE aRchitecture), focuses on allowing analyses us-
ing both machine learning algorithms and conventional
queries. Since healthcare data are very heterogeneous,
for the moment we decided to limit our analysis to wave-
forms of various signals extracted from patients and to
medical reports written in natural language, in addition
to structured data management. These types of data, al-
though being a limited part of the ones usually considered
in healthcare, allow to characterize a complete workflow
and thus to exemplify the proposed architecture.

The contributions of this work include: a) the design
and definition of HEALER, a Data Lake architecture that
can effectively manage both structured and unstructured
medical data; b) the implementation of a proof-of-concept
of HEALER on the basis of the proposed architecture,
focusing on the management of waveforms and natural
language reports; c) testing and performance analysis of
the various components of the system.

2. Related Work
Multiple Data Lake architectures have been proposed by
the literature, but most of them do not qualify as compre-
hensive solutions for the described scenario. The Data
Lake is defined in both the scientific and industrial worlds
as a repository storing raw data in their native format;
however, different definitions have different emphases,
for example in [6] governance and metadata manage-
ment are highlighted, while [7] places importance on the
users, presenting an architecture focused on researchers
and analysts. Furthermore, the design of a Data Lake is
strongly influenced by the kind of scenario in which it is
placed.

Many Data Lakes designed for non-healthcare scenar-
ios present a robust architecture, but disregard certain re-
quirements that are essential for healthcare. For instance,
CoreDB [8] is an open-source Data Lake to organize,
index and query data and metadata, but does not guar-
antee the storage of data in their native format. Hydria
[9] is a Data Lake for cultural heritage data: it provides
an integrated framework that enables easy deployment
of data acquisition services, dataset sharing with other
stakeholders, search, filtering and analysis of data via vi-
sualization tools. Constance [10] manages structural and
semantic metadata, but scenario-specific features must
be included in order for it to be used in real-world applica-
tions. ArchaeoDAL [5] has been developed using a very
effective multi-layer approach; however, it is designed
to mainly handle relational databases. FEDDL (Flexible
Energy Denmark Data Lake) [4] is a Data Lake with the
purpose of collecting and sharing energy-related data in

Denmark, with integrated AI and machine learning tools
to analyze them. FEDDL proposes a solid architecture
and provides a technical overview of the whole structure.
In fact, their findings played an important role for the
definition of our architecture.

In the healthcare field, many cloud-based solutions
offered by cloud providers such as AWS (Amazon Web
Services) and Azure are emerging [11] and some Data
Lake have been implemented leveraging their services.
A medical Data Lake is proposed in [12], whose authors
suggest a design that relies on cloud services. Similarly,
[13] proposes an IoT-Cloud–based framework for real-
time processing of Big Data in the healthcare domain. It
is developed implementing AWS. Also [14] describes a
cloud architecture that make use of Azure functionalities.
Here, huge amounts of data are efficiently stored using
Azure Data Lake, to support physicians in detecting heart
diseases.

However, the main challenge of cloud technology ap-
plications in the healthcare sector is the ownership of
sensitive data. Proper security measures must be imple-
mented to protect data at each level of data management.
Despite cloud providers offering various security ser-
vices, it is not always clear how to integrate them with
the proposed architecture. Moreover, working on pro-
prietary and not on open source software greatly limits
the customization of the solutions, and in addition cloud
providers usually require monetary payments based on
software usage and the hardware made available.

Recently, despite the absence of a full-fledged Data
Lake for healthcare, researchers are working towards
this direction, for instance by developing query engine
components for clinical data [15, 16]

3. Goals and Requirements
In order to retrieve valuable insights and helpful knowl-
edge easily from data, healthcare researchers require a
unified system [17] that allows to:

• manipulate, process, and analyze different types
of data, from fully structured to unstructured,
allowing their storage inside the system in raw
native format;

• handle different types of data effectively, with
open possibilities for integrating information
from IoT devices, with the system serving as a
centralized location for all data collected by vari-
ous injector systems;

• provide a distributed file system where data can
be stored in files and directories to allow for effi-
cient data loading, while guaranteeing high avail-
ability and fault tolerance without impacting ap-
plication performance;



• meet clinical requirements by allowing fast and
efficient analysis of new combinations of data;

• give the rights to design how to access the data:
access must be regulated for protection of per-
sonal data and privacy.

As a consequence, a Data Lake is the most appropriate
framework to adequately manage all these factors. In
fact, Data Lakes can provide a unified platform for all
relevant data generated by healthcare systems, operating
as a repository for both structured data collected from
traditional databases and unstructured data derived from
various other sources. Data Lakes are extremely fast and
versatile because they implement a scalable architecture
to store data in their native form, while remaining easily
accessible and centralized for end users. Furthermore,
Data Lakes can be fully equipped with various security
layers to ensure data integrity and compliance with pri-
vacy and regulations, which is particularly important in
the healthcare context.

This work focuses primarily on the definition of the
physical components of a data lake architecture, and
conceptual aspects such as security and privacy are left
for future work since their components are outside the
main data management pipeline [18].

3.1. Multi-layered Architecture
In our case study, we want to define, as a first step, a
functional implementation similar to [19], which pro-
poses a multi-layered approach based on incorporating
layers with separation of concerns. In fact, this type of
architecture has the advantage of clearly highlighting
the functions to implement for a given Data Lake, which
allows for an easy matching to the corresponding re-
quired technologies: the key concept is that each layer
communicates with the adjoined ones, and the data fol-
low a pipeline over all the layers. Figure 1 illustrates the
specific layers considered in the proposed architecture.

In particular, starting from the top of the diagram, the
Data Ingestion layer has the task of ingesting heteroge-
neous data in raw format from various data sources and
into the Data Lake. The two main options to load data
into a Data Lake are batch and streaming. The choice of
implementing a batch-oriented or stream-oriented data
ingestion layer depends very much on the context to
which the Data Lake is applied: in fact, as the context
changes, we may have more or fewer data sources pro-
viding streaming data.

The Data Storage layer is the core of the Data Lake. It
contains raw-data repositories, but also transformed data;
it provides support for different forms and structures of
the data, including file storage and raw-record storage.

The Data Transformation layer provides the poten-
tial for the scalable execution of operations such as data
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Figure 1: Overview of the multi-layered Data Lake architec-
ture described in [19].

cleaning and data transformation, in order to achieve a
predefined final form. In this layer, different data rep-
resentations are created in order to transform raw data
into easily accessible data formats, based on algorithms’
and users’ needs.

Finally, the Data Interaction layer provides end-users
with access to the data created in the transformation layer.
Users can access data in order to perform exploration
tasks, create and apply analytical queries and visualize
the stored data using various visualization tools.

4. HEALER’s Architecture and
Implementation

4.1. Overview of the Architecture
Data Lake architectures are usually classified into Data
Pond Architectures and Zone Architectures [20, 21]. In
the healthcare domain, as suggested in [22], a Zone Ar-
chitecture is preferred. In fact, data should go through
different levels of refinement while maintaining a copy
of the data in their raw format, characteristics that Pond
Architecture does not provide [23, 20]. These function-
alities are essential for healthcare researchers to allow
them and analysts to perform more than a single trans-
formation and analysis on the same data. More in detail,
the proposed architecture is composed of five different
zones: Transient Landing Zone, Raw Zone, Process Zone,
Refined Zone and Consumption Zone (Figure 2).

Figure 3 shows a high-level view of the proposed
system, illustrating the main layers of the architecture,
where each layer is represented by its corresponding
component. Data are first ingested by the Ingestion com-
ponent in the Transient Landing Zone, and then per-



Figure 2: Overview of the adopted zones.

Figure 3: Implemented components of the proposed Data Lake architecture.

manently saved in the Raw Zone by the Data Storage
Component. Then, they are processed inside the Process
Zone in different ways according to their format. More-
over, the output of the transformation performed by the
Processing Component, known as "refined data", is stored
in the Refined Zone. The Interaction Component is the
module that deals with data analysis and querying; it has
free access to both the Raw and Refined zones of the Data
Storage, and produces data in the Consumption Zone.

From Figure 3 it can also be observed that each com-
ponent is associated with at least one zone. In particular,
the Data Ingestion Component represents the Tran-
sient Landing Zone: batch and streaming data land here
after being extracted from the data sources and pushed
into the Data Lake. Data are transferred without any
transformations, in accordance with the first steps in
the Extract-Load-Transform (ELT) paradigm. Vital signs
from hospitalized patients, reports written in natural lan-
guage, and structured data on patients and lab events are
all ingested regardless of their format. In this work, we
focused on a batch-type data ingestion.

The StorageComponent represents the central repos-
itory where large volumes of medical data are stored.
This module must provide a distributed file system while
guaranteeing high availability and fault tolerance. In par-

ticular, it contains two zones, namely the Raw Zone, i.e.,
the area where the data are permanently stored in their
native raw format, and the Refined Zone, where data are
stored in a form suitable for the end-users and where
processed data are saved. In order for scalability to be
guaranteed, this component should be able to increase
its storage capacity when needed.

The Processing Component represents the Process
Zone. This is where data are brought to be prepared
and processed. In our case, we manage time series data
before saving them in the Refined Zone, exposing them
to a transformation process that makes them more easily
interpretable by the final user.

Finally, the Interaction Component contains the
Consumption Zone that is in charge of granting access
to the data in the Refined and in the Raw Zone. Here
users can perform queries on structured data by directly
using Python libraries, or apply various data analysis
techniques. For instance, reports written in natural lan-
guage can be subject to various language-understanding
tasks. Results obtained from this component can be re-
turned to the Raw Zone for later use. Saving results is
very important to allow further analysis: for example,
keywords extracted from reports can later be mined to
find patterns or apply clustering techniques.



4.2. Technologies
Many data management tools can be implemented inside
a Data Lake [24]. In HEALER, two are the key tools: a
file system responsible for managing data collection in a
distributed storage, and a tool for performing ELT-type
data ingestion that can easily connect to various data
sources and the distributed storage.

In particular, to fulfill the file system requirements
expressed in Section 3, we choose HDFS (Hadoop Dis-
tributed File System) [25]. In fact, HDFS provides high-
performance access to data across highly scalable Hadoop
clusters, and it can handle big volumes of both structured
and unstructured data. Additionally, it is possible to spec-
ify the number of copies of a file that should be main-
tained by HDFS, guaranteeing the replication of data. In
each cluster there is a single main node, called Namen-
ode, and a variable number of secondary nodes which
are called Datanode.

Secondly, we selected Apache NiFi [26] as tool for data
ingestion. NiFi has many advantages compared to its
competitors [27]. Among them, it provides both batch
and real-time data transfer, it can easily interact with
the Hadoop ecosystem and particularly with HDFS, it
supports the most widely used communication protocols,
and it scales linearly to many nodes. Additionally, every
node of NiFi provides the same functionality as every
other node: this makes the system very robust to node
failures.

4.3. Data Flow
The first stage in the data flow is the ingestion into
the Transient Landing Zone. This is where raw data
are extracted from the sources to start their path inside
HEALER. This phase ends when the raw data is placed
within the storage area provided by HDFS. The entire
process is handled by Apache NiFi. The flow diagram
in Figure 4 shows the two NiFi processors used to man-
age the ingestion phase: the GetFile processor fetches
data from the data source and then hands them to the
PutHDFS processor; PutHDFS establishes the connection
to HDFS and inserts data into the distributed storage.
Once distributed memory is reached, data are divided
into blocks and replicated in different Datanodes for a
number of times equal to the replication factor, in our
case equal to three. HDFS ensures that this operation
is performed automatically to increase data availability
and make the system more robust to individual Datanode
failures.

At this point, the raw data saved within the distributed
storage are ready to be processed. This task is performed
inside the Process Zone, and the processing procedure
depends on the data format and type; in this context,
we discuss the processing of time series extracted from

Figure 4: Data flow in Apache NiFi.

MIMIC-III [28], a medical dataset that contains both struc-
tured and unstructured data, such as information on pa-
tients’ vital signs in waveforms and discharge notes in
natural language. In particular, we define a processing
tasks for waveforms, meant to transform them into a
more easily interpretable format. This task involves the
addition of information - such as the identifier of the
patient and the starting date and time of the measures -
to the file containing the signal measurements. Details
on time series processing are presented in Appendix A.
The process takes advantage of the hdfs Python library1,
used to handle communication with the storage, not only
when the processor node needs to take data to be pro-
cessed, but also when there is the need to rewrite data
into the Refined Zone after processing. For what con-
cerns the execution of data requests in the system, the
following two scenarios were studied.

Scenario 1 In this scenario, the data requested by the
user have already been processed and therefore they are
already present in the Refined Zone. In this case, the
request is immediately addressed and the data are directly
retrieved from the Refined Zones.

Scenario 2 This scenario involves real-time processing
of the data requested by the user, due to the fact they
have not been processed yet. In this case, the data are
searched in the Refined Zones; however, some, or all of
the data are not available in the Refined Zone and thus
the request must be forwarded to the Raw Zone. If the
requested data are found in the Raw Zone, they are sent
to the Process Zone, ready to be processed in real-time.
After the processing, following the normal flow of data,

1https://pypi.org/project/hdfs

https://pypi.org/project/hdfs


Figure 5: Two sequence diagrams illustrating user requests
to access data. On the top diagram, data are already available
in the Refined Zone. On the bottom diagram, data are not yet
stored in the Refined Zone, thus need be pre-processed.

they are saved into the Refined Zone, which is finally
ready to meet the user request. This is shown in Figure
5.

Concerning natural language data, the analysis in-
volves the extraction of keywords that best identify the
key concepts of the text. To perform this kind of text
processing, two different Python libraries for natural
language processing are compared: Spacy [29] and Key-
BERT [30]. This work will use the reports in MIMIC’s
NoteEvents table as input dataset for analysis.

4.4. Implementation
We developed a proof-of-concept of HEALER, implement-
ing the considered nodes on several container based vir-
tual machines, running on a single physical machine
using a quad core CPU Intel Core i7-4790S 3.2 GHz, 16
GB RAM, GPU NVIDIA GeForce GTX 745, and 2 TB Hy-
brid HDD. Despite the hardware limitations, the system
was perfectly suited for our tests. The technical overview
of the system is shown in Figure 6. The system was tested
to ensure the architecture’s effectiveness and also to eval-
uate the components’ compatibility and communication.
Listed below are the specific nodes implemented:

• a single ingestion node implementing Apache
NiFi and representing the Transient Landing
Zone;

• a single node implementing an HDFS Namenode
for managing data storage;

• a cluster of five nodes, each implementing an
HDFS Datanode instance, representing the Stor-
age Component and incorporating both Raw
Zone and Refined Zone;

• a single process node to execute waveform pro-
cessing (Process Zone);

• a single analysis node, with access to the GPU,
equipped with useful libraries to perform analysis
and to access data (Consumption Zone).

We adopted Docker2 to virtualize the nodes, and con-
figured the system with the required tools. The Hadoop
cluster can extend or reduce the number of Datanodes,
by leveraging the potential of an orchestration tool such
as Docker Compose. The considered setup can be eas-
ily migrated to run across multiple virtual or physical
machines, using for example Kubernetes3.

Additionally, the following requirements are essential
for the proper execution of the system: (a) the nodes
must be instantiated within the same network; (b) the
Namenode and Datanodes communicate with each other
properly: the Namenode must hold information about
the IP addresses of the Datanodes in the network, and
each Datanode must be familiar with the IP address of
the Namenode and fellow Datanodes; (c) the ingestion
node should have all the information needed to access the
Storage Component (IP address, port number etc.), and
the Hadoop namespace configuration files contained in
the Namenode must be copied to the Apache NiFi node;
(d) the processing node and the analysis node implements
the hdfs library to establish and manage communication
towards the distributed storage.

5. Evaluation and Results

5.1. Dataset
The dataset used for the evaluation is the MIMIC-III
Database [28]. MIMIC stands for Medical Information
Mart for Intensive Care, and is a large, freely-available
database comprising de-identified health-related data as-
sociated with over forty thousand patients who stayed
in critical care units.

It includes a structured clinical database and a related
waveform database [31]. The clinical database includes
26 structured tables, with one of them (namedNoteEvents)
including medical reports written in natural language. In
the waveform database, records typically contain ten or
more time series of patients’ vital signs sampled once per
second or once per minute. Each of this records is com-
posed of a header file, which shows information about
the measurements (number of samples, start time of the
measurement session, description about the observed
signals) and a matching signal file.

5.2. Evaluation
This section presents an evaluation of the components
of HEALER, focused on the execution of the main stages.
2https://www.docker.com
3https://kubernetes.io

https://www.docker.com
https://kubernetes.io


Figure 6: Technical overview of the system: for each component of the architecture, the corresponding technology/software is
specified.

Table 1
Execution time and transfer rate for the ingestion phase.

Batch (MB) GetFile (s) PutHDFS (s) Full Time (s) Transfer Rate (MB/s)

11 0.5 4.5 5.0 2.20
156 5.0 33.0 38.0 4.11
305 8.0 44.0 52.0 5.87
1024 35.0 75.0 110.0 9.31
1741 52.0 106.0 158.0 11.02
3738 86.0 194.0 280.0 13.35

The ingestion phase transfers data to the HDFS clus-
ter using Apache NiFi. In particular, we evaluate the
ingestion time of structured data (from MIMIC III clini-
cal database) and waveforms (from MIMIC III waveform
database). The experiment begins when the flowchart
described in Figure 4 is executed, and it ends when all
the files saved in the Apache NiFi node are ingested into
the system. Data of different batch sizes are transferred,
repeating measurements 20 times for each batch size. Ta-
ble 1 shows that the average transfer rate goes from 2.20
MB/s for a batch size of 11 MB, to 13.35 MB/s for 3.7
GB. Thus we infer that, as the batch size increases, the
transfer rate also becomes higher.

The processing node in our simulation is in charge of
running a Python script that takes a batch of waveforms
in order to perform the transformation process. HEALER
makes use of the pandas library to perform processing on
waveforms and the hdfs library to handle communication
with the Storage Component. Our evaluation in this case
involves measuring the time taken by the node to fetch
batches of waveforms from storage, transform them, and
finally save them into the Refined Zone. We perform the
processing of different batch sizes, obtaining the results
described in Table 2. Evidently, the system always per-
form with an average rate of 1 MB/s, regardless of the

Table 2
Execution time and transfer rate of the processing phase.

Batch (MB) Process Time (s) Rate (MB/s)

9 9.0 1.00
127 120.0 1.06
305 290.0 1.05
1024 1034.0 0.99

data batch size. Therefore, we reach the conclusion that
the batch size of has minimal effect on the processing
rate.

Concerning the access phase, the main objective is to
allow users to access data from the Storage Component.
Our simulation involves the evaluation of both scenarios
described in Section 4.3, i.e., we evaluate the amount of
time that the analysis node takes when data is already
in the Refined Zone, and when it is not. We consider
data of different sizes and assess the efficiency of the
system based on response time. Table 3 clearly shows
that requests of data not yet processed are much more
time-consuming than those that have already been pro-
cessed and stored in the Refined Zone. In fact, the data
access phase is very dependent on the speed of real-time



Table 3
Comparison between access times of data already available
in the Refined Zone and yet to be processed in the Raw Zone.

Batch (MB) Refined Zone (s) Raw Zone (s)

0.1 0.030 0.095
1 0.094 1.213
11 0.467 10.789
53 1.330 51.342
108 3.713 107.432

processing: since the processing phase is the slowest step
inside the pipeline, accessing data in the Raw Zone is
also very slow.

Finally, we evaluated the extraction of keywords from
natural language reports. In this experiment, the goal
is to compare two different Python libraries: Spacy [29]
and KeyBERT [30]. The main difference between the
two libraries is that KeyBERT leverages the GPU, while
Spacy does not. In our proof-of-concept, it is the analysis
node that performs the extraction operation from the
reports. The extraction performance of the two libraries
is analyzed on different samples of reports extracted from
MIMIC-III NoteEvents table. We perform the tasks first
on a set of 20 reports, then on a set of 200, using both
libraries. Each experiment is repeated ten times. Spacy
takes, on average, 16s to analyze 20 reports and 157s
for 200 reports, while KeyBERT takes 27s to analyze 20
reports and 233s for 200 reports. With KeyBERT, GPU
utilization peaked at over 50%, therefore, with a higher
performing unit, it might be advantageous to use this
library. On the contrary, if the system lacks a GPU, Spacy
will be more efficient in terms of execution time.

5.3. Discussion
By analyzing the results and observations derived from
the simulation, we observe how Apache NiFi and HDFS
work very well with large batches of data. On the other
hand, it is not recommended to use small batch sizes due
to the risk of lower transfer rates. Moreover, regarding
HDFS, due to its approach of dividing data into fixed-size
blocks, it is suggested to not ingest a large amount of
data with a much smaller size than the block size. This is
to avoid flooding the Datanodes with unfilled blocks.

Lastly, for what concerns the access phase, it is appro-
priate to process larger data asynchronously with respect
to user requests. Instead, real-time processing should be
left for accessing data of smaller size.

6. Conclusions and Future Work
In this work we proposed HEALER, an architecture for a
Data Lake that allows for efficient data storage and access

to a variety of types of data in the context of healthcare.
HEALER allows for analysis and query, and can manage
data regardless of their generation speed or volume. In
HEALER, the main emphasis is placed on the storage
of non-structured data, such as medical waveforms and
natural language reports, which are seldom considered
in traditional systems.

Moreover, we implemented a proof-of-concept of
HEALER, composed by a Data Ingestion Component,
a Storage Component, a Processing Component and a
Data Access and Interaction Component. We tested the
system for a general evaluation of its various stages: in-
gestion, processing, data access, data analysis. From our
experiments, we discovered that both HDFS and Apache
NiFi perform well at high batch sizes. In addition, the
study showed how the processing phase represents the
bottleneck of HEALER and how it also impacts the data
access phase in responding to user requests.

For future work, the plan is to expand the system by
introducing horizontal layers, such as a layer for Data
Governance, to manage metadata and enable the system
to be more organized and faster when accessing data.
Furthermore, an additional layer to manage user access
and ensure data security is also planned, considering
the extreme importance of securing the large amount of
personal information present in medical data.

Last but non least, in a more realistic context, it is
appropriate to test HEALER with a streaming-type inges-
tion of data, and to expand the Process Zone to a cluster
of nodes performing data transformations at a distributed
level. To perform distributed operations, we will use an
appropriate tool, such as Apache Spark [32].

Finally, we plan to perform workload tests on HEALER
with both real-world and simulated data, to obtain more
realistic results on response time in different workload
situations.
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A. Time Series Processing
In this section, we explain in detail the processing task
involving time series. The goal of this operation is to
transform data into a more easily interpretable format
for analysts and researchers. In this scenario, we con-
sider waveforms extracted from MIMIC-III Waveform
Database [31]. Each individual time series of the dataset
consists of two files: a header file with information about
the measurements (Figure 7), and a signal file containing
the values of the measurements, shown in (Figure 8).

In particular, the header file contains a first row with
the filename (‘p000020-2183-04-28-17-47n’), the number
of signal sampled (‘15’), the frequency at which the signal
is sampled (‘0.01666.../125’), the number of rows in the
file (‘1315’), the exact start time (‘17:47:59.486’) and start
date (‘28/04/2183’) of the sampling sessions. The file-
name additionally is composed of the patient identifier
(‘p000020’), the starting date (‘2183-04-28’) and the start-
ing time (‘17-47’). The following rows indicate which
signals are sampled in the file, with a description of the
main parameters of the instruments adopted to take the
measurements.

The processing task involves the addition of informa-
tion such as the patient identifier and the start date and
start time of the measurements to the file containing
the signal measurements. The information is extracted
from the header file. The output of the processing for the
waveform in Figure 7 and 8 is illustrated in Figure 9.

As it can be observed that each line in the signal file has
information regarding the patient identifier and the exact
time at which that sample is taken. The exact timestamp
of the measurement is obtained after extracting the start
date and time of the session from the header file and
adding the elapsed time of the measurement to it.

Figure 7: Example of the header file of the Time Series con-
tained in MIMIC-III Waveform Database.

Figure 8: Example of the signal file of the Time Series con-
tained in MIMIC III Waveform Database.

Figure 9: Example of processed waveform.

Essentially, the waveform transformation involves
putting all relevant information into the single signal
file. Each row in the resulting file has the patient identi-
fier and the exact timestamp of the measurement, making
it unique in the entire dataset. After being processed, the
data are stored in the Refined Zone of the Data Lake
ready to be analyzed and/or accessed.
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