
MongoDB Data Versioning Performance: local versus Atlas

Lucia de Espona
1,†

, Ela Pustulka
1,*,†

1School of Business, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Riggenbachstrasse 16, 4600 Olten, Switzerland

Abstract

We focus on versioning for NoSQL data on MongoDB. Versioning is essential for security audits, legal compliance and business

strategy development. For each type of business object, we maintain two collections and split the data into currently valid

objects and the archive. We previously presented a versioning algorithm and a preliminary evaluation on a local database,

with version write times of 4 to 13ms, and versioning queries in 2 to 4ms. Here, we introduce bulk operations and present a

performance study measuring all versioning operations on MongoDB Atlas. Cloud experiments show that version writes take

14 to 60ms. Queries need between 14 and 25ms. Using bulk versioning is faster, as writes need between 3 and 10ms. Cloud

times are slower than those seen in local tests but the performance penalty due to network latency, imposed by the use of

Atlas, is mitigated by the newly added bulk operations. Overall, the experiments show that the performance is satisfactory

for an enterprise resource planning (ERP) system for small and medium enterprises (SMEs).

Keywords
database, NoSQL, document versioning, CRUD, ERP, MongoDB, performance, bulk operations, cloud

1. Introduction
We are working on an ERP system for an SME which

has to comply with the legal requirement of keeping old

data for ten years. This requirement has led us to ex-

plore versioning. Adding versioning to a business system

enables queries that typically belong to the data ware-

housing scenario and support business in reporting and

strategy development. When a legal requirement has to

be fulfilled, the data can be queried flexibly.

Data versioning and archival are important aspects of

database (DB) operations. Bernstein and Goodman [1]

define a multi-version DB as one where each write on a

data item 𝑥 produces a new copy (or version) of 𝑥 and for

each read on 𝑥, the DB management system (DBMS) se-

lects one of the versions of 𝑥 to be read. Stonebraker and

Rowe [2] outlined three types of versioning: no archive
where no historical access to a relation is needed, light
archive where archival is needed but this data will rarely

be accessed, and heavy archive when the system needs to

look up and update timestamps of previous transactions.

In an ERP, we expect to see no archive for business ob-

jects that do not change and light archive for compliance,

security and strategy queries. We do not see a need for a

heavy archive.

Our ERP has versioning as a primary business require-

ment. Part of the data, such as customer or product

details, will change, which is why versioning is required.

DataPlat’23: 2nd International Workshop on Data Platform Design,
Management, and Optimization, March 28, 2023, Ioannina, Greece
$ lucia.espona@gmail.com (L. d. Espona);

elzbieta.pustulka@fhnw.ch (E. Pustulka)

� 0000-0002-1477-6999 (L. d. Espona); 0000-0001-7379-847X

(E. Pustulka)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Some data will be more stable and will only rarely change

or not at all. As our business partner selected MongoDB

as the platform, we decided to add versioning directly

instead of using another tool as an archive, which would

make business intelligence hard to orchestrate. Although

some DBMSs offer built-in data versioning, in most cases,

the versioning support is not sufficient for compliance [3]

and data warehousing solutions are used [4, 5]. Main-

stream NoSQL DBMSs, including MongoDB [6], only

provide limited support for data versioning [7].

Here, we extend our previous work [8] where we pre-

sented a versioning algorithm which ensures that the

query time on the currently valid document versions is

kept constant, by storing historical data in a separate

collection.

Earlier steps in this development were presented in [9]

where we showed that the ERP fits the business use case.

Our contributions here are: (1) performance tests on Mon-

goDB Atlas cluster executing single document versioning

and comparison to local performance we presented in [8],

(2) a bulk versioning algorithm which extends the range

of DB operations for MongoDB and uses transactions to

support bulk requests, and (3) performance measurement

of bulk INSERT, UPDATE, and DELETE on MongoDB

Atlas and comparison with single document versioning.

2. Related work
Archival storage systems usually do not support flexible

querying while software versioning systems offer queries

based on taxonomies or text, but support no query lan-

guage. Version control in most collaborative tools does

not offer support for business data analysis or legal com-

pliance.

In relational DBs, schema evolution and versioning for

mailto:lucia.espona@gmail.com
mailto:elzbieta.pustulka@fhnw.ch
https://orcid.org/0000-0002-1477-6999
https://orcid.org/0000-0001-7379-847X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


relations have been researched extensively [1, 2, 10, 11]

and produced several interesting systems like ODM

Insights [12]. Most NoSQL work focuses on schema

changes [13, 14] and not on the data itself.

Here, we study data versioning and not schema ver-

sioning. Despite advances in data versioning, none of

the prior systems fits our use scenario. The only publicly

known document versioning library for MongoDB is Ver-

mongo [15, 16]. The core idea we adopt from Vermongo

is to store the current and past document versions sep-

arately as only the current data are of business interest

on a daily basis. However, Vermongo has the following

deficiencies which make it unsuitable for ERP: no ACID

guarantees, no support for DBRefs which correspond to

foreign keys in a relational DB and no support for mul-

tiple CRUD operations defined by Mongoose, such as

updateOne and updateMany.

3. Versioning
We summarize the versioning solution we presented in

[8]. In the MongoDB document versioning pattern [17],

a version number is added to each document and the

DB contains two collections for each original collection

under version control: one holding the latest version and

another one that holds all previous versions. The pattern

assumes that most of the queries refer to the current

document version and the historical data are accessed

rarely, similarly to [18].

When a new business object type is added to the sys-

tem, two collections are created: a main collection and a

shadow collection. The new object is added to the Main
Collection. When an object is edited, its old versions are

placed in the Shadow Collection and the main collection

stores only the current version. In the shadow collection,

the (objectId, version) combination is unique but the orig-

inal object ids are not unique and any other uniqueness

constraints are automatically removed, to support the

storage of multiple old versions of the same document,

sharing some unchanged field values. In the shadow col-

lection two indexes are defined by default: one on the

unique object id (combination of the main collection ob-

ject id and version number), and the other on the original

id from the main collection and the validity timestamps.

The versioning algorithm works as follows.

1. On create, a new document is written to the main

collection.

2. On update, a new version is written to the main

collection and the previous version is moved to

the shadow collection, within a transaction.

3. On delete, the invalid version is moved to the

shadow collection, within a transaction.

4. On read, both main and shadow collections can

be queried.

Our solution relies on Mongoose [19]. Once the docu-

ment model has been defined using Mongoose, the ver-

sioning plugin is added. It generates the two collections

and adds the versioning related fields. Our implementa-

tion is available at [20, 21]. The plugin offers two query

methods: findVersion (id, version) and findValidVersion
(id, date) based on validity date.

Transactions are used in updates and deletes to guar-

antee operation atomicity, as they affect both the main

and shadow collections. In contrast to Vermongo, which

does not offer ACID guarantees, our implementation uses

MongoDB transactions. Transactions are not needed for

inserts which only affect the main collection. Transac-

tions are handled by the user and passed to the versioning

library for each enveloped operation.

4. Bulk Operations
Bulk operations are one of our three contributions. They

optimize performance on the MongoDB Atlas cloud, since

they reduce the network latency overhead by reducing

the number of DB calls. MongoDB supports insert, up-

date, and delete operations in bulk. Bulk writes on one

collection are executed through the collection method

bulkWrite. Bulk writes are also available in Mongoose

through the Model API as bulkWrite, insertMany, update-
Many and deleteMany in a single DB call. These opera-

tions are submitted as bulkWrite calls to the MongoDB

driver.

We implement bulk versioning as: bulkSaveVersioned,

a bulk insert or update equivalent to Mongoose insert-
Many and updateMany, and bulkDeleteVersioned, a bulk

delete equivalent to Mongoose deleteMany. We had to

implement new operations as the previous document

versions have to be provided as input to guarantee the

bulk operation performance gain. If we simply used the

middleware hooks from Mongoose, the bulk operation

would receive only the new version of the documents and

it would need to query the DB for each object to obtain

the past version, which would worsen performance.

Similar to single writes, bulk writes need to be wrapped

inside a transaction if they operate over two collections

to ensure consistency. Calling bulkSaveVersioned with

no past versions provided is translated into a single bulk

insert into the main collection and does not need a trans-

action. If we provide a set of past versions together with

the new versions to perform an update using bulkSaveV-
ersioned, this translates into a bulk insert into the main

collection plus a bulk insert of the past versions into the

shadow collection. This call is wrapped inside a trans-

action as it operates over two collections. BulkDeleteV-
ersioned always needs to be called inside a transaction

since it performs a bulk delete in the main collection and

a bulk insert on the shadow collection.



5. Evaluation
The evaluation scenario mimics a use case of a human

resources (HR) ERP system and is carried out on two

types of infrastructure: a local machine, as in our previ-

ous paper [8] and in the cloud (MongoDB Atlas cluster).

We compare the performance of three approaches: no
versioning, plain versioning without using a shadow col-

lection (all data, current and old in one collection), and

our versioning which uses two collections, as outlined

previously. HR data have an average size of 2.3K per doc-

ument holding complex nested documents and document

arrays storing personal data, skills, projects and similar.

The local infrastructure is described in our previous

paper [8]. The cloud tests were submitted from a Linux

server cluster (8GB RAM, 2 virtual CPUs and 20GB Disk

with Ubuntu Jammy 22.04) which invoked DB operations

on an M10 Atlas cluster with MongoDB version 4.2.17

Enterprise, a replica set composed of three nodes with

the default DB configuration. Some system background

tasks may affect results but should be similar for all tests.

Performance was measured at the application level, via a

Mongoose API call, including a transaction where needed,

since the software introduces an overhead inherent to the

solution design that needs to be reported, as reporting the

times from MongoDB directly does not correspond to our

use case scenario. The experiments can be reproduced

using the code available at [22].

We tested the following operations:

• INSERT a new document

• UPDATE an existing document

• DELETE an existing document

• FVaNOW: find the current version by object id

• FVaPAST: find a past version by id and date

• FVe2: find current version by id and version no.

• FVe1: find past version by id and version no.

• FIND: find by non-indexed field on currently valid

documents.

The operations were executed in groups of 100K in

the local experiment as in [8] and 10K for the cloud. The

order in the list represents the execution order inside each

group of 100K (or 10K) and the group size corresponds

to the maximum number of valid documents at any time

point, corresponding to an HR system for a company

with a constant employee count.

In the local experiment reported in [8], one million

operations of each type were executed in groups of 100K

lasting approximately 60 hours. There were 100K valid

documents at any time.

As the cloud evaluation which aimed to replicate the

local experiment took much longer per operation, we

reduced the number of operations of each type to 100K

and executed those in groups of 10K, with 10K valid doc-

uments at any time. The experiment took approximately

72 hours.

We carried out a second cloud experiment to test bulk
operations. Here, insert, update, and delete were re-

placed with their bulk versions called InsertMany, Up-

dateMany, and DeleteMany. Each operation was per-

formed on a group of documents sent as a single data

chunk to the cloud, using two chunk sizes of 50 and 200

operations.

5.1. Local Single Operations versus Cloud
Performance on a local DB is detailed in [8]. The cloud

experiment repeats the local experiment on the Mon-

goDB Atlas cluster. The experiment size was reduced

from 1M to 100K operations of each type (Insert, Up-

date, Delete, FVaNow, FVaPast, FVe1 and FVe2) and

the group size from 100K to 10K. Figure 1 compares local

versioning performance to cloud performance.

IN
S

E
R

T

U
P

D
AT

E

D
E

LE
TE

FV
aN

O
W

FV
aP

A
S

T

FV
e2

FV
e1

FI
N

D

tim
e(

m
s)

0

10

20

30

40

50

60

16.23

60.13

44.35

13.78

25.11

13.77

24.84
22.38

3.26

12.34
6.8

1.43 1.99 1.21 1.74 3.65

CLOUD
LOCAL

Figure 1: Local and cloud versioning performance. Execution

times (ms) for the insert, update, delete and find, averaged over

1M executions locally and over 100K in the cloud. Update is the

slowest, followed by delete, while insert and read operations

perform similarly. Both update and delete use a transaction

spanning two collections.

In both experiments, local and cloud, updates and

deletes are the slowest, as they involve writes in both the

main and the shadow collection wrapped in a transaction

spanning both collections. The times are adequate for an

SME ERP and even the slowest operation, the Update,

needs 12-13 ms on average locally and 60 ms in the cloud,

which is acceptable [23].

Figure 2 shows the details of the cloud measurements.

Updates and deletes are the slowest, and the relative

performance of all the operations is similar to the local

performance presented in [8], except that all the single

cloud operations are significantly slower in the Atlas clus-

ter, which we interpret as network latency effect. The

performance is nevertheless adequate for our use case,



13.93 13.78 14.57

NA

25.11
14.5817.18 16.23 17.09

26.56

60.13 67.35

0

101

102

INSERT UPDATE FVaNOW FVaPAST

lo
g(

m
s)

0

101

102

lo
g(

m
s)

No Vers.
Versioning
Plain Vers.

11.57

44.35

15.93
23.33 22.38

136.8

NA

24.84
14.3513.98 13.77 14.33

FVe2 FVe1 FIND DELETE

No Vers.
Versioning
Plain Vers.

Figure 2: Cloud operation times running the eight operations

100K times in groups of 10K for three different approaches:

no Versioning, versioning, and plain versioning.

and even the slowest operation, the Update, needs about

60ms. The three approaches (Versioning, Plain Ver-

sioning and No Versioning) show a similar pattern to

that seen when using a local DB (Figure 2). The Update

is faster than an update using plain versioning with just

one main collection. The overhead of versioning in com-

parison to no versioning during an update is around 33.4

ms. Plain versioning using a single collection gives a

faster Delete than our versioning, by about 28 ms.

As in the local experiment, other operations perform

similarly to plain versioning, with the exception of Find

which searches for an unindexed field and causes a collec-

tion scan. Find in our versioning needs as long as a Find

with no versioning, i.e. versioning produces no overhead.

However, in plain versioning a Find is extremely slow,

594 ms, as all versions are kept together and the collection

is very large. This confirms our expectation that our so-

lution using a cloud DB has similar performance in most

operations and performs better for current documents.

The cloud queries on valid documents show similar

execution times with and without versioning. Regarding

comparison with plain versioning, Figure 2 shows that

our solution takes slightly longer to retrieve past versions

(FVe1 and FVaPast, but performs better when querying

currently valid documents which are the most commonly

performed operations, resulting in a better versioning

performance on the expected use scenario.

The performance of all cloud operations mirrors the

local experiment, see [8], so Plain Versioning perfor-

mance over time of the Find operation looks like a stair-

case, with each step corresponding to a new group of 10K

operations (not shown due to space constraints) whereas

in our versioning solution the Find operation perfor-

mance stays stable (not shown).

Overall, the measurements confirm that the cloud in-

troduces an acceptable overhead and our versioning has

a better and more stable performance than using a sin-

gle collection to store both current and past document

versions.

44.35

9.96
8.36

16.23

2.9 2.56

60.13

8.98
7.55

INSERT UPDATE DELETE

SINGLE
BULK_50
BULK_200

0

101

102

lo
g(

m
s)

Figure 3: Average cloud execution times of single document

(SINGLE) and bulk using chunk sizes of 50 (BULK_50) and

200 documents (BULK_200), performing Insert, Update, and

Delete, on a log scale.

5.2. Cloud Bulk Operations
Figure 3 compares the cloud use of our versioning so-

lution with single operations (as in previous section) to

the use of the new bulk writes using chunks of 50 and

200 operations. The total number of equivalent individ-

ual operations is the same, 100K for each operation type

executed in groups of 10K.

As shown in Figure 3, the bulk writes (insert, update

and delete) are significantly faster than single writes. The

improvement is more pronounced for the 200 documents

chunk size than when using groups of only 50 documents.

The read methods do not have a bulk mode and are not

shown. Bulk Insert is more than 5 times faster than a

single insert while the bulk Update gets close to being

8 times faster for 200 documents as compared to single.

Bulk Delete takes four times less time than the single

document, even for the 50 document size. Bulk operation

times for 200 documents are 8 percent shorter on average

than the ones on 50 documents.

6. Conclusions
We presented a new solution for data versioning, tested

it locally [8] and in the cloud on MongoDB Atlas and ex-

tended it with bulk operations. Versioning performance

was satisfactory for our business scenario in both the

local and the cloud settings. This good performance can

support a flexible and adaptable ERP system and is being

used in the system prototype.

We designed and implemented a NodeJS library to

manage many document versions by splitting the doc-



uments into two collections: live data (main collection)

and archival data (shadow collection). Data consistency

is maintained by the use of transactions when required,

that is for update and delete. Inserts and queries require

no transactions. Splitting the data into two collections

guarantees good performance on live data, and our tests

show clearly that this is superior to keeping old data

together with the current data.

We compared the performance of our solution to two

alternatives, plain versioning (all data in one collection)

and no versioning. We showed clearly that our version-

ing performs well enough to be used in production, using

a local or a cloud DB. Despite a small performance over-

head of keeping historical data, we show performance

gains on querying current document versions even in

non indexed fields, as compared to a solution that does

not separate the data into two collections.

The bulk writes we added reduce the number of calls

to the DB when inserting, updating and deleting. The

performance of bulk operations using groups of 200 doc-

uments reduces the network latency overhead signifi-

cantly, so that the average performance in the cloud is

close to the local DB execution using single operations.

Further work is required to investigate the impact of

versioning using real business data and processes. Our

ongoing work focuses on automated indexing and ma-

chine learning for index selection.

Acknowledgments
Thanks to Florian Lang, Christian Dolfus and Martin

Sterchi for their contributions. We acknowledge funding

from www.innosuisse.ch, Grant No. 44824.1 IP-ICT. We

have no conflicts of interest to disclose.

References
[1] P. A. Bernstein, N. Goodman, Multiversion Con-

currency Control—Theory and Algorithms, ACM

Trans. Database Syst. 8 (1983) 465–483.

[2] M. Stonebraker, L. A. Rowe, The Design of POST-

GRES, in: SIGMOD’86, ACM, 1986, p. 340–355.

[3] C. Cioranu, M. Cioca, C. Novac, Database Ver-

sioning 2.0, a Transparent SQL Approach Used in

Quantitative Management and Decision Making,

Procedia Computer Science 55 (2015) 523–528.

[4] H.-G. Kang, C.-W. Chung, Exploiting Versions for

On-Line Data Warehouse Maintenance in MOLAP

Servers, in: VLDB ’02, 2002, p. 742–753.

[5] B. Bebel, J. Eder, C. Koncilia, T. Morzy, R. Wrembel,

Creation and management of versions in multiver-

sion data warehouse, in: SAC ’04, 2004, p. 717–723.

[6] MongoDB, www.mongodb.com, 2021.

[7] P. Felber, M. Pasin, E. Rivière, V. Schiavoni, P. Sutra,

F. Coelho, M. Matos, R. Oliveira, R. Vilaça, On

the support of versioning in distributed key-value

stores, in: IEEE SRDS, 2014, pp. 95–104.

[8] L. de Espona Pernas, E. Pustulka, Document Ver-

sioning for MongoDB, in: ADBIS’22, MegaData,

Springer, 2022, pp. 512–524.

[9] E. Pustulka, S. von Arx, L. de Espona, Building

a NoSQL ERP, in: ICICT’22, Springer, 2023, pp.

671–680.

[10] E. Sciore, Versioning and configuration manage-

ment in an object-oriented data model, The VLDB

Journal 3 (1994) 77–106.

[11] J. F. Roddick, Schema Versioning, in: Encyclopedia

of Database Systems, 2nd Ed., Springer, 2018.

[12] F. Chirigati, J. Siméon, M. Hirzel, J. Freire, Virtual

lightweight snapshots for consistent analytics in

nosql stores, in: ICDE’2016, 2016, pp. 1310–1321.

[13] U. Störl, M. Klettke, S. Scherzinger, NoSQL Schema

Evolution and Data Migration: State-of-the-Art and

Opportunities, in: EDBT’20, 2020, pp. 655–658.

[14] D. Sevilla Ruiz, S. F. Morales, J. García Molina, In-

ferring Versioned Schemas from NoSQL Databases

and Its Applications, in: Conceptual Modeling,

Springer, 2015, pp. 467–480.

[15] T. Planz, Vermongo: Simple Document Version-

ing with MongoDB, 2012. URL: https://github.com/

thiloplanz/v7files/wiki/Vermongo.

[16] M. Sutunc, Vermongo Mongoose Plugin,

2016. URL: https://www.npmjs.com/package/

mongoose-vermongo.

[17] D. Coupal, K. W. Alger, Building with Pat-

terns: The Document Versioning Pattern, 2019.

https://www.mongodb.com/blog/post/building-

with-patterns-the-document-versioning- pattern.

[18] X. Jin, D. Agun, T. Yang, Q. Wu, Y. Shen, S. Zhao,

Hybrid Indexing for Versioned Document Search

with Cluster-Based Retrieval, in: CIKM’16, ACM,

2016, p. 377–386.

[19] LearnBoost, Mongoose, 2010. URL: https://www.

npmjs.com/package/mongoose.

[20] L. De Espona, Versioning MongoDB Reposi-

tory, 2021. URL: https://github.com/pier4all/

mongoose-versioned.

[21] L. De Espona, Versioning Module MongoDB,

2021. URL: https://www.npmjs.com/package/

mongoose-versioned.

[22] L. De Espona, Data Versioning Experiment

Repository, 2021. URL: https://github.com/pier4all/

data-versioning.

[23] J. Nielsen, Usability engineering, Morgan Kauf-

mann, 1994.

www.innosuisse.ch
www.mongodb.com
https://github.com/thiloplanz/v7files/wiki/Vermongo
https://github.com/thiloplanz/v7files/wiki/Vermongo
https://www.npmjs.com/package/mongoose-vermongo
https://www.npmjs.com/package/mongoose-vermongo
https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/mongoose
https://github.com/pier4all/mongoose-versioned
https://github.com/pier4all/mongoose-versioned
https://www.npmjs.com/package/mongoose-versioned
https://www.npmjs.com/package/mongoose-versioned
https://github.com/pier4all/data-versioning
https://github.com/pier4all/data-versioning

	1 Introduction
	2 Related work
	3 Versioning
	4 Bulk Operations
	5 Evaluation
	5.1 Local Single Operations versus Cloud
	5.2 Cloud Bulk Operations

	6 Conclusions

