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Abstract
In recent times, several research works have explored the idea of leveraging machine learning techniques to
improve or even replace core components of traditional database architectures, such as the query optimizer
and selectivity and cardinality cost estimators. These efforts often rely on existing, cost-based optimizers and
cost models to avoid a cold-start, and build on top of the optimizer’s decisions. In this paper, we investigate
whether learning could also be beneficial in rule-based optimizers for known and unknown workloads alike.
As a proof of concept, we use MonetDB, an open-source, column-store analytics data engine, and explore
whether a learning model based on Graph Neural Networks that is trained on a cost-based engine, such as
PostgreSQL, could improve MonetDB optimizer’s decisions. Our experimental results reveal deficiencies in
MonetDB’s query execution plans, especially for queries with long chains of join operators, and potential
opportunities in exploiting learning techniques.
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1. Introduction
Query optimization has been a long-standing chal-
lenge from the very early days of data manage-
ment systems. Traditional optimization techniques
to search the space of alternative query execution
plans and find the most efficient one include vari-
ous heuristic and cost-based approaches, rule-based
strategies, randomized algorithms, and so on [1, 2].

Cost-based optimizers depend on accurate cardi-
nality and selectivity estimates, and especially for
intermediate result, to produce reasonable plans. In
general, these techniques are successful given spe-
cific assumptions such as attribute value indepen-
dence, uniformity, data independence, etc. When
these assumptions cannot be met the optimizers
typically fall back to an educated guess. In practice,
getting such accurate estimates is a significant chal-
lenge. And the challenge is more evident in queries
having a long chain of join operators, where one
should decide in which order the joins should be
computed, forming the so-called join-ordering prob-
lem. On the other hand, rule-based techniques rely
on a set of rules to produce query execution plans,
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usually with a single pass of the SQL statement.
The rules are well-crafted based on experience, the-
ory, and common practice, but they often miss
optimization opportunities as they tend to overlook
data properties.

A recent line of research exploits the advances
made recently in machine learning (ML) technology
and explores the potential of the so-called, learning
query optimizers, which aim at learning the behavior
of query operators and query patterns over time and
tend to learn also from their previous decisions (i.e.,
execution plans). In the context of learning query
optimization, earlier research efforts focus mainly
on the problems of join ordering and end-to-end
optimization. However, the vast majority of past
work focuses on cost-based optimizers, relying on
their choices and respective cost models to avoid a
cold-start and also train the proposed models.

In this work, we present Toulouse, our optimiza-
tion approach to rule-based data engines, and in-
vestigate the feasibility and potential benefit of ap-
plying learning techniques to a rule-based query
optimizer. Our initial focus is on the join ordering
optimization problem. Generally speaking, without
having a cost model and cost estimates assigned
to query plans and query operators, the problem
formulation should rely on optimization patterns
for the query workloads at hand.

As a proof of concept, we used MonetDB [3] in
our investigation. A query in MonetDB undergoes
an optimizer pipeline, which examines and applies a
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series of optimizer steps [4]. Our preliminary inves-
tigation showed that a featurization scheme based
solely on the optimizer steps is not sufficient to
produce useful learning patterns. Subsequently, we
tried to leverage a model trained on a cost-based op-
timizer and obtained three interesting results. First,
MonetDB’s optimizer presents significant limita-
tions when it comes to queries having long chains of
join operators and thus, it seems that does not han-
dle very effectively the join ordering problem. Sec-
ond, that a model trained on a cost-based optimizer
following a supervised approach behaves reason-
ably well when used in MonetDB, without requiring
significant fine-tuning or massaging of MonetDB’s
execution runtime and optimizers pipeline. We find
this result very interesting, as the alternative would
be to develop a brand new rule-based optimizer step
and add it to MonetDB’s optimizer pipeline. Third,
the approach can be further extended to support
query and workload agnostic optimization using a
more elaborate, reinforcement learning approach.

To the best of our knowledge, our work is the first
attempt to employ learning in rule-based database
optimization. Our contributions can be summarized
as follows:

• We argue that training a model using a set
of query optimization rules does not seem as
effective as relying on a cost model.

• We show that applying a model trained on a
cost-based optimizer to a rule-based system
does seem to be effective, especially, if the
underlying system is not optimized for join
ordering.

• We present a simple, supervised learning ap-
proach able to transfer effective schema and
workload specific optimization policies to a
rule-based system.

• We present a more elaborate, reinforcement
learning approach that transfers effective
schema and workload agnostic optimization
policies to a rule-based system.

Outline. Section 2 presents related efforts on
learning query optimization. Section 3 describes
the main principles and components of Toulouse.
Section 4 presents our experimental evaluation. Fi-
nally, Section 5 summarizes our findings.

2. Related Work
There are several approaches to learning query op-
timization [5]. These include system frameworks,
e.g., SageDB [6], that aim at replacing core database

components, such as data structures, indices, and
query execution with learned components.

Other approaches focus on the join ordering prob-
lem. DQ [7] and ReJOIN [8] combine reinforcement
learning (RL) with a human-engineered cost model
to automatically learn search strategies to navi-
gate the space of possible join orderings. RTOS [9]
extends these by employing a Tree-LSTM to com-
pute query cost. SkinnerDB [10] uses RL to learn
optimal join orders during query execution and en-
ables fast join order switching. AlphaJoin [11] uses
Monte Carlo Tree Search (MCTS) for join ordering
and Adaptive Decision Network (ADN) to choose
between plans produced by AlphaJoin (for long
queries) and PostgreSQL (for short queries).

There are also attempts to end-to-end learning
optimizers. Neo [12] replaces most traditional opti-
mizer components with ML models and deep neural
networks. Bao [13] follows a schema and data ag-
nostic approach to learning optimization. It runs
a query with a predefined set of hints and keeps
the plan ranked first by a tree convolutional neural
network. Microlearner [14] divides a complex cloud
workload into a hierarchy of subsets, using them to
learn micro-models independently and in parallel.

These methods focus on cost-based optimizers.
Although several of these techniques could also be
used in our work, we consider them complementary
to our goal: explore whether a learning optimization
approach could be beneficial for rule-based systems.

3. The Toulouse approach
In this section, we present our attempts towards
learning optimization for rule-based query optimiza-
tion. First, we report on our investigation toward
building a learning model directly from query opti-
mization rules. Next, we present a different direc-
tion: employ a simple, supervised approach to train
a model on a cost-based system and apply it to a
rule-based system. Finally, we present a more elab-
orate, reinforcement learning approach that serves
reasonably well previously unseen (i.e., not included
in the model training) query workloads.

3.1. Learning optimization rules
Our first attempt was to learn directly from query
optimization rules. Interestingly, this attempt did
not produce very positive results.

Under the hood, MonetDB uses a low level inter-
mediate language called MAL (MonetDB Assembly
Language) that encodes the execution complexity
of a SQL statement. Roughly speaking, a MAL pro-



gram is equivalent to a query plan. Instead of using
a single optimizer, MonetDB employs a collection of
20+ query optimizer transformers, each responsible
for a single task such as removing scalar expression
or aliases, avoid multiple calculations of the same
operator, range propagation, code parallelization,
optimize resource usage, garbage collection, oper-
ator rewriting, caching aggregation results, dead
code removal, etc. [15]. There is also an optimizer
that deals with join paths, i.e., looking for join op-
erators and cascading them into multiple join paths,
and considers strategies such as materialization of
common subpaths. Additional optimizers can be
implemented and added as needed.

Hence, query optimization in MonetDB is real-
ized as a linear sequence of MAL transformations
(optimizers) forming an optimizer pipeline. An op-
timizer may be called multiple times in the same
optimizer pipeline. MonetDB employs a cost model
that to date does not use any statistics on the actual
data, but relies on the size of rows provided as an
input to an optimizer. We found that this feature is
not very mature yet and it does not seem to expose
the costs to the runtime.

Inspired by Bao [13] that gets training data by
running a query with various hint sets, our first
attempt was to explore alternative variations of op-
timizer pipelines and employ both the optimizers
and various common optimizer pipeline patterns as
features in our featurization scheme. This can be
realized easily, as MonetDB offers the functionality
to enable or disable optimizers via a ‘set optimizer’
command. On the other hand, there are a few con-
straints to consider. First, there are dependencies
among the optimizers; e.g., static evaluation may
happen only after constants propagation. In ad-
dition, there is a notion of the minimal optimizer
pipeline, which specifies a number of absolutely nec-
essary optimizers to run. These constraints limit
significantly the degrees of freedom we can consider.

Our modeling and design efforts compared to the
out-of-the-box MonetDB optimization strategies,
revealed limited benefits in generic optimizations
for simple SPJ queries including aggregation and
sort operations, but the results on join ordering were
rather disappointing as the improvements seemed
to be sporadic and random, which renders this path
neither robust nor practical.

3.2. Employ a cost-based learning model
We explored next the idea of developing a model
based on a cost-based query optimizer and inves-
tigating whether this would be effective on a rule-
based system. This could be seen as a type of a

Figure 1: Example message passing network

transfer learning approach. In our current imple-
mentation, we used PostgreSQL as the reference
cost-based system and MonetDB as the target rule-
based system. Hence, our approach could be sum-
marized as ‘develop (train) a model that learns how
the PostgreSQL optimizer works (with its successes
and mistakes) and employ it (inference) on Mon-
etDB bypassing its optimization choices’.

Several available methods in the literature are
bound to a specific schema and fail to generalize
well and/or require expensive training. Still, pre-
vious approaches following a graph neural network
(GNN) modeling (without this being the only good
solution) provide promising results [5]. Inspired by
this observation, Toulouse employs a GNN approach
to collect structural information about all possible
join decisions and learn how to pick the best one
in each case, or at least try to approximate it and
learn more about the problem through this process.

Next, we present the two techniques developed
in Toulouse, a supervised approach and a reinforce-
ment learning approach. The first relies heavily on
the training data, and thus it is amenable to spe-
cific schema and query workloads. The later aims
at providing a schema and query agnostic solution.

3.2.1. Preliminaries: GNN to the rescue

Graph Neural Networks (GNN) is a relatively new
class of deep learning techniques that aim at solving
the problem of having structural data of variable
complexity, by aggregating data from their immedi-
ate neighbors. GNNs have been effective for prob-
lems that can be described as graphs, entities that
have variable size and structure and where the in-
teractions between them are as important as their
features. They can be best understood as message
passing networks, where every nodes exchanges data
with its directly connected nodes (see also Figure 1).



(a) An example query graph (b) Applying a join decision

Figure 2: Toulouse graph representation

With every added GNN layer, every node gets in-
formation from a larger neighborhood. We gather
messages from all neighboring nodes and then re-
duce them with a sequence invariable function (sum,
mean, max etc). Formally, the result of the 𝑘-th
layer for node 𝑣 would be:

ℎ𝑣
𝑘 = 𝜎(𝑊𝑘

∑︁ ℎ𝑘−1
𝑢

|𝑁(𝑣)| + 𝐵𝑘ℎ𝑘
𝑣 − 1)

where the sum calculates the means of the neighbor-
ing values (embeddings), 𝑊𝑘 and 𝐵𝑘 are trainable
parameters (neural networks), and 𝜎 is a non-linear
function like ReLU.

Graph Convolutional Networks (GCN) are one of
the most widely used architecture of GNNs. Every
level results in:

𝑋 ′ = �̂�
−1/2

�̂��̂�
−1/2

𝑋Θ
where 𝑋 is the result of the previous level, �̂� = 𝐴+𝐼
is the adjacency matrix with inserted self-loops (the
+𝐼), �̂�𝑖𝑖 =

∑︀
𝑗=0 �̂�𝑖𝑗 is the diagonal degree matrix,

and Θ is the layer’s trainable weights.
GCNII is a continuation of GCN with the added

features of initial residual connections and identity
mapping, which help tremendously with the prob-
lem of oversmoothing (i.e., the more levels in a GNN,
the less expressive are the later layers). To support
this functionality, we change the GCN formulation
as follows:

𝑋 ′ = ((1−𝑎)�̂�−1/2
�̂��̂�

−1/2
𝑋+𝑎𝑋(0))((1−𝛽)𝐼+𝛽Θ)

where 𝑋(0) represents the initial features that get
added to each layer.

3.2.2. Join optimization as an MDP

Similar to earlier efforts (e.g., [7]), we formulate
the join-ordering optimization problem as a Markov

Decision Process (MDP).
We formulate each query as an undirected graph

𝐺 = (𝑉, 𝐸), where every node 𝑣 ∈ 𝑉 is a table (i.e.,
a table scan or the result of previously joined tables)
and every edge 𝑒 ∈ 𝐸 is an implicit join predicate.
At every step of the process, we choose an edge
𝑒 = (𝑣1, 𝑣2) and 𝑗𝑜𝑖𝑛 the two connected nodes 𝑣1
and 𝑣2. We remove those two nodes from the graph,
add a new node 𝑣1𝑣2 and reconnect it with all the
nodes previously connected to either 𝑣1 or 𝑣2.

Figures 2a and 2b illustrate an example query
graph inspired by the Join Order Benchmark
(JOB) [16]. Figure 2b is produced by Figure 2a
after considering a join between 𝑖𝑛𝑓𝑜_𝑡𝑦𝑝𝑒 and
𝑚𝑜𝑣𝑖𝑒_𝑖𝑛𝑓𝑜_𝑖𝑑𝑥. In doing so, we remove those
two nodes, replace them with the new 𝑖𝑛𝑓𝑜_𝑡𝑦𝑝𝑒 +
𝑚𝑜𝑣𝑖𝑒_𝑖𝑛𝑓𝑜_𝑖𝑑𝑥 node, and reconnect it with all
the nodes previously connected to either 𝑖𝑛𝑓𝑜_𝑡𝑦𝑝𝑒
or 𝑚𝑜𝑣𝑖𝑒_𝑖𝑛𝑓𝑜_𝑖𝑑𝑥.

Every such a step has a cost, and as we describe
it as an MDP, we can assume that it follows the
Bellman’s Principle of Optimality, thus we can ap-
proximate a function, or else a policy, that selects
the best action at each step, assuming that all pro-
ceeding steps are also chosen optimally.

Therefore, the problem we deal with is to find a
sequence of joins in the query graph that minimizes
the total cost, until after considering all joins needed
there is only one node left. Formally, in a query
graph 𝐺, with a cost model 𝐽 , we search for the
sequence of joins 𝑐1 ∘ 𝑐2... ∘ 𝑐𝑇 with the minimum
cost 𝑚𝑖𝑛𝑐1,...,𝑐𝑇

∑︀𝑇

𝑖=1 𝐽(𝑐𝑖).

3.2.3. A supervised approach

As a first approach to the problem, Toulouse em-
ploys a supervised approach using a simple GNN ar-
chitecture. We first present the featurization scheme
we use and then the architecture of the solution.



Figure 3: Featurization example: cardinality, cost, and
node type

Figure 4: Neural network architecture of Toulouse’s su-
pervised approach

Featurization. Every node carries an embedding
with one-hot encoded join types and scan types (e.g.,
merge-join, index scan, etc.), along with cardinality
and cost estimates. Figure 3 illustrates an example
of our featurization scheme with node (join and
scan) types, cardinality, and cost estimates. To ac-
count for the numeric values of the estimates in our
featurization, we scale the corresponding cardinality
and cost slots in the one-hot vector to the values
that they correspond to. For example, the first slot
that corresponds to cardinality of the one-hot vec-
tor for the top node in Figure 3 reads 5 to account
for the cardinality of that node. Obviously, our
encoding scheme could be enriched with additional
features as well.

Architecture. Using the pair embeddings from
multiple layers of GNNs, each join has information
about itself and about every other potential join. In
the join ordering problem, direct neighbors are the
most important, but general information about the
rest of the graph provides insight about the future
consequences of a join decision.

Figure 4 presents the neural network structure
of the supervised approach in Toulouse. It employs
two Multilayer Perceptron (MLP) encoding layers,
three GNN layers that learn the query structure as
described previously, and four MLPs that process
the concatenated embeddings of the pair of nodes
passing through the GNNs.

Our hyperparameter tuning analysis indicated
that 2 and 4 MLPs, respectively, are sufficient for
the scenarios we tested. We chose 3 GNNs to match
the typical diameter (i.e., the length of the longest

shortest path between any two graph nodes) in
realistic query graphs, which is also a value that
seems to balance nicely the trade-off between over-
smoothing and performance boosting.

3.2.4. A reinforcement learning approach

Although our supervised approach provides a simple
and fast solution, still our investigation shows that
it does not capture effectively the case of unknown
query workloads, i.e., queries and schemas that have
not been seen by the model before. Related efforts
have dealt with the problem of cost estimation for
unseen queries considering transfer learning inspired
techniques, such as zero-shot learning (e.g., [17]).
Although past work has considered zero-shot learn-
ing for learned cost prediction, we believe that the
basic principles could also apply to the join-ordering
problem as well.

Towards this end, we investigate a more complex
architecture that employs a Graph Convolutional
Neural Network (GCN) - Reinforcement Learning
(RL) architecture, aiming at providing a more prac-
tical solution to the join-ordering problem, develop-
ing a model that could also cope with new query
workloads.

Featurization. As we aim at a more query and
schema agnostic approach, we choose to use as gen-
eral features as possible. Hence, for each node, we
consider:

• cardinality of an operator (here, scan or join)
• width; the estimated average width of the

result (in bytes)
• selectivity; 𝑡𝑜𝑡𝑎𝑙_𝑡𝑢𝑝𝑙𝑒𝑠/𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 for

scan operators, and the average of the two
subtrees for the join operators (multiplying
them is prohibited due to vanishing gradient
issues)

• total tuples; can be set to 0 for joins or the
averages, see selectivity above.

• total pages
• 𝑖𝑠𝐽𝑜𝑖𝑛; true for joins, false otherwise
• 𝑢𝑠𝑒𝑑𝐼𝑛𝐴𝑔𝑔; whether the node contributes in

an aggregation.

We also consider a number of (boolean) features
indicating whether the query contains specific pred-
icate expressions, such as filterEQ, filterNEQ, filter-
Like, filterIs, filterIn, filterBetween, filterGTELTE,
and so on.

Finally, we complement our featurization scheme
with features related to the edges of the graph,
essentially capturing information about the join
predicate they represent, and use statistics for the
columns to be joined, such as:



• index; whether an index exists for the col-
umn(s)

• null_frac; the fraction of nulls in the col-
umn(s)

• n_distinct; the number of distinct elements
in the column(s)

• correlation; a PostgreSQL metric showing
the statistical correlation between physical
row ordering and logical ordering of the col-
umn values, which is useful to determine
whether for example an index scan can be
efficient (similar info is captured in most mod-
ern databases).

Currently, Toulouse employs the PostgreSQL op-
timizer as a source of the cost/statistics estimates,
but another approach could also be used e.g., lever-
aging Bayesian Optimization to build performance
models [18].

Architecture. In this approach, Toulouse employs
a GCN architecture in combination with the popu-
lar Proximal Policy Optimization (PPO) algorithm.
In particular, it uses multiple levels of GCNII, com-
bines them and passed them through two MLP
heads (actor and value) that can be used for PPO.
The value head represents the cost of query so far
and the actor head represents the probability of
choosing a certain join at each step.

For each step, we maintain two graphs, the one
described above and its line graph. A line graph
of an undirected graph 𝐺 is another graph 𝐿(𝐺)
that is created as follows: for each edge in 𝐺, we
make a vertex in 𝐿(𝐺); for every two edges in 𝐺
that have a vertex in common, we make an edge
between their corresponding vertices in 𝐿(𝐺) [19].
In other words, we convert every edge of 𝐺 to a node
in 𝐿(𝐺) and every node of 𝐺 to an edge in 𝐿(𝐺).
Therefore, we end up with every node carrying its
own features (of the edge turned to node) and of
the features of the corresponding adjacent nodes
that in the line graph were turned to edges. We
also concatenate global features such as the number
of nodes, the diameter of the graph, etc. that help
enrich the graph representation. In addition, we cal-
culate positional encoding with random walks [20]
to encode positional information of graph nodes and
make them more expressive. Nearby nodes have
similar positional features and distant nodes have
dissimilar positional features. Still, we keep the
position encoding separately from the features. Fi-
nally, we pass each node through the model shown
in Figure 5.

The 𝑥 features are passed through the layers of
GCNII. We pool the sum of each separate layer
and concatenate them at the end to compute the

Figure 5: Network architecture of Toulouse RL approach

value head. The positional features, 𝑝𝑜𝑠, are passed
through separate GCNII layers and we keep only
the last one, which we concatenate with the layer
results (a.k.a. tensors). The layer results are used
directly in the actor head and the pooled ones in the
value head. The actor heads ends up in a categorical
distribution. The categorical distribution is used to
sample join actions during training and choose the
best action with argmax during inference.

Reward function. An important part of any re-
inforcement learning implementation is the reward
function. For our model, we work as follows. For
the training of our model we use a multiplicity of
datasets (databases) and query workloads to achieve
as broad and generic learning as possible. (We ex-
plain this in more detail in the next section.) Then,
we choose random queries from all the available
workloads (evenly distributed to avoid any bias to-
ward a specific workload), create the graphs with the
tables of all the schemata, add all implicit connec-
tions (join predicates), add also the join predicates
that we get from equality propagation, and finally,



we proceed to use the model for choosing the next
best join. Hence, at each step we compute the
reward as follows:

cut_parameter = 10.0
for database, query in queries:

base_cost = postgres_cost(query)
while number_of_nodes > 1:

choose_join(query)
cost = make_join(query)
if cost > base_cost * cut_parameter:

reward = - 10.0 * cut_parameter
done = True

else:
reward = log(cost)
reward = - (reward / reward_running_std)

The cut_parameter is set at a starting value ex-
perimentally configured (e.g., 10-20) and then we
slowly reduce it as the training progresses. This
helps avoid bad plans from diluting our training
data, as instead of continuing when we consider a
join than costs much more than what the query
optimizer (e.g., PostgreSQL’s optimizer) can do
by default, we penalize it appropriately using the
cut_parameter and continue with the next query.
Otherwise, we 𝑙𝑜𝑔 the cost and use running statistics
(Welford algorithm) to normalize it. Another ap-
proach would be to penalize more the initial steps of
a query, rather the later ones; e.g., a non-performant
join in the first or second steps is worse than a sub-
optimal join toward the tail of the chain of join
operators.

It is worth mentioning two advantages we find
in favor of the reinforcement learning approach.
First, it shows a potential to alleviate a limiting
data generation performance challenge we faced
with the supervised approach; that is, queries with
many joins (e.g., more than 10 joins) result into
a huge number of potential join paths, which in
turn increases significantly the training time. In
addition, the reinforcement learning approach is
amenable to online improvement, as we could fine-
tune the produced model at runtime using real query
running times and potentially have a system that
continuously learns as query workloads run. We
consider this interesting optimization opportunity
as future work.

3.2.5. Application to the rule-based system

To close the loop, the model that has been trained
on a cost-based system is then used (inference) on a
rule-based system. Given a new query to run on the
rule-based system, Toulouse proposes a plan with a
specific join ordering, which in turn executes on the
rule-based system bypassing the system’s optimizer.

4. Evaluation
4.1. Setup and implementation details
In our experiments, we used the following setup.

Hardware. Several rule-based systems are used ei-
ther as server databases deployed on server machines
or embedded databases running on lightweight con-
figurations. We investigated both scenarios using
two setups: (S1) 20-core Intel(R) Xeon(R) CPU
E5-2630 v4 2.20GHz (3.1GHz max), 142GB mem-
ory; and (S2) 4-core AMD Ryzen 5 2500U 2GHz
(3.6GHz max), 8GB memory.

Software. We used Pytorch (1.13.0) with Pytorch-
Geometric (2.1.0) for the GNNs, GATv2 for the
graph layer (although we also successfully tried Sage-
Conv and GINConv), Python for SQL query rewrit-
ing, PostgreSQL (13.3), and MonetDB 11.41.11.

Data and preparation. We tested two use case
scenarios: (C1) training and inference using two
workloads on the same schema, and (C2) training
on a multiplicity of schemas and workloads, and
inference on a new schema and a new workload.
C1 resembles a common use case, which is typically
seen in the experimental analysis of other learning
optimization approaches. C2 represents a more chal-
lenging, but clearly more interesting case scenario.

Use case C1. Data generation, training, and test-
ing was performed on PostgreSQL on S1, which
was tuned for performance. For the graph layer,
20 epochs were enough, with early stopping to the
best approximate result. We used two workloads:
(W1) The Join Order Benchmark (JOB)[16] queries
and data, which is based on the IMDB dataset and
comprises 113 queries containing a varying num-
ber of joins, ranging from joining 5 to 17 tables;
and (W2) We created a workload comprising 1200
queries generated by randomizing various parame-
ters and predicates of the JOB queries, changing
effectively several properties such as operator selec-
tivity, size of the intermediate results, etc. For the
evaluation, we used W2 and did not consider any
of the queries used in the training phase.

Use case C2. We employed a variety of relational
datasets and workloads as described in the DB-
Gen benchmark [21]1. This collection comprises 21
datasets, including IMDB and IMDB_full that are
the base of the JOB benchmark. Initially, we trained
the model on PostgreSQL as described in (C1) on
all datasets except the two IMDB ones. Then, we
tested the model on both PostgreSQL and MonetDB
using the JOB workload (IMDB dataset). In this
case, the JOB workload is unknown to the model

1The DBGen benchmark can be found here: https://github.
com/DataManagementLab/zero-shot-cost-estimation

https://github.com/DataManagementLab/zero-shot-cost-estimation
https://github.com/DataManagementLab/zero-shot-cost-estimation
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Figure 6: Toulouse supervised: runtime perf and % improvement vs. PostgreSQL (psql) and MonetDB optimizers

trained –an experiment designed to test whether
our approach could potentially serve as a schema
and workload agnostic solution.

An illustration of the scenarios tested is as follows:

workload database hardware
C1: supervised □ □ ■ □ ■
C2: RL ■ □ ■ □ ■
□: same with training ■: different than training

4.2. Model creation and evaluation
Evaluating the supervised approach. First, we
present the results of our experimental analysis for
Toulouse’s supervised approach on the C1 scenario.

For training, we used 200,000 query graphs cre-
ated by searching recursively in a subset of the JOB
queries for valid join combination that each creates
a different query graph, hence forming scenarios
that require join decisions. Every potential join has
an approximate best query runtime –should the join
happens– which can be used directly for regression.
In our case, we set the minimum join value as 1 and
everything else as 0 for binary classification. Next,
we fed this training data to our GNN structure,
using in our implementation the Adam optimizer
with Binary Cross Entropy loss.

Evaluation on PostgreSQL (psql). We tested
the queries with explicit join orders produced by
Toulouse vs. queries optimized by the psql optimizer
using the W2 workload. We ran each query 6 times
and report the average results. Figure 6a shows the
avg runtime performance of queries grouped by the
#𝑡𝑎𝑏𝑙𝑒𝑠 they involve. Figure 6d shows the % of im-
provement per query pattern. The results show that
although Toulouse has learnt the trend of the psql
optimizer’s decisions, still it does not outperform
psql. This is normal, as we did not try to beat psql

by fine-tuning the model and/or using additional
features, thus avoiding the risk of over-fitting our
model.

Evaluation on MonetDB (mdb). Toulouse has
learnt efficient join paths from the psql optimizer,
so next, we investigated whether it could leverage
those on MonetDB and on two setups, S1 (same as
psql) and S2 (new). Figures 6b and 6e show the avg
runtime performance with varying #𝑗𝑜𝑖𝑛𝑠 and the
% of improvement per query pattern, respectively,
for the S1 setup (Figures 6c and 6f show the same
analysis on S2). Note that the more challenging
queries involve 7-10 tables. These run better on the
S1 setup that has more memory and cpus. The less
resource demanding queries involving 4-7 tables run
better on the S2 setup, whose resources suffice for
these queries, as it has more modern and faster cpus.
The plans specified by Toulouse (with a few excep-
tions) improve the mdb performance by an average
42% on S1 and 36% on S2. Hence, join path knowl-
edge seems to be effectively transferable. Looking
deeper into the mdb plans, we realized that the mdb
optimizer does not make optimal decisions for com-
plex queries with many joins. This is an interesting
finding towards future research in query optimiza-
tion: an ML based technique, trained on a different
engine and setup, can effectively complement a tra-
ditional optimizer. The alternative, improving the
optimizer codebase, would potentially be orders of
magnitude more challenging to implement.

The supervised approach however does not per-
form equally well on the use case C2 (results not
shown here), which also adds a different workload
to the equation. This motivated us to examine a
more complex architecture, with a richer feature set,
and a different design to cope with the challenge of
optimizing a previously unseen workload.
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Figure 7: Toulouse RL: runtime perf and % improvement vs. PostgreSQL (psql) and MonetDB optimizers

Evaluating the reinforcement learning approach.
Motivated by the positive results of re-using a cost-
based learning model on a rule-based engine, next
we increased the challenge to work with an unknown
schema and workload. Hence, our second line of
experiments focuses on the effectiveness of our re-
inforcement learning approach. As this approach
performs similarly to the supervised one on the C1
scenario, we omit the presentation of results for this
case and focus on the more complex, C2 scenario.

For starters, we trained the model on psql using a
similar process as before. In more detail, we altered
the query generation code of DBGen [21] to output
implicit joins and used 18 different workloads from
different database schemas, leaving out the two
IMDB schemas completely during training and only
performed inference on these two schemas. This way,
the learning happens in a schema-agnostic manner
and allows to test whether it could be transferable
to different databases. In each epoch we collect 6400
steps and train in batches of 64 for 3 mini-epochs.

Evaluation on PostgreSQL (psql). We tested the
queries produced by Toulouse vs. queries optimized
by the psql optimizer using the 113 queries of the
JOB benchmark. We ran each query 6 times and
report the average results. Figure 7a shows the
avg runtime performance of queries grouped by the
#𝑡𝑎𝑏𝑙𝑒𝑠 they involve. Figure 7d shows the % of
improvement per query id. The results show that
Toulouse manages to follow the general trend of
the psql optimizer’s decisions. Observe, that for
some queries, Toulouse RL performs worst than the
supervised approach (compare Figures 7d and 6d).
This is explained by the fact that in this scenario
Toulouse deals with queries and schema that has
never seen before. Still, it seems to be able to apply
effective optimization strategies that has learnt from

the different workloads used in the training phase.
Evaluation on MonetDB. Next, we evaluate how

Toulouse could cope with an unknown workload
on two different hardware setups S1 (same as psql)
and S2 (new). Figures 7b and 7e show the avg run-
time performance with varying #𝑗𝑜𝑖𝑛𝑠 and the %
of improvement per query id, respectively, for the S1
setup (Figures 7c and 7f show the same analysis on
S2). Notably, Toulouse manages to optimize almost
all queries by a significant fraction despite the fact
that the inference is performed with a new work-
load, on a new database, and on a new hardware
setup (S2). Figure 8 shows the average improve-
ment in MonetDB, on both hardware setups, for a
varying number of tables (i.e., #𝑗𝑜𝑖𝑛𝑠) per query.
On average, Toulouse improves query performance
in MonetDB by 45.68% on S1 (server machine) and
24.4% on S2 (lower end machine).

Discussion. We measured the robustness of
Toulouse’s plans. The standard deviation of query
performance is rather low for the entire workload,
with the slight deviations effectively caused by typ-
ical runtime variability. Looking at the plans, we
verified that Toulouse consistently produced the
same join paths for each query having all the other
parameters of the experiment unchanged.

Caveats. Although PostgreSQL is the pre-
dominant system used in the majority of related
work both for model training and as a baseline,
clearly there are more advanced optimizers in other
database systems. We believe that using a more
advanced optimizer to train our models would only
make our approach perform better, but we leave this
as a future work. The JOB benchmark (i.e., IMDB
schema) has been used extensively in the literature
as an analytics workload comprising queries with
varying complexity of join chains. We find this as



Figure 8: Toulouse RL: % improvement in MonetDB
running on two hw setups S1 (server) and S2 (low end)

a useful first step for our analysis, still, we plan to
investigate more real-world workloads in the con-
tinuation of our work. Finally, our results reported
here are based on our experimentation with Mon-
etDB; an excellent open source, analytics database
system that comes with one of the most popular
and successful rule-based optimizers. However, we
plan to extend our investigation to other rule-based
engines as well, in an effort to generalize our findings
to rule-based systems beyond MonetDB.

5. Conclusions
We presented an investigation on whether learning
could improve query optimization and in particular,
the join ordering, in rule-based systems. Our initial
attempt to use rules and optimization strategies as
features was not very successful. Still, as we show in
this paper, applying a model trained on a cost-based
optimizer to a rule-based system for known and un-
known workloads alike shows potential and deserves
additional research. Finally, our work shows that
ML techniques could be a reasonable supplement
to potential shortcomings of traditional optimizers
without requiring changing their codebase.
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