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Abstract
Data wrangling (DW) is the complex process associated with preparation of raw data for analysis. It is typically performed
as a craft in an ad hoc manner and its level of complexity and success is highly dependent on the data analysis task at hand,
quality of input data, and skill set of the data analyst. This makes the reuse of DW pipelines difficult, forcing data analysts
to often devise a new pipeline for each combination of data and analysis tasks, a process that is not only complex but also
expensive, consuming between 50 to 80% of even the most experienced data analyst’s time. In this paper, we investigate a
number of DW pipelines in the form of workflows to find commonalities or patterns in the way DW is performed in practice,
considering a multitude of data analysis tasks and data sets, devised by data analysts with varying levels of experience.
We present our investigation as a methodology that, from selection of workflow sources to workflow mining techniques,
describes how we dealt with the challenges of finding patterns in the way people prepare data for analysis, given the general
lack of guidelines for best practices and standards. The obtained results provide insights into the most commonly used
DW operations, solution patterns, redundancies and, not only optimisation opportunities, but also opportunities for reuse
of experience and best practices in data engineering. We believe that the obtained insights can be useful in facilitating the
construction of DW solutions to inexperienced data analysts via the reuse of patterns and best practices in DW.
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1. Introduction
Data Wrangling (DW) is regarded as a tedious and com-
plex process, consuming 50-80% of data analysis time
[1, 2]. The term, first used in 2011, describes a set of
activities associated with the transformation of raw data
into an asset ready for analysis. These activities typically
include data profiling, formatting, integration, transfor-
mation, cleaning and outlier detection [3, 1] which are
similar to those performed in the well established Extract-
Transform-Load (ETL) process [4]. The practice of DW
has been made possible to professionals lacking in data
science and engineering skills by the availability of self-
service tools that offer flexibility for custom, ad hoc and
quick DW solutions, often through user-friendly Graphi-
cal User Interfaces (GUIs) [5, 6, 3].

While such tools may share, to some extent, common
DW supporting functionality, there is a lack of standards
in terms of requirements, representations and outcome in
their offerings of DW operations [7]. This causes a severe
burden on the user of these tools, resulting from the
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significant effort that needs to be made when choosing
suitable tools for the task at hand, based on the user’s
understanding of the functionality associated with each
available DW operation, and the time taken to develop a
solution, often through a trial and error process.

This burden, combined with low levels of skill and
experience, makes DW a tedious, complex, non-optimal
and error-prone process. It results in users building differ-
ent custom solutions from scratch for similar problems,
rather than reusing existing ones, due to the difficult job
of understanding the available solutions. As observed
during our investigation, custom solutions available from
popular repositories suffer from redundancies and lack
of efficiency due to poor choices in operation selection,
potentially impacting on pipeline execution time and
quality of data analysis results.

Finding ways to help users build good quality DW
pipelines without burdening them is essential to the suc-
cessful adoption of DW tools. This raises questions, such
as the following: given a wealth of Web-available repos-
itories of DW pipelines, what solution patterns can be
found in existing pipelines that could allow reuse of ex-
isting solutions to DW problems? Can good quality so-
lutions to common DW problems be developed through
the use of patterns found in existing solutions? A good
quality solution can be one that minimises waste in the
use of computational resources.

In search for answers to these questions, an investiga-
tion into existing DW pipelines was performed, enabling
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identification of how analysts develop DW solutions in
practice. In this paper, we present the methodology we
used in this investigation, which combines ideas from
previous work in fields, such as ETL and Software En-
gineering (SE), to discover patterns in DW workflows.
More specifically, we collect a set of workflows to search
for DW practices followed by analysts in different data
domains, aiming at identifying common traits present
in their DW pipelines. In this process, we conceptualise
DW representations in a workflow as a way to standard-
ise them and, through the use of well-established graph
mining solutions, we identify frequently-occurring pat-
terns of DW tasks and operations. We present usage
information of identified patterns of operations and dis-
cuss how our findings can facilitate reuse of existing DW
solutions and optimisation of DW pipelines for common
DW problems. We believe that identification of reuse
and optimisation opportunities in ad hoc processes, such
as DW, can reduce burden and increase productivity of
the professionals developing these processes, e.g., data
analysts/scientists performing DW.

The rest of the paper is organised as follows: Section
2 presents a brief background and related work, the re-
search methodology is presented in Section 3 followed
by the findings and discussion in sections 4 and 5 then
finally our conclusion and future work in Section 6.

2. Background and Related Work
At a time when data is often analogised to gold, dia-
monds [8] and oil [9], DW is predicted to become an
increasingly critical process preceding data analysis, ca-
pable of determining the quality of the outcome of data
analysis tasks [8]. To facilitate DW, a variety of tools
have been proposed, ranging in capability and level of
technical skill required from users [7, 10], e.g., from pro-
gramming tools requiring high-level technical skills, such
as R and Python programming, to visual tools requiring
lower levels of technical expertise, a category that Talend
Data preparation [11] and Trifacta Wrangler[12] fall into.
Both categories of tools, however, are limited in the so-
phistication of mechanisms to facilitate reuse of existing
solutions. This is a shortcoming that Software Engineers
have worked hard to overcome and often tackle through
the use of patterns found in software design, as a way of
standardising and passing down knowledge/experience
of expert designers to non-experts, as readily-available-
for-reuse constructs[13]. While the factors motivating
creation of design patterns in SE are similar to those in
DW, no clear attempts to identify patterns in DW can
be found in the literature. However, reuse of previous
DW solutions via other means is found in previous work,
such as the one by He et al. [14], which shows that sug-
gestions of applicable operations can be made based on

user provided examples, and the one by Sutton et al. [15],
which is inspired by the UNIX Diff command. Although
tool functionality for direct and automated reuse of exist-
ing solutions is not a contribution in any of these earlier
research efforts, they bear evidence to the fact that solu-
tions to common issues can be devised. The focus of this
paper is on identification of design patterns in available
DW pipelines, represented as workflows, considering
that a significant number of them are found in this for-
mat. For that, a review of available workflow mining
contributions is provided in the following.

Workflow mining focuses on business process mining
using event logs for the purpose of redesign and optimisa-
tion [16, 17], which can’t be used to mine patterns in data
pipelines. Previous works identifying patterns used logi-
cal modelling of workflows into graphs to enable their
mining, where Tosta et al. [18] uses a path approach to
identifying patterns in scientific workflows (Figure 1),
and Theodorou et al. [19] used Frequent Subgraph Min-
ing (FSM) to identify frequent patterns of operations in
ETL workflows. While the approaches used by both are
applicable to DW workflows, [18]’s approach would lead
to identifying a set of short frequent paths of operations
which may lead to misleading conclusions, e.g, tasks C,D
and E in the figure appear 4 times (once in each path)
as opposed to once in the original representation. The
approach of [19] was successful in identifying patterns
in ETL, however, the repository used was created from
well-formed ETL standard workflows.

Widely established ETL and DW approaches may in-
volve similar subsets of operations and steps, however,
the two present considerable differences. For example:

• ETL’s main focus is on operations that perform
data integration from multiple data sources into a
unified schema, and data storage in a consolidated
data repository (e.g., data warehouse) whilst DW
involves tailored data transformations to prepare
a dataset for an analytical task such as machine
learning-based prediction.

• ETL involves a smaller subset of operations/data
transformations applied in a quasi-sequential
structure whilst DW involves a wider range of
operations with potentially iterative cycles and
interactive tasks (e.g., visual data profiling)

• ETL is typically performed using specialized soft-
ware tools (e.g., Talend and Oracle Data Integra-
tor) that automate the majority of the ETL process
steps, whilst DW combines GUI-based tools (such
as Trifacta) and programming languages such as
Python and R to code user defined functions.

These differences result in different patterns to solve data
problems faced by analysts, that are not traditionally
common in ETL workflows, but the similarities between
the two and their required outcomes is the reason for



our adaptation of ETL-based approaches to our research
purposes.

Figure 1: Interpretation of [18] approach for DW

3. Research Methodology

Figure 2: Research method followed in this research, dia-
monds represent decision points, ellipses represent findings
and the remaining are steps. The solid arrows represent work-
flow while the dashed line represents influence.

Our investigation starts with a literature review to
identify approaches to answering the research questions
described in Section 1 and a search through available DW
pipeline repositories for pipelines to be mined. By eye-
balling through the pipelines, some initial observations
were made, which helped with decisions on the approach
to take and tools to use. The following sections describe
each step in the methodology we used to carry out our
investigation, illustrated in Figure 2.

3.1. Selection of DWWorkflows
Despite the availability of numerous repositories of
data manipulation workflows, the workflows found in
[20, 21, 22] were narrowed-down, due to their focus on
DW. Following a thorough check, the MyExperiment
workflows [20] were selected for their high-level of com-
pleteness and complexity. The vast majority of the higher-
quality workflows that were of interest to us in the repos-

itory were generated using the KNIME tool [23]. While
the approach followed is not limited to KNIME, we chose
it because it contains builtin operations covering a wide
range of purposes and DW functionality, as well as the
tool being reported as a leader in data science [24] and
aimed at multiple data analysis applications.

Table 1
Number of Workflows From Each Repository

Source Number of Workflows
Source 1 - myExpirement.org 76
Source 2 - NodePit 103
Source 3 - KNIME Hub 1,751
Total 2,930

3.2. Creation of a Taxonomy of Data
Wrangling Operations

As discussed in Section 1, different tools implement DW
operations in different ways, and may use the same oper-
ation name to identify different functionality, or different
names to identify the same functionality. Functions im-
plementing the same functionality may present the same
name, but different function signatures in different tools.
Additionally, common DW functionality may be encap-
sulated in a single operation in one tool, while multiple
pieces of basic DW functionality may be combined as
a single operation in another tool. Figure 4 provides an
example of combination of common tasks into a single
construct [25]. The lack of standards in DW operations
makes identification of patterns in DW pipelines hard.
To overcome this difficulty, a process of conceptualisa-
tion and unification of DW operations was devised and is
described as follows. Considering that a data pipeline is
composed of a number of steps, encompassing a number
of tasks that can be executed using different operations,
a dictionary of typical steps and tasks in a data pipeline
can help conceptualising and unifying steps across data
pipelines. Such dictionary was collated from the litera-
ture, despite the lack of a consensus on steps and tasks
names, through the precise identification and concise
description of DW steps and tasks obtained from Rat-
tenbury et al. [26], Hellerstein et al. [6] and [27] were
used in the development of the dictionary. The following
describes the dictionary’s main DW steps.

1. Loading Data (L): Obtaining the data and trans-
forming it into a format usable by the tool.

2. Exploring Data (D): Tasks related to data discov-
ery and validation (e.g profiling).

3. Cleaning (C): Includes two buckets of tasks:
record-based cleaning (e.g removing empty
records) and value-based cleaning (e.g modify-
ing column datatypes).



4. Intra-record Structuring (S1): Transformations
that manipulate individual fields or records at a
time and include: removing, reordering and re-
naming columns as well as creating new columns.

5. Inter-record Structuring (S2): Transformations
that operate over multiple records and fields at
once and are divided into: filtering and reorder-
ing records, shifting granularity of dataset via
aggregation or pivots, and splitting the dataset
into multiple datasets.

6. Integrating Data (I): Enriching a dataset by com-
bining it with other dataset(s) using unions or
joins.

7. Enriching Data (E): Transformations that add
value to the dataset by deriving new fields us-
ing equations or domain specific operations e.g
deriving date of week from date.

8. Transforming Data (T): Transforming data values
within fields (e.g binning or normalisation).

9. Publishing Data (P): Encompasses all tasks that
indicate an end of a DW portion of a pipeline
such as start of an analysis portion or exporting
the dataset in a format of choice.

Figure 3:
KNIME Node Categories Figure 4: Row Filter Nodes

To build the intended taxonomy for unifying tasks in a
DW pipeline, an initial set of conceptual operation labels
was also created, based on the transforms presented by
Raman et al. [28] and the Relational Algebra (RA) op-
erations, eliminating duplicates found between the two.
Further, for each label, a DW task flag was created, as
presented in [28, 10, 6, 27, 26, 7, 29]. The factors sum-
marised in Figure 5 were used to map each operation (i.e.,
workflow node) into a label or to create a new label for an
operation, if needed, in the following order. It is worth
pointing out that, the dictionary of steps helps mapping
operations and labels into its most generalised form.

1. The (KNIME, in this case) node repository classi-
fication tree, illustrated in Figure 3.

2. The node’s functionality (e.g., Row Splitter is clas-
sified as a row filter operation according to its
functionality).

3. The node’s description (e.g., Substructure Search
is classified as a row filter operation since it imple-
ments domain-specific ’row split’ functionality).

4. The node’s prevalent trait (e.g., Date&Time Differ-
ence calculates the difference between two dates
in a row and creates a new column with the re-
sults; as such, it can be classed under the ’append
column’ task).

Figure 5: Node classification process flow

An example of benefits of applying the taxonomy is
illustrated in Figure 6 which can also be extended to
unify pipelines from multiple tools. In the example, the
repository initially contains 95k nodes with 1.8k unique
signatures, which got reduced to 385 signatures, by using
the 90 labels in the taxonomy. The 90 created labels
contain 37 DW tasks spanning 60% of the node instances.

Figure 6: Two workflow snippets with unique signatures and
their representation after applying the taxonomy.

3.3. Parsing of Repository Workflows
into Graphs

Preparation of workflows to be parsed using the PAFI
algorithm, developed by Kuramochi et al. [30], is sum-
marised in Table 2. Note that, while the target workflows
are, logically, direct acyclic graphs (DAG) [23], the di-
rection of edges had to be neglected during the parsing
process to adhere to PAFI’s requirement of ID order in
edge specification. Additionally, a concurrent parsing
process was performed to produce steps graphs using the
steps dictionary (described in Section 3.2). In other words,
each node in every repository workflow was mapped into
its step representation, where workflow duplicate step
occurrences and branching were eliminated to produce a
linear graph, to be used in the identification of frequent
step patterns.



Table 2
Workflow Manipulations Mapped to Purpose

Purpose
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Omit blank node IDs
within workflows

✓ ✓

Eliminate ID repetition
in workflows

✓ ✓

arrange IDs in each edge
specifications in ascend-
ing order

✓

N
od

e Apply the taxonomy ✓ ✓
Omit workflows with no
DW operations

✓ ✓

St
ru

ct
ur

e Parse each workflow
into a graph and elimi-
nate nesting

✓ ✓

Produce graph transac-
tion database

✓

Visualise the produced
patterns

✓

3.4. Mining of Workflows
The aim of the workflow mining performed in this re-
search is twofold: (i) to find patterns of DW steps in
pipelines, and (ii) to identify the frequency of DW tasks
within the pipelines. For that, parsing of the workflows
using the dictionary of steps, described in Section 3.2, was
performed to produce a simplified graph of each pipeline
while still preserving the original relevant content, as
shown in Table 3.

Following transformation of DW pipelines into graphs
through the application of the algorithm (and tool) pro-
posed by Kuramochi et al. [30], the sets of graphs were
divided into buckets based on the % of DW operations
contained in them, e.g., (≥ 80%,≥ 60%,≥ 40%,≥
20%and > 0%), via multiple iterations performed with
different support1 (sup) thresholds.

3.5. Considering the Most Traversed DW
Paths

The obtained results from the mining of workflows have
shown that a significant fraction of the discovered pat-
terns present low frequencies, despite the similarities
they share, whose only exceptions are a few extra analy-
sis or domain-specific operations that appear in some of

1the minimum proportion of workflows that should contain the sub-
graph to be counted as frequent

Table 3
Modifications to steps representation of workflows and pur-
pose

Description Purpose
Removal of User Defined Function
(UDF) vertices because they require in-
dividual analysis

Simplification
of graphs

Removal of duplicate step vertices
both when done in sequence or not

Simplification
of graphs

Removal of order of step execution, by
sorting remaining vertices alphabeti-
cally

Aid in identi-
fying patterns

Discard workflows not containing
more than one of the core wrangling
steps (2-8) because they wouldn’t
provide useful insight

database
reduction

Combined both Analysis steps and
output production into a Publish step
because in terms of DW they mean the
pipeline is over

Same results

them, which we informally refer to as intruder operations,
and slight variations in the order in which DW opera-
tions appear. These observations have brought about the
idea of making changes to our original approach, which
considered obvious patterns appearing in the workflows
(i.e., with high frequencies), as suggested by Theodorou
et al. [19]. The modified approach aims at identifying
lower frequency patterns found in the mining results
that could potentially represent high frequency ones, if
exceptions are dealt with differently. This approach is
detailed in the next sections but, in essence, variations
in operation ordering found in operation groupings that
appear with a certain frequency are disregarded, allow-
ing identification of paths of DW operations within these
groupings that are frequently traversed, which we call
the Most-commonly Traversed Paths (MTPs).

4. Findings
Findings in this research can be categorised as shown in
Table 4 based on their source as observations and min-
ing. The first are related to reuse in workflows which
were recorded while gathering the workflows and setting
up the environment. The mining tasks performed, re-
sulted in different sets of findings, which when combined
provide a greater understanding of DW pipelines in a
workflow setting.

The findings from observations were made while set-
ting up the KNIME environment to work with pre-built
scientific workflows. The observations made were used
to identify issues related to reuse in workflows as well as
identify issues that would hinder the subgraph mining
process. The domain specific file structures used in sci-



Table 4
Categorised Summary of Findings

Category Brief Source

Reuse in
scientific
work-
flows

• Issues related to input files
• Issues in preparing environ-

ment
• Issues in acquiring commu-

nity nodes
• High use of UDFs

Observation

Frequent
steps

• Order variation - high
• Intertwined steps of DW and

analysis
• Patterns of single file DW
• Patterns of multi file DW

Mining
Steps

Frequent
opera-
tions

• Low support values
• Less authors = more patterns
• High number of order permu-

tations
• Different types of repetition
• Wrong/wasteful usage of op-

erations

Mining
Sub-
graphs

Most
traversed
paths

• Increase frequency of sub-
graphs

• Unveil new significant fre-
quent patterns

• Unveil room for optimisation

Map of
frequent
sub-
graphs

entific workflows which are not natively supported by
DW tools introduced the need of community to develop
custom nodes that are not always updated to support the
latest releases of KNIME. To solve issues related to lack
of support to community developed nodes, users seem to
prefer using UDFs in the form of scripts and code snip-
pets. While reviewing these UDFs, it was noted that the
majority of them perform domain specific functions that
are highly idiosyncratic and with limited impact on the
approach of identifying general DW patterns. The use of
community developed nodes as well as the UDFs some-
times dictate the placement of specific nodes which were
major contributors to issues identified in varied order of
operation placements.

In the DW steps pattern mining, 31% of pipelines (out
of the 1,787 pipelines investigated) were omitted because
they included less than two DW steps. The remaining
pipelines resulted in multiple usage patterns from which
the 7 most interesting ones are presented in Figure 7. The
presented patterns are divided into two groups based on
their inputs a) single-input patterns (Ps1-3) and b) multi-
input patterns (Pm1-4). The most frequent occurring
pattern Pm3 was implemented in 32% of the workflow
instances followed by 16% for Ps2. The step patterns
are implemented by users based on factors such as num-
ber of inputs, structure of input(s) and subsequent anal-
ysis requirement as seen in Table 5, e.g: if one has a

dataset requiring dealing with null values (imputation or
removal) and column based operations (e.g creation of
new columns) they would use pattern Ps1. The results
of DW steps mining confirmed that the lack of rules on
operation placement was not simply an interchange of
adjacent tasks which would not appear if generalised
but was a more critical issue that appeared even when
generalised to the level of steps. An example of the high
variation of order can be seen in Pm3 which has 5 core
wrangling steps and appeared in 200 different order per-
mutations.

Figure 7: Most interesting patterns, parallelogram represent
Exploration (D) which is not always captured by workflows
and the double circle used because the cleaning (C) step is
optional and data dependant.

The highest sup value with results in the task level
pattern mining was 50% when the database of Source1
was used which is the group that resulted in the largest
number of patterns in other sup values. The highest sup
value producing patterns for all databases was 15% as
illustrated in Figure 8. The option to retrieve maximal
subgraphs2 only was used when running the algorithm,
however, the inconsistent order of operations required
further manual processing to remove duplicate patterns
and those never independently appearing in workflows.
The DW tasks were present in 575 subgraphs of which
63% contained repetition of tasks (Table 6) and 50% of
the remaining subgraphs consisted of 6 tasks (not all DW
tasks). Although the produced subgraphs were unique
to the graph mining algorithm, they were not unique in
terms of functionality when analysed visually.

We define a DW pattern as a frequently occurring
combination of DW tasks with distinguishing behaviour
leading to its classification. The 15 most interesting pat-
terns extracted are presented in Figure 9. Other patterns

2A subgraph for which none of its super-graphs is frequent.



Table 5
Pattern Descriptions Sorted by Percentage of Occurrences, P
is the pattern code, WFs is the number of workflows and % is
the percentage from total workflows

P Description/Usage WFs %
Pm3 Dealing with missing values, dimen-

sion manipulation, shifting the gran-
ularity (aggregation or pivot) and re-
shaping (transpose) to prepare the
data for integration.

572 32

Ps2 Dealing with missing values, dimen-
sion manipulation, shifting the gran-
ularity and reshaping.

292 16

Pm4 Same as Pm3 but with transfor-
mation of values which is usually
linked to certain machine learning
use-cases.

121 7

Pm1 Dealing with missing values, dimen-
sion manipulation, shifting the gran-
ularity and reshaping to prepare the
data for integration.

79 4

Ps1 Dealing with missing values and di-
mension manipulation.

47 3

Pm2 Dealing with missing values, dimen-
sion manipulation to prepare the
data for integration and enrichment
of dataset.

29 2

Ps3 Same as Ps2 but with transformation
of values which is usually linked to
certain machine learning use-cases.

17 1

Figure 8: Results of Mining graph databases with different
sup values

in the results were either subsumed within the 15 patterns
or have no clear distinguishing behaviour that could lead
to its definitive classification. Issues faced in the mining
of patterns was mainly resulting from the varied order
of tasks as well as the intruding tasks appearing in fre-
quent combinations which hinder the identification of
a pattern or results in them appearing with a low fre-
quency. From the results, there were interesting insights
that can be confirmed with the appearance of highly re-
peated operations (Table 7) which as well as producing
irrelevant frequent subgraphs, indicated issues related to
incorrect utilisation of operations, e.g using a RS node

Table 6
Breakdown of Types of Repetition in Subgraphs

Type of Repetition (name)
# of
graphs

% from
repetition

overall
%

same operation (self-loop) 183 50 32
sequence of operations (Same-
SeqOps)

64 17 11

both types (Both repetitions) 119 33 21

Table 7
Most Repeated Operations in a Single Subgraph and Number
of Graphs They Appear in

Repeated Operation Num. Graphs % of results
Row filter 214 37
Split Rows 52 9
Concatenate 19 3
Column Convert 17 3

while only processing a single output branch which could
be achieved with a simple RF operation. Combining the
subgraphs as paths to create the DW traversed paths by
removing the repetition of operations and disregarding
the order of their appearance in the frequent subgraphs
unveiled potential significant DW patterns. Figure 10
represents one of the MTPs departing from Row Filter
which contain significant insights which didn’t appear
in the produced subgraphs. The figure contains 5 nodes,
the path A appeared in 45 different subgraphs, the path
B appeared in 44 and the path C appeared in 27. While
the number of times these paths of operations appear
is relatively high, they were missed by the mining al-
gorithm or returned with lower frequency because of
the various placement order and repetition. Considering
the results from the MTPs identified, lower frequency
patterns in Figure 9 should have been produced by the
mining algorithm with higher sup values had a consis-
tent arrangement of operations been followed, e.g path
B represent the patterns "Join with summary" and "join
Summaries". On the other hand, path C did not clearly ap-
pear in the patterns resulting from the mining although
it represents a relatively valid scenario in DW of shifting
shape of a summary table before integrating datasets.

5. Discussion
The findings related to reuse of scientific workflows com-
bined with general challenges of reuse in workflows add
to the burdens faced by users. While tools such as KN-
IME attempt to develop nodes based on usage statistics
and user feedback, this doesn’t address reuse of existing
workflows since users are required to fully understand a
workflow to be able to modify it. The heavy use of UDFs,
can be attributed to users reusing existing code to per-



Figure 9: Most interesting patterns

Figure 10: MTP in the map of paths departing from RF

form common tasks and in the most extreme scenarios
use these interactive workflow design tools merely for
their orchestration capability.

Issues of placement of operations resulting in multiple
order permutations of DW steps as well as tasks can be
seen in all types of data-centric workflows implemented
using interactive tools can be attributed to the users and
tools. The lack of technical knowledge and DW experi-
ence of the wider population of non-technical analysts
combined with the usage nature of interactive tool can be
attributed to poor design outcomes in investigated DW
pipelines. The interactive tool design tempts a user to
only use an operation to fulfil the requirement of a sub-
sequent operation including but not limited to loading
and wrangling additional dataset(s) for integration. Al-
though the patterns presented in Figure 7 had numerous
permutations during discovery, the order presented in
the figure is influenced by rules of RA where operations
with lower-cost and highest impact on reducing size of
the data are applied as early as possible and before more
expensive operations such as integration.

With regard to DW patterns, it was observed that the
highest number of patterns appeared in the databases of
"source1" which can be attributed to having the least num-

ber of workflows that were authored by a small group
of users analysing data in similar domains. Additionally,
the operations in (Table 7), indicate lack of planning as
well as knowledge of the tool’s capabilities. Although in
some cases it may be valid to have a sequence of opera-
tions e.g to do selective processing, it is hard to find an
argument which makes the sequence of multiple RF op-
erations valid. Since RF operations evaluate a predicate
by performing a full scan of the dataset, its repetition in-
dicates lack of knowledge and/or skill to create a proper
predicate even with GUI support, which results in bad
workflow designs and unnecessary execution of opera-
tions. This in addition to the improper use of constructs
mentioned earlier in the case of operations such as RS.

The workflows included in the repository are not
purely DW workflows, nor were they necessarily created
by experienced wranglers or ETL engineers, they repre-
sent a subset of real data pipelines containing DW steps
in a workflow setting. While the subset of DW opera-
tions used is not big, identical combinations of operations
were not produced by the mining algorithm indicating
the lack of rules of thumb in DW which also explains the
lack of significant highly frequent patterns of operations
similar to those found in the works of [19] where the
mining was performed on ETL workflows built by ETL
experts using specification of TPC-DI, a benchmark for
Data Integration [31]. It can also be deduced that even
though a visual interface makes it easier for non-experts
to attempt to wrangle by making the operations easier to
find through different interfaces it doesn’t guarantee they
will be used effectively or efficiently without standards
or design rules to follow. The findings and deductions
made, resemble the basis of the motivation of the works



of the Gang of Four (GoF) in SE when they started the
creation of their patterns catalogue [13], however, the
difference in mentality of the two sets of users must be
considered. On the other hand, the set of paths identi-
fied from the mining, present solutions that solve a wide
set of wrangling use-cases such as filtering, integration,
structure transformations and value conversions. E.g
Fig. 10 includes very expensive operations in terms of
time, memory and CPU resources that are used in varied
order in practice but can be optimally arranged using
query optimisation techniques to produce a semantically
equivalent solution using the same operations, which is
efficient to run and easy to follow and apply. Using de-
sign principles from SE and applying them to basic DW
operations and MTPs would create the standards and
patterns DW lacks which would be a seed to a catalogue
to support the design of DW solutions.

5.1. Recommendations
Other Data engineering (DE) approaches such as query
builders (QB) applied to support the creation of SQL
statements without the burden of learning a new lan-
guage using smart GUIs can reap benefits to building
DW pipelines efficiently. These approaches have been
applied in commercial ETL tools, and considering the
similarities between DW and ETL, they can be used to
facilitate effective DW solution design. While in ETL, sim-
pler processes are handled using SQL [4], which can be
applied in DW with the current adoption of representing
data as relations in DW tools, it wouldn’t reduce burdens
of DW on non-technical users. This adopted representa-
tion combined with standardisation of DW operations
would result in the applicability of query optimisation
techniques in DW pipelines which can then be utilised by
the DW pipeline builders -similar to QB- to produce an
optimised pipeline which utilises the patterns in the form
of design principles. The burden of building pipelines can
be further reduced by using standard statistics of input
datasets to provide recommendations and solutions to a
set of issues such as data reduction and integration. In
data lakes, integrating metadata handling frameworks,
e.g MOSES [32], would assist wranglers in identifying
relevant datasets and availing the metadata to the QB
without burdening the user. These approaches would re-
sult in increasing reuse of pipeline strategies rather than
the complete workflows by promoting a systematic use
of heuristics as well as scientific formulation of DW tasks
to transform DW into an engineering discipline[33].

6. Conclusion and Future Work
While some may argue ETL and DW are fundamentally
different [6], others view ETL as a type of DW overseen

by specialised personnel in an organisation [26]. We
agree with the latter and believe that an ETL pipeline is
a well-defined DW pipeline constructed for reuse. The
well-defined practices in ETL were aided by many related
IT fields including adoption of techniques from SE and
DE domains as well as relying on DB technologies and
its optimisations when performing simple tasks.

The self-service DW tools adopting GUIs and menu-
driven tool along with a spreadsheet approach have re-
duced the burden of programming DW recipes by using
familiar interfaces, however, they do not reduce all the
burdens of building a DW pipeline and in times they
increase the difficulties by overwhelming users with
choices of DW operation with different implementations
that increases the search space of possible operations to
be used by the non-technical analysts. The clear lack
of standard in implementations of DW operations, their
requirements and outcomes also adds an overhead to
user adoption to new tools. We believe standardising
operations and patterns in the field of DW and building
on works such as [28] combined with clear cost mod-
els would enable optimisations to be carried in any DW
pipeline. Our future work would use findings in this
research to standardise the set of commonly used opera-
tions building on the idea of programming language and
tool agnostic conceptual DW operations [34], formal DW
pattern specification, and optimised MTPs using design
principles enabling the creation of tools that reduce the
burden of building DW pipelines.
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