
Is My Model Up-to-date? Detecting CoViD-19 Variants by
Machine Learning⋆

Oguzhan Avci1,†, Giuseppe Pozzi1,**,†

1DEIB, Politecnico di Milano, P.za L. da Vinci 32, I-20133, Milano, Italy

Abstract
Machine learning extracts models from huge quantities of data. Models trained and validated over past data can be deployed
in making forecasts as well as in classifying new incoming data. The real world which generates data may change over time,
making the deployed model an obsolete one. To preserve the quality of the currently deployed model, continuous machine
learning is required. Our approach retrospectively evaluates in an online fashion the behaviour of the currently deployed
model. A drift detector detects any performance slump, and, in case, can replace the previous model with an up-to-date one.

The approach experiments on a dataset of 8642 hematochemical examinations from hospitalized patients gathered over
6 months: the outcome of the model predicts the RT-PCR test result about CoViD-19. The method reached an area under the
curve (AUC) of 0.794 , 6% better than offline and 5% better than standard online-binary classification techniques.

Keywords
Machine learning, adaptive modelling, concept drift, model update, CoViD-19

1. Introduction
Artificial Intelligence (AI) initially aimed at simulating
and replicating the human way of thinking.AI evolved
very rapidly, and nowadays aims to “reason about huge
quantities of data” [1], rising the concept of Machine
Learning (ML). Reasoning refers to the capacity of ex-
tracting knowledge; learning refers to the capacity of
acquiring new knowledge from facts, automatically de-
riving a thesaurus of knowledge which makes the system
capable of autonomous behavior in the real world.

ML processes huge quantities of stored data to derive
a model: the model enables us to make forecasts about
values for future data. Forecasts are the more precise and
the more accurate ones the more the model adheres to
the real world. However, the real world may experience
changes, thus drifting away from the original behavior,
i.e., the one over which the model was initially defined.
As a consequence, the performance of the model slumps.
Two urgent needs arise: a) detect the performance slump
of the model; b) decide when new training on more recent
data is needed, to re-couple the model with the real world.

The current paper aims at identifying a criterium to
detect the need for re-coupling the model with the real
world. As an application scenario, the paper considers
data from blood examinations from [2]: data are then

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023), Ioannina, Greece
*Corresponding author.
†

These authors contributed equally.
$ oguzhan.avci@mail.polimi.it (O. Avci); giuseppe.pozzi@polimi.it
(G. Pozzi)
� https://www.deib.polimi.it/pozzi (G. Pozzi)
� — (O. Avci); 0000-0002-2828-862X (G. Pozzi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

processed to build a predictive model, which classifies if
the patient is affected by CoViD-19 or not.

The paper is structured as follows: Section 2 describes
the state of the art in ML; Section 3 focuses on the ap-
proach we propose here; Section 4 describes some details
about the prototype implementation; Section 5 reports
about the on-the-field deployment of the model; finally,
Section 6 draws some concluding remarks.

2. Related Work
This section describes some background issues and the
state of the art on modelling and machine learning.

2.1. Background
Given a huge quantity of data (the ground truth), ML
enable us to build up a model which best fits the real
world data come from. The bigger the data are, the more
precise the fitting. The ground truth is split into two
parts: one part is used to train the model; the other part
is used to validate the model, i.e. to assess the quality
of the identified model in terms of its performances in
predicting or classifying newly acquired data (operating
data – not those used to train the model).

A properly trained model can behave well in the real
scenario for some time; however, the performances de-
grade over time [3], and the model is no longer adequate.
The performance slump has to be properly detected and
managed: several reasons may trigger such a situation,
including changes that occurred in the real world after
the model has been initially trained.

Models must then be retrained (i.e., trained again),
either automatically or manually, to face changes in op-

mailto:oguzhan.avci@mail.polimi.it
mailto:giuseppe.pozzi@polimi.it
https://www.deib.polimi.it/pozzi
https://orcid.org/---
https://orcid.org/0000-0002-2828-862X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

erating data. Manual retraining is functional but expen-
sive and time-consuming. The current enterprise ap-
proach offers MLOPs (Machine Learning OPerations)
as a potential solution for automated retraining. How-
ever, minimal effort was devoted to developing adaptive
machine-learning frameworks that can continuously up-
date models. Operating data must be integrated into
models quickly to enable reliable predictions. Online ma-
chine learning allows the ongoing recalibration of ML
models in fast-changing circumstances.

Deploying a two-fold system could benefit. One part
of the system, once suitably trained, takes care of reading
new incoming data and of making suitable forecasts or
suitable classifications over the most recent data. The
second part of the system guarantees experiment tracking
and automated deployment: this part of the system auto-
matically warns in case of a performance slump, retrains
the model, and deploys the most recent model.

2.2. Related Work
Major relevant literature refers to auto-adaptive machine
learning and concept drift.

Auto-adaptive machine learning [4] is a reference ar-
chitecture where ML models can be deployed and do not
need to be manually maintained. While several products
are in this direction, the motivation of the major ones of
these systems is smoothing the path to production. The
focus is on the supervision of the model once deployment
has ensued. Fast deployment without constant vigilance
would worsen technical debt [5], while the problem of
optimal continual learning is NP-hard [6].

A first try is from Widmer et al. [7] with the FLORA
framework. Major features are: holding only one win-
dow of currently trusted samples and beliefs; keeping
concept descriptions and re-using them when a previous
context re-appears; managing both functions by a heuris-
tic that constantly monitors the system’s behaviour. The
main problem is that the window adjustment heuristic is
conditional on parameters. Although the parameter set-
tings chosen earlier yielded somewhat robust behaviour
in most artificial environments, this is not sufficient.

The approach by Gomes at al. [8] is similar to the one
above. It uses an online learning system that controls
available context information to enhance an existing drift
detection technique in circumstances where previously
observed concepts recur. It constructs a context-concepts
history used to detect and adjust to drift.

Another similar approach is also proposed by Nasci-
mento et al. [9]. They suggest a control module that
configures ML models, monitors the context modifica-
tions, and holds a history of the trained ML-based models
that deliver the best result for one of the operational con-
texts. When the context changes, the rate of the outcomes
achieved by the ML model currently in use may drop.

Therefore, if context transformations are known, the con-
troller will retreat to an earlier composition instead of
retraining itself. Otherwise, it will train new ML models.
Consequentially, if a context is not taken into considera-
tion explicitly, substantial bias can be introduced.

A completely new technique is proposed by Bach et
al. [10], somehow similar to the one later on used in the
current paper. The novel vision is to use the interac-
tion between two learners, a stable online learner with
a reactive one, and their contrasts in accuracy to man-
age concept drift. The stable learner beats the reactive
learner when acquiring a new concept, but the reactive
learner surpasses the stable learner in the time behind
which the concept changes.

Concept drift in ML refers to changes in the prob-
lem’s relationships between input and output data grad-
ually [11]. With more focus on the issues relevant to the
current paper, the detection of concept drifts is to be per-
formed in the data streams over time. While concept drift
detection can be performed by some statistical process
control as DDM [12], or temporal window [13] distri-
bution as ADWIN [14], the remediation of concept drift
can be collected by the taxonomy presented by Gama at
al. [15]: retrain, i.e., use more recent data; ensembles, i.e.,
keep a collection of learners and merge their decisions
to take a general conclusion.

Baier presents a switching adaptation strategy [16] for
dealing with concept drift in real-world datasets. The
initial model is updated incrementally with the most
recent samples for a specific time to adjust to the most
current concepts. However, following a particular time
span, updates will not be sufficient to adapt the model
to the most recent data shifts since the concept changed,
which means that the current model is obsolete. Thus,
this needs the retraining of a new model.

In the current paper, we follow the approach of [16],
where instead of retraining a new model when the ac-
tual model becomes outdated, we replace the current
model with the one that is updated recurrently in the
background with more recent data.

3. Proposed Approach
One essential part of concept drift handling is not just the
detection of drifts but even how to re-adjust the underly-
ing ML model. The model might be commonly adapted
whenever new labelled data are obtained. Incremental
practices update the existing model regarding the most
recent data samples [16]. Relevant features of the under-
lying model are continuously adapted, e.g., the weights
of a neural network. Adaptions can either be founded on
triggers, such as precise concept drift detectors, or can
be taken out regularly on an evolving story. Triggered
transformation methods are defined as knowledgeable

or operational strategies, whereas growing strategies are
viewed as random or inactive. Triggered transformation
methods use a single prediction model based on a drift
detection algorithm (e.g., ADWIN [14]). If a drift warning
is signalled, the ML model is adjusted [17, 18].

Our approach is based on a detector strategy, where
the system contains a primary neural network for out-
put prediction and a secondary neural network for the
model update in the background (Figure 1). Thus, we
first identify a model by ML techniques, then we monitor
the up-to-dateness of the model over time.

...

...

...

...

...

...

x (input)
yl (actual)

primary network

secondary network

m
o
d
e
l
c
h
a

n
g
e

d
ri
ft
 d

e
te

c
te

d

performace estimator

y (predicted)

Figure 1: Online Deep Learning workflow. The first model
(primary network) is used to deliver actual predictions (𝑦)
from input data (𝑥); the second model (secondary network)
is updated in the background. If the performace estimator
detects a model degradation, the model is replaced.

3.1. Model Identification
We use 𝑥𝑡 to represent an array having the feature of a
dataset instance i. The primary neural network (Figure 1)
accepts 𝑥𝑡 as input, builds up a first model, receives a
new incoming value 𝑥, and delivers a predicted result 𝑦.

After the actual outcome 𝑦′ is observed, it is used
to update the model of the secondary neural network
(Figure 1). A performance estimator (Figure 1) follows
the predicted (𝑦) and ground truth (𝑦′) results.

The primary neural network 𝑓(𝑥𝑖;𝜆𝑡) takes instance
measurements as inputs to predict outcomes. We use 𝜆𝑡

to represent the weights and biases of the primary neural
network, initially trained using the training dataset.

The secondary neural network 𝑓(𝑥𝑖;𝜆𝑚) is being up-
dated behind the scenes by an online optimizer. 𝜆𝑚 is
initialized to the same parameters as the initial param-
eters 𝜆𝑡. Afterward, at the evaluation of new incoming
samples, 𝜆𝑚 is constantly updated, using new incoming
data within the latest time window, as the time window
occasionally slides forward (Figure 2).

Data from [t0 - t1]
used to train and to

validate M1

t0 t1 t2

M1 used to analyze

incoming data,

M2 trained and validated

during [t1 – t2]

t3

M1 is no longer a
good performer

M1 is deployed

M2 is no longer a

good performer

M2 is deployed

M2 used to analyze

incoming data,
M3 trained and validated

during [t2 – t3]

Figure 2: The original dataset is used at time 𝑡1 to train and
validate 𝑀1, a first version of the model. At time 𝑡2 the model
𝑀1 is obsolete and needs to be replaced: incoming data from
the time span 𝑡1 . . . 𝑡2 are used to continuously retrain the
new model 𝑀2, which is deployed at time 𝑡2 replacing 𝑀1.

Real-world datasets usually do not include details re-
garding the exact starting time and ending time of the
drift, since they are usually affected by hidden aspects
that cannot be calculated. Thus, comparing the general
predictive accuracy of other drift-handling techniques
on real-world datasets is a prevalent practice. Metrics
such as accuracy or Area Under the Curve (AUC) are
used for classification problems, and the Mean Absolute
Error (MAE) is used for regression ones.

3.2. Model Up-to-dateness Monitoring
The performance estimator (Figure 1) aims at detecting
the performance slump, so that, if a performance degra-
dation is detected, the currently deployed neural network
(initially, it is the primary network of Figure 1) is replaced
by an updated neural network (the secondary network of
Figure 1). Thus, whenever a revision of the model is evalu-
ated as necessary, the optimizer (e.g., Adam or Stochastic
Gradient Descent – SGD) revises the secondary model
parameters 𝜆𝑚 after a time window has elapsed. The
optimization is a stochastic gradient descent method and
minimizes the loss function (i.e., cross-entropy in our
approach)

Cross-entropy:
−𝑦𝑖 log 𝑓(𝑥𝑖;𝜆𝑚) + (1− 𝑦𝑖) log(1− 𝑓(𝑥𝑖;𝜆𝑚))

We use a batch task collecting the recently gathered
data (𝑥𝑖, 𝑦𝑖) of size 𝑘 (number of samples in the consid-
ered time span). We perform some batch SGD updates 𝑛
times: 𝑛 is suitably chosen (see Section 5.1).The perfor-
mance estimator signals the degradation of the operating
neural network and activates a replacement.

Our proposed approach initially requires the primary
network to identify a model based on data collected over
a time span; the identified model is then deployed. Next,
the approach compares the results (𝑦) predicted by the
deployed model (which at the beginning is the model

Algorithm 1 Online evaluation
1: Input: 𝜆𝑡, 𝜆𝑚, collected data {𝑥𝑖, 𝑦𝑖}
2: #𝑠𝑦 stores results predicted by the network
3: #𝑠𝑦′ stores results actually observed
4: for 𝑖 in incoming data do
5: 𝑠𝑦 . add(𝑥𝑖, 𝑓(𝑥𝑖;𝜆𝑡)) # update predicted results
6: 𝑠𝑦′ . add(𝑥𝑖, 𝑦

′
𝑖) # update observed results

7: end for
8: if Detector(𝑠𝑦 , 𝑠𝑦′) then
9: 𝜆𝑡 ← 𝜆𝑚 # replace the primary neural network

10: end if
11: 𝜆𝑚 ← 𝑆𝐺𝐷(𝜆𝑚, 𝑠𝑦′)

from the primary network) with the actual ones (𝑦′), us-
ing a specific metric based on the problem we are solving.
According to the metric (line 8 of Algorithm 1), if the per-
formance of the currently deployed model is worse than
the performance of that same model during the previous
time span (i.e., we observe a model drift), the currently de-
ployed model is getting worse, and it needs to be replaced.
The model from the secondary network is continuously
retrained with new incoming data, keeping this replace-
ment model ready to jump in: when requested, the model
from the secondary network (the one continuously re-
trained) replaces the previously deployed model, thus
becoming the newly deployed model. In other words:
the detector compares the metric within the actual time
span with the metric from the previous time span. If the
metric for the in-use model decreases, the in-use model
is replaced by the continuously retrained model from the
secondary network. Algorithm 1 resumes the implemen-
tation in each time span.

The critical issue is now about the selection of the met-
ric according to which a drift is detected. Usually, it is re-
quired to select a decision threshold for a deployed model
to achieve some action (e.g., to predict true or false). One
traditional method in ML is picking a threshold from a set
of potential thresholds to get good tradeoffs on specific
metrics, such as accuracy and sensitivity. Nonetheless,
frequently such thresholds are manually set. Therefore,
if a model updates new samples, the previously manually
set threshold may be weak. Manually correcting multiple
thresholds across numerous models is breakable. One
mitigation approach for this issue occurs in [5], in which
thresholds are learned via straightforward evaluation on
holdout validation data.

In our approach, we detect drifts by measuring all the
performances via AUC, which is a benchmark for binary
classification. Given that: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
and

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝐹𝑃+𝑇𝑁

, the Area Under the Curve AUC
is computed as: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦− (1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) Thus,
according to the metrics, to detect drifts correctly AUC
has to be evaluated as new data are processed.

4. Implementation Details
We now describe the implementation details of the pro-
posed approach: tool selection and dataset selection.

4.1. Tool Selection - MLOPs
Any MLOPs relies on several steps and software modules.
The plain ML workflow has a streamlined structure and it
is set up by three major steps: data acquisition and prepa-
ration (DAP), to process and augment data for use by
models; model development and training (MDT), to build
the model based on a set of goals; and model deployment
and operations (MDO), for integrating model predictions
into the business and build some system-wide features.
The market offers several very good tools, some of them
taking care of all three steps: however, in most cases, one
tool performs very well on one step (DAP, or MDT or
MDO), only, and to date, no tool performs very well on
all the steps. Thus, to select the proper tools, we build up
an evaluation matrix of the major open-source tools.

In our approach, we enrich the plain ML workflow
to fulfill the requirements of Figure 1, which includes a
re-training and a re-deployment of the process model.
The resulting enriched workflow is depicted by Figure 3,
where the steps are suitably orchestrated.

Pull

production

model

Model A
iniziatilization

Model A

training and

testing

Performance
estimation

Model B

update

Model
registry

Model
deployment

T
a
g

 b
e

s
t

m
o
d
e

l
fo

r

p
ro

d
u
c
ti
o
n

P
u

ll

m
o

d
e
ls

 A

a
n

d
 BLog

Save

model A

Figure 3: The enriched workflow, derived from Figure 1, where
the steps are suitably orchestrated.

As a result, we choose the following tools (Figure 3):

• Airflow orchestrator: Airflow is a platform cre-
ated to write, plan and monitor workflows pro-
grammatically. Airflow features scalability, dy-
namicity for pipeline generation, and extensibil-
ity to define own operators. Airflow orchestrates
Model A initialization, Model A training and test-
ing, Performance estimation, Model B update.

• MLflow model registry: MLflow is an open-
source platform for end-to-end ML lifecycle man-
agement. It allows one to track experiments, man-
age and deploy models, and host MLflow tem-
plates as a REST endpoint. MLflow is the reposi-
tory of all the identified models (Model registry).

• BentoML deployment: BentoML is a high-
performance framework for serving and deploy-
ing ML models either in an offline or online fash-

ion. It supports multiple ML frameworks, such as
Tensorflow, Keras, and many others. BentoML is
used to deploy the model in the online production
system (Model deployment).

4.2. Tool Selection - The Dataset
We need a dataset to train, validate, and test the model
in a binary classification problem: predicting an output
value according to some incoming values.

Given the current CoViD-19 pandemics and also in the
light of [19, 20], we choose a dataset containing data from
blood examinations from the Hospital Israelita Albert
Einstein in São Paulo, Brazil [2]. The dataset has one
instance per patient, with no missing data, and collects
data about age, sex, hematocrit, hemoglobin, red cell
count, etc. for a total of some 111 parameters. The dataset
also collects one boolean output value (RT-PCR test result,
1 if CoViD-19 detected, 0 if CoViD-19 not detected). We
want our model to classify the patients and, moving from
the values measured in the blood sample, to predict the
test outcome 𝑦, i.e., if the patient is/is NOT affected by
CoViD-19. The dataset includes data acquired:

• from November 1𝑠𝑡, 2019 till February 16𝑡ℎ, 2020,
when patients did not accomplish any RT-PCR
test, so there is no detected case of CoViD-19 (i.e.,
no measured 𝑦′ output value). These samples are
discarded from our experiment; and

• from February 25𝑡ℎ, 2020 till August 11𝑡ℎ, 2020,
when patients accomplished a RT-PCR test and
come with a true/observed 𝑦′ value. In our exper-
iment, we use this part, including 8642 patients
admitted to the hospital (6625 patients are not
affected by CoViD-19, 2017 patients are).

5. Experimental Study
We now describe the experimental study: we apply the
approach to blood examinations from [2]; we build up a
predictive model which classifies if the patient is affected
by CoViD-19 or not; we evaluate the performances.

5.1. Model Identification over CoViD-19
Data

We split the dataset into two parts by entry date: model
training and validation data are from Feb 25𝑡ℎ, 2020 to
Mar 25𝑡ℎ, 2020 (validation split is 0.8); model testing
data are from Mar 26𝑡ℎ, 2020 to Aug 11𝑡ℎ, 2020. Approx-
imately, 5 months of the evaluation samples include the
evolution of the CoViD-19 virus and a concentration of
RT-PCR positive test results.

The algorithm for model identification is a neural net-
work, which uses a grid search. The data split is a K-fold

cross-validation with 10-fold. The performance metric is
an AUC-score as a compromise between precision and
sensitivity. The performance evaluation is the best model
performance on outer folds. Also, data are scaled to have
a mean value of 0 and a variance of 1, so that many ML
algorithms can work at their optimal implementation.

We select the hyperparameters of our neural network
based on a grid search using the Keras Tuner library [21].
In particular, we use a HyperBand Tuner [22], an algo-
rithm designed for hyperparameter optimization with
early stopping for fast convergence.

As shown in Table 1, we discover some potential hy-
perparameters for our one-hidden-layer neural network.
The model is, however, supported by a learning rate
scheduler with a patience level of 15, monitoring the
degradation of the validation loss.

Hyperparameter Value
Learning rate 1e-4

Neurons 224
Activation function Relu

Optimizer Adam
Dropout 0.2

Table 1
Best hyperparameters (Keras Tuner library). The dropout layer
technique limits the overfitting of the neural network.

The hyperparameter for the number of iterations 𝑛 of
updates on the secondary network is chosen based on
some analysis concerning its size. With small values for𝑛,
a decrease in the AUC occurs. Instead, overfitting of the
model occurs with greater values for 𝑛. An experimental
tradeoff value of 75 achieves the best performance.

5.2. Model Evaluation over CoViD-19 Data
Once the first version model has been identified, we de-
ploy it and run it on new incoming data, i.e., from Mar
26𝑡ℎ, 2020 to Aug 11𝑡ℎ, 2020. As the model drifts away
from the ground truth, we mark that timestamp as 1𝑠𝑡

drift, 2𝑛𝑑 drift etc., and update the model consequently.
Figure 4 reports drift detections over time, where drifts

are gradual and not recursive or sudden [11]. The more
data come in, the higher the chance that the model must
be replaced by a more recent one. This is particularly
true in the earlier stages of the experiment: then, drifts
become less “dense”. Whenever the AUC detects a drift,
the new model continuously retrained by the secondary
network replaces the previously deployed one.

We compare our model with some classic offline and
online models: we consider the same training data and
the same validation data. We consider here some current
ML models for binary classification, including Logistic
Regression (LR), Random Forest (RF), XGBoost [23], and
other offline artificial neural networks; we also compare

Figure 4: Progressive update of the currently deployed net-
work. Rather than by manual selection of the time span win-
dow, whenever the AUC detects a drift, the secondary network
replaces the currently deployed network.

our approach with some standard online learning meth-
ods that are functional, including online LR and adaptive
RF [16, 24]. The base neural network of our approach
comprises one hidden layer with a RELU activation func-
tion connected to a dropout layer to limit the overfitting.
Figure 5 reports about our approach, one online model
(online LR), and two offline models (RF and XGBoost),
measuring their respective AUC.

1 2 3 4
0.7

0.75

0.8

0.85

Drift detection instance

A
U

C

Figure 5: Comparison of the AUC after the drifts for the
proposed model (blue), of OLR (red), RF (green), LR (black).
The proposed approach starts poorly concerning the online
learning regression method. Still, the model of the proposed
approach shows more longevity and accuracy in the long
term than the other methods, particularly in the third drift
detection instance where the model of the proposed approach
outperforms all the other models.

However, our approach and the online logistic regres-
sion model support a robust AUC over time despite oscil-
lations. The proposed approach yields the most elevated
AUC in the third frame. A comprehensive comparison of
all the models used is presented in Table 2.

For the average AUC over all the time spans, our ap-
proach (0.806) performs 3% better than the best offline
and the best online models (0.782). The distinctions are
more relevant in the third frame, where our approach
(AUC 0.794) is 6% higher than that of the best offline

AUC estimation
Approach Online 1𝑠𝑡 drift 3𝑟𝑑 drift Avg
Our approach Yes 0.784 0.794 0.806
Online LR Yes 0.819 0.738 0.794
Ad. Random Forest Yes 0.790 0.756 0.745
Logistic Regression No 0.768 0.715 0.754
Random Forest No 0.734 0.700 0.741
XGBoost No 0.798 0.745 0.782
Artif. Neural Net. No 0.784 0.715 0.754

Table 2
Results from different models, highlighting the best AUC score
in each drift section and the best average score.

model (0.745) and 5% better than that of the best on-
line model (0.756). A comprehensive view of the models
indicates the primacy of online strategies.

5.3. Discussion
We now explore the shifts in patient attributes over the
pandemic, explaining the need for online models. Again,
in the light of explainable AI [25, 26], we examine the
advantages of a model replacement mechanism and the
impacts of hyperparameters of the neural network.

Figure 6 depicts the hemoglobin (Hgb) count during
the 2𝑛𝑑 and 3𝑟𝑑 time spans, i.e. after the 2𝑛𝑑 and the
3𝑟𝑑 drift. During the 2𝑛𝑑 time span, positive (CoViD-19
= “yes”) and negative (CoViD-19 = “no”) outcomes are
coupled to balanced Hgb count: i.e., positive and neg-
ative patients feature similar levels of Hgb counts. In
the 3𝑟𝑑 time span, the Hgb counts of patients with a
negative outcome differ from the Hgb counts of patients
with a positive outcome: thus, during the 3𝑟𝑑 drift, the
Hgb count can be a differentiating feature between posi-
tive and negative patients. Because of the deteriorating
likeness of the patients during the 2𝑛𝑑 time span, the
trained models are instantaneously impaired, including
our initial neural network. The rationale for this shift re-
quires further investigation:however, a first guess could
probably be in the direction of variants on the side of the
CoViD-19 virus, where variants lead to changes in the
hematological examinations.

6. Conclusions
The application and deployment of machine learning
(ML) to infer knowledge from huge amounts of data is
a challenging endeavour. In this context, significantly
altered data – aka concept drift – and their effects on the
forecast quality are limiting a more widespread of ML.

In this paper, we focus on a novel concept of the drift-
handling methodology for ML systems in a real-world
environment. We build an online deep learning system
for forecasting outcomes, using MLOPs practices and
tools, and aim at keeping the in-use model constantly
up-to-date. Typically, a vital issue of the approach is

2𝑛𝑑 drift 3𝑟𝑑 drift

10

15

H
em

og
lo

bi
n

(m
g/

dL
)

No Yes

Figure 6: Relevant changes in the Hemoglobin counts and
RT-PCR outcome results from the 2𝑛𝑑 to the 3𝑟𝑑 time span.
During the 2𝑛𝑑 time span, Hemoglobin counts are similar
both for positive and negative patients. In the 3𝑟𝑑 time span,
Hemoglobin counts differ for positive and negative patients,
probably due to the changing characteristics of the virus.

the choice of the time interval between two successive
updates of the in-use model. Manual decisions regarding
the length of the windows are uncertain and impractical.
Thus, we keep a secondary network constantly updated
by new incoming data: as the performance of the in-use
model, measured in terms of area under the curve (AUC),
are worsening, the model from the secondary networks
jumps in, replacing the currently in-use model.

As a validation scenario, we deploy our approach on
real-world clinical data collected during the CoViD-19
pandemics by the Hospital Israelita Albert Einstein in
São Paulo, Brazil [2]; over a five-month-long evaluation
time span, we achieve a more promising performance
than standard online and offline learning techniques.

The generality of our approach contains some partic-
ular restrictions. Despite these favorable outcomes, the
results are based on one dataset, only. Identifying other
real-world datasets with incremental concept drift prac-
tices will add value and reliability to our approach. Due
to its nature, our approach is appropriate for handling
incremental concept drift. Sudden or reoccurring con-
cept drifts will likely demand a diverse strategy, such as
changing between two utterly distinct forecasting mod-
els, e.g., one model for the everyday problems and one
for the harsh circumstances [16], or one forecast model
for summertime and one for wintertime, respectively.

Consequently, more analysis is required to explore
the correct matching of drift-handling scenarioes. Also,
developing differently-sized detection windows on the
forecast implementation requires additional study. Fi-
nally, the triggered adaption method executed in this
work is founded on the belief that actual labels are ob-
tained soon after the model computes a forecast, but this
assumption may be not always valid or feasible.
Acknowledgments
G.P. is partially funded by the EU H2020 program: “PERISCOPE:

Pan European Response to the ImpactS of CoViD-19 and future
Pandemics and Epidemics” (grant n. 101016233).

References
[1] C. Combi, Editorial from the new editor-in-chief:

Artificial intelligence in medicine and the forth-
coming challenges, Artif. Intell. Medicine 76 (2017)
37–39. URL: https://doi.org/10.1016/j.artmed.2017.
01.003. doi:10.1016/j.artmed.2017.01.003.

[2] Kaggle, CoViD-19 open research dataset challenge
(CORD-19) - website, May 12th, 2022. https:
//www.kaggle.com/datasets/allen-institute-for-ai/
CORD-19-research-challenge/discussion/139347.

[3] G. I. Webb, R. Hyde, H. Cao, H. Nguyen, F. Pe-
titjean, Characterizing concept drift, Data Min.
Knowl. Discov. 30 (2016) 964–994. URL: https://
doi.org/10.1007/s10618-015-0448-4. doi:10.1007/
s10618-015-0448-4.

[4] T. Diethe, T. Borchert, E. Thereska, B. Balle,
N. Lawrence, Continual learning in practice, CoRR
abs/1903.05202 (2019). URL: http://arxiv.org/abs/
1903.05202. arXiv:1903.05202.

[5] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J. Cre-
spo, D. Dennison, Hidden technical debt in Machine
Learning systems, in: C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, 2015, pp. 2503–2511. URL:
https://proceedings.neurips.cc/paper/2015/hash/
86df7dcfd896fcaf2674f757a2463eba-Abstract.html.

[6] J. Knoblauch, H. Husain, T. Diethe, Optimal con-
tinual learning has perfect memory and is NP-
hard, in: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, PMLR, 2020, pp.
5327–5337. URL: http://proceedings.mlr.press/v119/
knoblauch20a.html.

[7] G. Widmer, M. Kubat, Learning in the pres-
ence of concept drift and hidden contexts, Mach.
Learn. 23 (1996) 69–101. URL: https://doi.org/10.
1007/BF00116900. doi:10.1007/BF00116900.

[8] J. B. Gomes, E. M. Ruiz, P. A. C. Sousa, CALDS:
Context-aware learning from data streams, in:
Proceedings of the First International Workshop
on Novel Data Stream Pattern Mining Tech-
niques, StreamKDD ’10, Association for Com-
puting Machinery, New York, NY, USA, 2010,
p. 16–24. URL: https://doi.org/10.1145/1833280.
1833283. doi:10.1145/1833280.1833283.

https://doi.org/10.1016/j.artmed.2017.01.003
https://doi.org/10.1016/j.artmed.2017.01.003
http://dx.doi.org/10.1016/j.artmed.2017.01.003
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge/discussion/139347
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge/discussion/139347
https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge/discussion/139347
https://doi.org/10.1007/s10618-015-0448-4
https://doi.org/10.1007/s10618-015-0448-4
http://dx.doi.org/10.1007/s10618-015-0448-4
http://dx.doi.org/10.1007/s10618-015-0448-4
http://arxiv.org/abs/1903.05202
http://arxiv.org/abs/1903.05202
http://arxiv.org/abs/1903.05202
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
http://proceedings.mlr.press/v119/knoblauch20a.html
http://proceedings.mlr.press/v119/knoblauch20a.html
https://doi.org/10.1007/BF00116900
https://doi.org/10.1007/BF00116900
http://dx.doi.org/10.1007/BF00116900
https://doi.org/10.1145/1833280.1833283
https://doi.org/10.1145/1833280.1833283
http://dx.doi.org/10.1145/1833280.1833283

[9] N. M. do Nascimento, P. S. C. Alencar, C. Lucena,
D. D. Cowan, A context-aware machine learning-
based approach, in: I. Onut, A. Jaramillo, G. Jour-
dan, D. C. Petriu, W. Chen (Eds.), Proceedings
of the 28th Annual International Conference on
Computer Science and Software Engineering, CAS-
CON 2018, Markham, Ontario, Canada, October
29-31, 2018, ACM, 2018, pp. 40–47. URL: https:
//dl.acm.org/citation.cfm?id=3291297.

[10] S. H. Bach, M. A. Maloof, Paired learners for concept
drift, in: Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008), Decem-
ber 15-19, 2008, Pisa, Italy, IEEE Computer Society,
2008, pp. 23–32. URL: https://doi.org/10.1109/ICDM.
2008.119. doi:10.1109/ICDM.2008.119.

[11] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang,
Learning under concept drift: A review, IEEE Trans.
Knowl. Data Eng. 31 (2019) 2346–2363. URL: https://
doi.org/10.1109/TKDE.2018.2876857. doi:10.1109/
TKDE.2018.2876857.

[12] J. Gama, P. Medas, G. Castillo, P. Rodrigues,
Learning with drift detection, Intelligent
Data Analysis 8 (2004) 286–295. doi:10.1007/
978-3-540-28645-5_29.

[13] C. Combi, B. Oliboni, G. Pozzi, A. Sabaini,
E. Zimányi, Enabling instant- and interval-based
semantics in multidimensional data models: the
t+multidim model, Inf. Sci. 518 (2020) 413–
435. URL: https://doi.org/10.1016/j.ins.2019.12.074.
doi:10.1016/j.ins.2019.12.074.

[14] A. Bifet, R. Gavaldà, Learning from time-changing
data with adaptive windowing, in: Proceedings
of the Seventh SIAM International Conference
on Data Mining, April 26-28, 2007, Minneapolis,
Minnesota, USA, SIAM, 2007, pp. 443–448. URL:
https://doi.org/10.1137/1.9781611972771.42. doi:10.
1137/1.9781611972771.42.

[15] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy,
A. Bouchachia, A survey on concept drift adap-
tation, ACM Comput. Surv. 46 (2014) 44:1–
44:37. URL: https://doi.org/10.1145/2523813. doi:10.
1145/2523813.

[16] L. Baier, Concept Drift Handling in Informa-
tion Systems: Preserving the Validity of De-
ployed Machine Learning Models, Ph.D. the-
sis, Karlsruhe Institute of Technology, Germany,
2021. URL: https://nbn-resolving.org/urn:nbn:de:
101:1-2021091504594834614171.

[17] M. Pechenizkiy, I. Zliobaite, Handling concept drift
in medical applications: Importance, challenges and
solutions, in: T. S. Dillon, D. L. Rubin, W. M. Gal-
lagher, A. S. Sidhu, A. Tsymbal (Eds.), IEEE 23rd
International Symposium on Computer-Based Med-
ical Systems (CBMS 2010), Perth, Australia, Octo-
ber 12-15, 2010, IEEE Computer Society, 2010, p. 5.

URL: https://doi.org/10.1109/CBMS.2010.6042653.
doi:10.1109/CBMS.2010.6042653.

[18] I. Zliobaite, Combining similarity in time
and space for training set formation under con-
cept drift, Intell. Data Anal. 15 (2011) 589–
611. URL: https://doi.org/10.3233/IDA-2011-0484.
doi:10.3233/IDA-2011-0484.

[19] C. Combi, G. Pozzi, Clinical information systems
and artificial intelligence: Recent research trends,
Yearbook of Medical Informatics 28 (2019) 083–094.
URL: https://www.thieme-connect.de/products/
ejournals/abstract/10.1055/s-0039-1677915.
doi:10.1055/s-0039-1677915.

[20] C. Combi, G. Pozzi, Health informatics: Clini-
cal information systems and artificial intelligence
to support medicine in the CoViD-19 pandemic,
in: 9th IEEE International Conference on Health-
care Informatics, ICHI 2021, Victoria, BC, Canada,
August 9-12, 2021, IEEE, Los Alamitos, CA, USA,
2021, pp. 480–488. URL: https://doi.org/10.1109/
ICHI52183.2021.00083. doi:10.1109/ICHI52183.
2021.00083.

[21] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin,
L. Invernizzi, et al., Keras Tuner, https://github.com/
keras-team/keras-tuner, 2019.

[22] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh,
A. Talwalkar, Hyperband: A novel bandit-based
approach to hyperparameter optimization, J. Mach.
Learn. Res. 18 (2017) 185:1–185:52. URL: http://jmlr.
org/papers/v18/16-558.html.

[23] T. Chen, C. Guestrin, Xgboost: A scalable tree
boosting system, in: B. Krishnapuram, M. Shah,
A. J. Smola, C. C. Aggarwal, D. Shen, R. Rastogi
(Eds.), Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, ACM, 2016, pp. 785–794. URL: https:
//doi.org/10.1145/2939672.2939785. doi:10.1145/
2939672.2939785.

[24] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. En-
embreck, B. Pfahringer, G. Holmes, T. Abdessalem,
Adaptive random forests for evolving data stream
classification, Mach. Learn. 106 (2017) 1469–1495.
URL: https://doi.org/10.1007/s10994-017-5642-8.
doi:10.1007/s10994-017-5642-8.

[25] C. C. Yang, Explainable artificial intelligence
for predictive modeling in healthcare, J.
Heal. Informatics Res. 6 (2022) 228–239. URL:
https://doi.org/10.1007/s41666-022-00114-1. doi:10.
1007/s41666-022-00114-1.

[26] C. Combi, B. Amico, R. Bellazzi, A. Holzinger,
J. H. Moore, M. Zitnik, J. H. Holmes, A mani-
festo on explainability for artificial intelligence in
medicine, Artif. Intell. Medicine 133 (2022) 102423.
URL: https://doi.org/10.1016/j.artmed.2022.102423.

https://dl.acm.org/citation.cfm?id=3291297
https://dl.acm.org/citation.cfm?id=3291297
https://doi.org/10.1109/ICDM.2008.119
https://doi.org/10.1109/ICDM.2008.119
http://dx.doi.org/10.1109/ICDM.2008.119
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1016/j.ins.2019.12.074
http://dx.doi.org/10.1016/j.ins.2019.12.074
https://doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
https://nbn-resolving.org/urn:nbn:de:101:1-2021091504594834614171
https://nbn-resolving.org/urn:nbn:de:101:1-2021091504594834614171
https://doi.org/10.1109/CBMS.2010.6042653
http://dx.doi.org/10.1109/CBMS.2010.6042653
https://doi.org/10.3233/IDA-2011-0484
http://dx.doi.org/10.3233/IDA-2011-0484
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0039-1677915
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0039-1677915
http://dx.doi.org/10.1055/s-0039-1677915
https://doi.org/10.1109/ICHI52183.2021.00083
https://doi.org/10.1109/ICHI52183.2021.00083
http://dx.doi.org/10.1109/ICHI52183.2021.00083
http://dx.doi.org/10.1109/ICHI52183.2021.00083
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s41666-022-00114-1
http://dx.doi.org/10.1007/s41666-022-00114-1
http://dx.doi.org/10.1007/s41666-022-00114-1
https://doi.org/10.1016/j.artmed.2022.102423

	1 Introduction
	2 Related Work
	2.1 Background
	2.2 Related Work

	3 Proposed Approach
	3.1 Model Identification
	3.2 Model Up-to-dateness Monitoring

	4 Implementation Details
	4.1 Tool Selection - MLOPs
	4.2 Tool Selection - The Dataset

	5 Experimental Study
	5.1 Model Identification over CoViD-19 Data
	5.2 Model Evaluation over CoViD-19 Data
	5.3 Discussion

	6 Conclusions

