
Split Ways: Privacy-Preserving Training of Encrypted Data
Using Split Learning
Tanveer Khan1, Khoa Nguyen1 and Antonis Michalas1,2

1Tampere University, Tampere, Finland
2RISE Research Institutes of Sweden

Abstract
Split Learning (SL) is a new collaborative learning technique that allows participants, e.g. a client and a server, to train
machine learning models without the client sharing raw data. In this setting, the client initially applies its part of the machine
learning model on the raw data to generate activation maps and then sends them to the server to continue the training
process. Previous works in the field demonstrated that reconstructing activation maps could result in privacy leakage of client
data. In addition to that, existing mitigation techniques that overcome the privacy leakage of SL prove to be significantly
worse in terms of accuracy. In this paper, we improve upon previous works by constructing a protocol based on U-shaped
SL that can operate on homomorphically encrypted data. More precisely, in our approach, the client applies Homomorphic
Encryption (HE) on the activation maps before sending them to the server, thus protecting user privacy. This is an important
improvement that reduces privacy leakage in comparison to other SL-based works. Finally, our results show that, with the
optimum set of parameters, training with HE data in the U-shaped SL setting only reduces accuracy by 2.65% compared to
training on plaintext. In addition, raw training data privacy is preserved.

Keywords
Homomorphic Encryption, Privacy-preserving Machine Learning, Split Learning

1. Introduction
Machine Learning (ML) models have attracted global
adulation and are used in a plethora of applications such
as medical diagnosis, pattern recognition, and credit risk
assessment. However, applications and services using
ML are often breaching user privacy. As a result, the need
to preserve the confidentiality and privacy of individuals
and maintain user trust has gained extra attention. This
is not only because of the technological advancements
that privacy-preserving machine learning (PPML) can
offer, but also due to its potential societal impact (i.e.
building fairer, democratic and unbiased societies) [1].

Split Learning (SL) and Federated Learning (FL) are
the two methods of collaboratively training – a model
derived from distributed data sources without sharing
raw data [2]. In FL, every client runs a copy of the entire
model on its data. The server receives updated weights
from each client and aggregates them. The SL model
divides the neural network into two parts: the client-
side and the server-side [3]. SL is used for training Deep
Neural Networks (DNN) among multiple data sources,
while mitigating the need to directly share raw labeled

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023), Ioannina, Greece
$ tanveer.khan@tuni.fi (T. Khan); khoa.nguyen@tuni.fi
(K. Nguyen); antonios.michalas@tuni.fi (A. Michalas)
� https://www.amichalas.com/ (A. Michalas)
� 0000-0001-7296-2178 (T. Khan); 0000-0002-0189-3520
(A. Michalas)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

data with collaboration parties. The advantages of SL
are multifold: (i) it allows users to train ML models with-
out sharing their raw data with a server running part
of a DNN model. (ii) it protects both the client and the
server from revealing their parts of the model, and (iii) it
reduces the client’s computational overhead by utiliz-
ing a smaller number of layers [4]. Though SL offers
an extra layer of privacy protection by definition, there
are no works exploring how it is combined with popular
privacy-preserving techniques like Homomorphic En-
cryption (HE) [5]. In [6], the authors studied whether SL
can handle sensitive time-series data and demonstrated
that SL alone is insufficient when performing privacy-
preserving training for 1-dimensional (1D) CNN models.
More precisely, the authors showed raw data can be re-
constructed from the activation maps of the intermediate
split layer. The authors also employed two mitigation
techniques, adding hidden layers and applying differen-
tial privacy to reduce privacy leakage. However, based
on the results, none of these techniques can effectively
reduce privacy leakage from all channels of the SL ac-
tivation. Furthermore, both these techniques result in
reducing the joint model’s accuracy.

In this work, we construct a model that uses HE to
mitigate privacy leakage in SL. In our model, the client
first encrypts the activation maps and then sends the
encrypted activation maps (EAMs) to the server. The
EAMs do not reveal anything about the raw data (i.e. it
is not possible to reconstruct raw data from the EAMs).

Vision AI systems have proven surpass people in rec-
ognizing abnormalities such as tumours on X-rays and

mailto:tanveer.khan@tuni.fi
mailto:khoa.nguyen@tuni.fi
mailto:antonios.michalas@tuni.fi
https://www.amichalas.com/
https://orcid.org/0000-0001-7296-2178
https://orcid.org/0000-0002-0189-3520
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

ultrasound scans [7]. In addition to that, machines can
reliably make diagnoses equal to those of human experts.
All the evidence indicates that we can now build systems
that achieve human expert performance in analyzing
medical data – systems allowing humans to send their
medical data to a remote AI service and receive an ac-
curate automated diagnosis. An intelligent and efficient
AI healthcare system of this type offers a great poten-
tial since it can improve the health of humans but also
have an important social impact. However, these oppor-
tunities come with certain pitfalls, mainly concerning
privacy. With this in mind, we have designed a system
that analyzes images in a privacy-preserving way. More
precisely, we show how encrypted images can be ana-
lyzed with high accuracy without leaking information
about their actual content. While this is still far from
our big dream (namely automated AI diagnosis) we still
believe it is an important step that will eventually pave
the way towards our timate goal.

Contributions The main contributions are:
• We designed a simplified version of the 1D CNN model

presented in [6] and we are using it to classify the ECG
signals [8] in both local and SL settings. More specifi-
cally, we construct a U-shaped split 1D CNN model and
experiment using plaintext activation maps (PAMs) sent
from the client to the server. Through the U-shaped
1D CNN model, clients do not need to share the input
training samples and the ground truth labels with the
server – this is an important improvement that reduces
privacy leakage compared to [6].

• We constructed the HE version of the U-shaped SL. In
the encrypted U-shaped SL, the client encrypts the ac-
tivation map using HE and sends it to the server. The
advantage of the HE encrypted U-shaped SL over the
plaintext U-shaped SL is that the server performs com-
putation over the EAMs.

• To assess the applicability of our framework, we per-
formed experiments on a heartbeat datasets (MIT-
DB [8]). We experimented with activation maps of 256
for both plaintext and homomorphically EAMs and we
measured the model’s performance by considering train-
ing duration, test accuracy, and communication cost.

2. Related Work
The SL approach proposed by Gupta and Raskar [9] offers
a number of significant advantages over FL. Similar to
FL [10], SL does not share raw data. In addition, it has
the benefit of not disclosing the model’s architecture and
weights. For example, [9] predicted that reconstructing
raw data on the client-side , while using SL would be
difficult. In addition, the authors of [4]employed the
SL model to the healthcare applications to protect the
users’ personal data. Vepakomma et al. found that SL

outperforms FL in terms of accuracy [4].
Initially, it was believed that SL is a promising ap-

proach in terms of client raw data protection, however,
SL provides data privacy on the grounds that only inter-
mediate activation maps are shared between the parties.
Different studies showed the possibility of privacy leak-
age in SL. In [2], the authors analyzed the privacy leakage
of SL and found a considerable leakage from the split
layer in the 2D CNN model. Furthermore, the authors
mentioned that it is possible to reduce the distance cor-
relation between the split layer and raw data by slightly
scaling the weights of all layers before the split. This
type of scaling works well in models with a large number
of hidden layers before the split.

The work of Abuadbba et al. [6] is the first study ex-
ploring whether SL can deal with time-series data. It is
dedicated to investigating (i) whether an SL can achieve
the same model accuracy for a 1D CNN model compared
to the non-split version and (ii) whether it can be used
to protect privacy in sequential data. According to the
results, SL can be applied to a model without the model
classification accuracy degradation. As for the second
question, the authors proved it is possible to reconstruct
the raw data (personal ECG signal) in the 1D CNN model
using SL by proposing a privacy assessment framework.
They suggested three metrics: visual invertibility, dis-
tance correlation, and dynamic time warping. The re-
sults showed that when SL is directly adopted into 1D
CNN models for time series data could result in signifi-
cant privacy leakage. Two mitigation techniques were
employed to limit the potential privacy leakage in SL:
(i) increasing the number of layers before the split on
the client-side and (ii) applying differential privacy to
the split layer activation before sending the activation
map to the server. However, both techniques suffer from
a loss of model accuracy, particularly when differential
privacy is used. The strongest differential privacy can
increase the dissimilarity between the activation map
and the corresponding raw data. However, it degrades
the classification accuracy significantly from 98.9% to 50%.

In [6], during the forward propagation, the client sends
the PAMs to the server, where the server can easily re-
construct the original raw data from the activated vector
of the split layer leading to clear privacy leakage. In our
work, we constructed a training protocol, where, instead
of sending PAMs, the client first conducts an encryption
using HE and then sends said maps to the server. In this
way, the server is unable to reconstruct the original raw
data, but can still perform a computation on the EAMs
and realize the training process.

3. Architecture
In this section,we first describe the non-split version or
local model of the 1D CNN used to classify the ECG

1D
C

on
vo

lu
ti

on
al

1D
C

on
vo

lu
ti

on
al

Le
ak

y
R

el
u

Le
ak

y
R

el
u

M
ax

Po
ol

in
g

M
ax

Po
ol

in
g

Client-side Server-side

So
ft

m
ax

O
ut

pu
t

Tr
ai

ni
ng

In
pu

t
D

at
a

Fu
lly

C
on

ne
ct

ed

Figure 1: U-shaped Split-Learning

signal. Then, we discuss the process of splitting this local
model into a U-shaped split model. Furthermore, we also
describe the involved parties (a client and a server) in
the training process of the split model, focusing on their
roles and the parameters assigned to them throughout
the training process.

3.1. 1D CNN Local Model Architecture
We first implement and successfully reproduce the local
model results [6]. This model contains two Conv1D lay-
ers and two FC layers. The optimal test accuracy that
this model achieves is 98.9%. We implement a simplified
version where the model has one less FC layer compared
to the model from [6]. Our local model consists of all
the layer of Figure 1 without any split between the client
and the server. As can be seen in Figure 1, we limit our
model to two Conv1D layers and one linear layer as we
aim to reduce computational costs when HE is applied
on activation maps in the model’s split version. Reducing
the number of FC layers leads to a drop in the accuracy
of the model. The best test accuracy we obtained after
training our local model for 10 epochs with a batch size
of 4 is 92.84%. Although reducing the number of layers
affects the model’s accuracy, it is not within our goals to
demonstrate how successful our ML model is for this task;
instead, our focus is to construct a split model where train-
ing and evaluation on encrypted data are comparable to
training and evaluation on plaintext data.

In section 5, we detail the results for the non-split
version and compare them with the split version.

3.2. U-shaped Split 1D CNN Model
The SL protocol consists of two parties: the client and
server. We split the local 1D CNN into multiple parts,
where each party trains its part(s) and communicates
with others to complete the overall training procedure.
More specifically, we construct the U-shaped split 1D
CNN in such a way that the first few as well as the last

layer are on the client-side, while the remaining layers
are on the server-side.

Actors in the Split Learning Model As mentioned
earlier, in our SL setting, we have two involved parties:
the client and the server. Each party plays a specific role
and has access to certain parameters. More specifically,
their roles and accesses are described as:
• Client: In the plaintext version, the client holds two

Conv1D layers and can access their weights and biases
in plaintext. Other layers (Max Pooling layers, Leaky
ReLU layers, Softmax layer) do not have weights and
biases. Apart from these, in the HE encrypted version,
the client is also responsible for generating the context
for HE and has access to all context parameters (Poly-
nomial modulus (𝒫), Coefficient modulus (𝒞), Scaling
factor (∆), Public key (pk) and Secret key (sk)). Note
that for both training on plaintext and EAMs, the raw
data examples x’s and their corresponding labels y’s
reside on the client side and are never sent to the server
during the training process.

• Server: In our model, the computation performed on the
server-side is limited to only one linear layer. Hence, the
server can exclusively access the weights and biases of
this linear layer. Regarding the HE context parameters,
the server has access to 𝒫 , 𝒞, ∆, and pk shared by the
client, with the exception of the sk. Not holding the sk,
the server cannot decrypt the HE EAMs sent from the
client. The hyperparameters shared between the client
and the server are the learning rate (𝜂), batch size (𝑛),
number of batches to be trained (𝑁), and number of
training epochs (𝐸).

4. Split Model Training Protocols
In this section, we first present the protocol for train-
ing the U-shaped split 1D CNN on PAMs, followed by
the protocol for training the U-shaped split 1D CNN on
EAMs.

4.1. Training U-shaped Split Learning
with Plaintext Activation Maps

We have used algorithm 1 and algorithm 2 to train the
U-shaped split 1D CNN reported in subsection 3.2. First,
the client and server start the socket initialization process
and synchronize the hyperparameters 𝜂, 𝑛,𝑁,𝐸. They
also initialize the weights (𝑤𝑖) and biases (𝑏𝑖) of their
layers according to Φ.

During the forward propagation phase, the client
forward-propagates the input x until the 𝑙𝑡ℎ layer and
sends the activation a(𝑙) to the server. The server contin-
ues to forward propagate and sends the output a(𝐿) to
the client. Next, the client applies the Softmax function

on a(𝐿) to get ŷ and calculates the error 𝐽 = ℒ(ŷ,y).
The client starts the backward propagation by calculating

Algorithm 1: Client Side
Initialization:
𝑠← socket initialized with port and address;
s.connect
𝜂, 𝑛,𝑁,𝐸 ← 𝑠.𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒()
{𝑤(𝑖), 𝑏(𝑖)}∀𝑖∈{0..𝑙} ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑢𝑠𝑖𝑛𝑔 Φ

{z(𝑖)}∀𝑖∈{0..𝑙}, {a(𝑖)}∀𝑖∈{0..𝑙} ← ∅{︁
𝜕𝐽

𝜕z(𝑖)

}︁
∀𝑖∈{0..𝑙}

,
{︁

𝜕𝐽

𝜕a(𝑖)

}︁
∀𝑖∈{0..𝑙}

← ∅

for 𝑒 ∈ 𝐸 do
for each batch (x, y) generated from 𝐷 do

Forward propagation :
𝑂.𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑()
a0 ← x

for 𝑖← 1 to 𝑙 do
for 𝑖 ← 1 to 𝑙 do

z(𝑖) ← 𝑓 (𝑖)
(︁
a(𝑖−1)

)︁
a(𝑖) ← 𝑔(𝑖)

(︁
z(𝑖)

)︁
end

𝑠.𝑠𝑒𝑛𝑑 (a(𝑙))

𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒 (a(𝐿))

𝑦 ← 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(︁
a(𝐿)

)︁
𝐽 ← ℒ(ŷ,y)

Backward propagation :

Compute
{︂
𝜕𝐽

𝜕ŷ
&

𝜕𝐽

𝜕a(𝐿)

}︂
𝑠.𝑠𝑒𝑛𝑑

(︂
𝜕𝐽

𝜕a(𝐿)

)︂
𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒

(︂
𝜕𝐽

𝜕a(𝑙)

)︂
for 𝑖← 1 to 𝑙 do

Compute
{︁

𝜕𝐽

𝜕𝑤(𝑖) ,
𝜕𝐽

𝜕𝑏(𝑖)

}︁
Update 𝑤(𝑖), 𝑏(𝑖)

end
end

end

and sending the gradient of the error w.r.t a(𝐿), i.e. 𝜕𝐽

𝜕a(𝐿) ,
to the server. The server continues the backward prop-
agation, calculates 𝜕𝐽

𝜕a(𝑙) and sends 𝜕𝐽

𝜕a(𝑙) to the client.
After receiving the gradients 𝜕𝐽

𝜕a(𝑙) from the server, the
backward propagation continues to the first hidden layer
on the client-side. Note that the exchange of information
between client and server in these algorithms takes place
in plaintext. The client sends the activation maps a(𝑙)

to the server in plaintext and receives the output of the
linear layer a(𝐿) from the server in plaintext (see algo-
rithm 1). The same applies on the server side: receiving

a(𝑙) and sending a(𝐿) in the plaintext as can be seen in al-
gorithm 2. Sharif et al. [6] showed that the exchange of
PAMs between client and server using SL reveals impor-
tant information regarding the client’s raw sequential
data. Later, in subsection 5.1 we show in detail how pass-
ing the forward activation maps from the client to the
server in the plaintext will result in information leakage.
To mitigate this privacy leakage, we propose the proto-
col, where the client encrypts the activation maps before
sending them to the server, as described in subsection 4.2.

Algorithm 2: Server Side
Initialization:
𝑠← socket initialized with port and address;
s.connect
𝜂, 𝑛,𝑁,𝐸 ← 𝑠.𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒()
{𝑤(𝑖), 𝑏(𝑖)}∀𝑖∈{0..𝑙} ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑢𝑠𝑖𝑛𝑔 Φ

{z(𝑖)}∀𝑖∈{𝑙+1..𝐿} ← ∅{︂
𝜕𝐽

𝜕z(𝑖)

}︂
∀𝑖∈{𝑙+1..𝐿}

← ∅

for 𝑒 ∈ 𝐸 do
for 𝑖← 1 to 𝑁 do

Forward propagation :
𝑂.𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑()
𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒 (a(𝑙))

a(𝐿) ← 𝑓 (𝑖)
(︁
a(𝑙)

)︁
𝑠.𝑠𝑒𝑛𝑑

(︁
a(𝐿)

)︁
Backward propagation :

𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒

(︂
𝜕𝐽

𝜕a(𝐿)

)︂
Compute

{︂
𝜕𝐽

𝜕𝑤(𝐿)
,

𝜕𝐽

𝜕𝑏(𝐿)

}︂
Update 𝑤(𝐿), 𝑏(𝐿)

Compute
𝜕𝐽

𝜕a(𝑙)

𝑠.𝑠𝑒𝑛𝑑

(︂
𝜕𝐽

𝜕a(𝑙)

)︂
end

end

4.2. Training U-shaped Split 1D CNN with
Encrypted Activation Maps

The protocol for training the U-shaped 1D CNN with a
homomorphically EAP consists of four phases: initial-
ization, forward propagation, classification, and back-
ward propagation. The initialization phase only takes
place once at the beginning of the procedure, whereas the
other phases continue until the model iterates through
all epochs. Each of these phases are described in detail
in the following subsections.

Initialization The initialization phase consists of
socket initialization, context generation, and random
weight loading. The client first establishes a socket con-
nection to the server and synchronizes the four hyper-
parameters 𝜂, 𝑛, 𝑁,𝐸 with the server, shown in al-
gorithm 3 and algorithm 4. These parameters must be
synchronized on both sides to be trained in the same way.
Also, the weights on the client and server are initialized
with the same set of corresponding weights in the local
model to accurately assess and compare the influence of
SL on performance. On both the client and the server
sides, 𝑤(𝑖) are initialized using corresponding parts of
Φ. The activation map at layer i (a(𝑖)), output tensor of
a Conv1D layer (z(𝑖)), and the gradients are initially set
to zero. In this phase, the context generated is a specific
object that holds encryption keys pk and sk of the HE
scheme as well as additional parameters like 𝒫 , 𝒞 and ∆.

Further information on the HE parameters and how
to choose the best-suited parameters can be found in
the TenSEAL’s benchmarks tutorial1. As shown in al-
gorithm 3 and algorithm 4, the context is either public
(ctxpub) or private (ctxpri) depending on whether it holds
the secret key sk. Both the ctxpub and ctxpri have the same
parameters, though ctxpri holds a sk and ctxpub does not.
The server does not have access to the sk as the client
only shares the ctxpub with the server. After the initial-
ization phase, both the client and server proceed to the
forward and backward propagation phases.

Forward propagation The forward propagation
starts on the client side. The client first zeroes out the
gradients for the batch of data (x,y). He then begins
calculating the a(𝑙) activation maps from x, as can be
seen in algorithm 3 where each 𝑓 (𝑖) is a Conv1D layer.
The Conv1D layer can be described as following: given
a 1D input signal that contains 𝐶 channels, where each
channel x(𝑖) is a 1D array (𝑖 ∈ {1, . . . , 𝐶}), a Conv1D
layer produces an output that contains 𝐶′ channels. The
𝑗𝑡ℎ output channel y(𝑗), where 𝑗 ∈ {1, . . . , 𝐶′} is:2

y(𝑗) = 𝑏(𝑗) +

𝐶∑︁
𝑖=1

𝑤(𝑖) ⋆ x(𝑖), (1)

where 𝑤(𝑖), 𝑖 ∈ {1, . . . , 𝐶} are the weights, 𝑏(𝑗) are bi-
ases of the Conv1D layer, and ⋆ is the 1D cross-correlation
operation. The ⋆ operation can be described as

z(𝑖) = (𝑤 ⋆ x)(𝑖) =

𝑚−1∑︁
𝑗=0

𝑤(𝑗) · x(𝑖+ 𝑗), (2)

where z(𝑖) denotes the 𝑖𝑡ℎ element of the output vector
z, and 𝑖 starts at 0 and size of 1D weighted kernel is 𝑚.

1https://bit.ly/3KY8ByN
2https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html

In algorithm 3, 𝑔(𝑖) can be seen as the combination of
Max Pooling and Leaky ReLU functions. The final output
activation maps of the 𝑙𝑡ℎ layer from the client is a(𝑙).
The client then homomorphically encrypts a(𝑙) and sends
the EAMs a(𝑙) to the server. In algorithm 4, the server
receives a(𝑙) and then performs forward propagation,
which is a linear layer evaluated on HE encrypted data
a(𝑙) as

a(𝐿) = a(𝑙)𝑤(𝐿) + 𝑏(𝐿). (3)

After that, the server sends a(𝐿) to the client (algo-
rithm 4). Upon reception, the client decrypts a(𝐿) to
get a(𝐿), performs Softmax on a(𝐿) to produce the pre-
dicted output ŷ and calculate the loss 𝐽 (algorithm 3).
Having finished the forward propagation we may move
on to the backward propagation part of the protocol.

Backward propagation After calculating the loss 𝐽 ,
the client starts the backward propagation by computing
𝜕𝐽

𝜕ŷ
and then 𝜕𝐽

𝜕a(𝐿) and 𝜕𝐽

𝜕𝑤(𝐿) using the chain rule (al-
gorithm 3). Specifically, the client calculates

𝜕𝐽

𝜕a(𝐿)
=

𝜕𝐽

𝜕ŷ

𝜕ŷ

𝜕a(𝐿)
, and (4)

𝜕𝐽

𝜕𝑤(𝐿)
=

𝜕𝐽

𝜕a(𝐿)

𝜕a(𝐿)

𝜕𝑤(𝐿)
. (5)

Following, the client sends 𝜕𝐽

𝜕a(𝐿) and 𝜕𝐽

𝜕𝑤(𝐿) to the
server. Upon reception, the server computes 𝜕𝐽

𝜕𝑏
by sim-

ply doing 𝜕𝐽

𝜕𝑏
= 𝜕𝐽

𝜕a(𝐿) , based on equation (3). The server
then updates the weights and biases of his linear layer
according to equation (6).

𝑤(𝐿) = 𝑤(𝐿) − 𝜂
𝜕𝐽

𝜕𝑤(𝐿)
, 𝑏(𝐿) = 𝑏(𝐿) − 𝜂

𝜕𝐽

𝜕𝑏(𝐿)
.

(6)

Next, the server calculates

𝜕𝐽

𝜕a(𝑙)
=

𝜕𝐽

𝜕a(𝐿)

𝜕a(𝐿)

𝜕a(𝑙)
, (7)

and sends 𝜕𝐽

𝜕a(𝑙) to the client. After receiving 𝜕𝐽

𝜕a(𝑙) , the
client calculates the gradients of 𝐽 with respect to the
weights and biases of the Conv1D layer using the chain-
rule, which can generally be described as

𝜕𝐽

𝜕𝑤(𝑖−1)
=

𝜕𝐽

𝜕𝑤(𝑖)

𝜕𝑤(𝑖)

𝜕𝑤(𝑖−1)
(8)

𝜕𝐽

𝜕𝑏(𝑖−1)
=

𝜕𝐽

𝜕𝑏(𝑖)
𝜕𝑏(𝑖)

𝜕𝑏(𝑖−1)
(9)

Finally, after calculating the gradients 𝜕𝐽

𝜕𝑤(𝑖) ,
𝜕𝐽

𝜕𝑏(𝑖) ,

the client updates 𝑤(𝑖) and 𝑏(𝑖) using the Adam opti-
mization algorithm [11].

https://bit.ly/3KY8ByN
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html

Algorithm 3: Client Side
Context Initialization:

ctxpri, ← 𝒫, 𝒞, ∆, pk, sk
ctxpub, ← 𝒫, 𝒞, ∆, pk
𝑠.𝑠𝑒𝑛𝑑(ctxpub)

for 𝑒 in 𝐸 do
for each batch (x, y) generated from D do

Forward propagation :
𝑂.𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑()
a0 ← x

for 𝑖 ← 1 to 𝑙 do
z(𝑖) ← 𝑓 (𝑖)

(︁
a(𝑖−1)

)︁
a𝑖 ← 𝑔(𝑖)

(︁
z(𝑖)

)︁
end
a(𝑙) ← HE.Enc

(︁
pk,a(𝑙)

)︁
𝑠.𝑠𝑒𝑛𝑑 (a(𝑙))

𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒 (a(𝐿))

a(𝐿) ← HE.Dec
(︁
sk,a(𝐿)

)︁
ŷ ← 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(︁
a(𝐿)

)︁
J← ℒ(ŷ,y)

Backward propagation :

Compute
{︂
𝜕𝐽

𝜕ŷ
&

𝜕𝐽

𝜕a(𝐿)
&

𝜕𝐽

𝜕𝑤(𝐿)

}︂
𝑠.𝑠𝑒𝑛𝑑

(︂
𝜕𝐽

𝜕a(𝐿)
&

𝜕𝐽

𝜕𝑤(𝐿)

)︂
𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒

(︂
𝜕𝐽

𝜕a(𝑙)

)︂
for 𝑖← 𝑙 down to 1 do

Compute
{︂

𝜕𝐽

𝜕𝑤(𝑖)
,

𝜕𝐽

𝜕𝑏(𝑖)

}︂
Update 𝑤(𝑖), 𝑏(𝑖)

end
end

end

Note that in the backward pass, by sending both 𝜕𝐽

𝜕a(𝐿)

and 𝜕𝐽

𝜕𝑤(𝐿) to the server, we help the server keep his
parameters in plaintext and prevent the multiplicative
depth of the HE from growing out of bound, however,
this leads to a privacy leakage of the activation maps.

5. Performance Analysis
We evaluate our method on the MIT-BIH dataset [8].

MIT-BIH We use the pre-processed dataset from [6],
which is based on the MIT-BIH arrhythmia (abnormal
heart rhythm) database [8]. The processed dataset con-
tains 26,490 samples of heartbeat that belong to 5 different

Algorithm 4: Server Side
Context Initialization:

𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒(ctxpub)
for e in E do

for 𝑖← 1 to 𝑁 do
Forward propagation :

𝑂.𝑧𝑒𝑟𝑜_𝑔𝑟𝑎𝑑()
𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒 (a(𝑙))

a(𝐿) ← HE.Eval
(︁
𝑓 (𝑖)

(︁
a(𝑙)

)︁)︁
𝑠.𝑠𝑒𝑛𝑑

(︁
a(𝐿)

)︁
Backward propagation :

𝑠.𝑟𝑒𝑐𝑒𝑖𝑣𝑒

{︂
𝜕𝐽

𝜕a(𝐿)
&

𝜕𝐽

𝜕𝑤(𝐿)

}︂
Compute

𝜕𝐽

𝜕𝑏(𝐿)

Update 𝑤(𝐿), 𝑏(𝐿)

Compute
𝜕𝐽

𝜕a(𝑙)

𝑠.𝑠𝑒𝑛𝑑

(︂
𝜕𝐽

𝜕a(𝑙)

)︂
end

end

types: N (normal beat), L (left bundle branch block), R
(right bundle branch block), A (atrial premature contrac-
tion), V (ventricular premature contraction). An example
heartbeat of each class is visualized in Figure 2.

To train our network, the dataset is then split into a
train and test split according to [6]. This results in both
the train and test split as matrices of size [13245, 1, 128],
meaning that they contain 13,245 ECG samples, each
sample has one channel and 128 timesteps.

Figure 2: Heartbeats from the processed ECG dataset.

Experimental Setup All neural networks are trained
on a machine with Ubuntu 20.04 LTS, processor Intel
Core i7-8700 CPU at 3.20GHz, 32Gb RAM, GPU GeForce
GTX 1070 Ti with 8Gb of memory. We write our pro-
gram in the Python programming language version 3.9.7.
The neural nets are constructed using the PyTorch li-
brary version 1.8.1+cu102. For HE algorithms, we em-
ploy the TenSeal library version 0.3.10. We perform our
experiments in the localhost setting. The open source

https://www.python.org/downloads/release/python-397/
https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/previous-versions/
https://github.com/OpenMined/TenSEAL

implementation of our work is publically available3.
In terms of hyperparameters, we train all networks

with 10 epochs, 𝜂 = 0.001 learning rate, and 𝑛 = 4
training batch size. For the split neural network with HE
activation maps, we use the Adam optimizer for the client
model and mini-batch Gradient Descent for the server.
We use GPU for networks trained on the plaintext. For
the U-shaped SL model on HE activation maps, we train
the client model on GPU, and the server model on CPU.

5.1. Evaluation
In this section, we report the experimental results in
terms of accuracy, training duration and communica-
tion throughput. We measure the accuracy of the neural
nets on the plaintext test set after the training processes
are completed. The 1D CNN models used on MIT-BIH
dataset have two Conv1D layers and one linear layer. The
activation maps are the output of the last Conv1D layer.

We experiment with the activation maps of
[batch size, 256] for the MIT-BIH dataset. We denote
the 1D CNN model with an activation map sized
[batch size, 256] as 𝑀1.

Training Locally Results when training 𝑀1 locally on
the MIT-BIH plaintext dataset are shown in Figure 3. The
neural network learns quickly and is able to decrease
the loss drastically from epoch 1 to 5. From epoch 6-10,
the loss begins to plateau. After training for 10 epochs,
we test the trained neural network on the test dataset
and get 88.06% accuracy. Training the model locally on
plaintext takes 4.8sec for each epoch on average.

Figure 3: Results when training locally on the plaintext MIT-
BIH dataset with activation maps of size [batch size, 256].

U-shaped Split Learning using Plaintext Activation
Maps Our experiments, show that training the U-shaped
split model on plaintext (reported in section 3.2) produces
the same results in terms of accuracy compared to local
training for model 𝑀1. This result is similar to the find-
ings of [6]. Even though the authors of [6] only used the
vanilla version of the split model, they too found that,
compared to training locally, accuracy was not reduced.

We will now discuss the training time and communica-
tion overhead of the U-shaped split models and compare
them to their local versions. For the split version of 𝑀1,
each training epoch takes 8.56 seconds on average, hence

3https://github.com/khoaguin/HESplitNet

43.9% longer than local training. The U-shaped split mod-
els take longer to train due to the communication be-
tween the client and the server. The communication cost
for one epoch of training split 𝑀1 is 33.06 Mb.
Visual Invertibility In the SL model, the activation
maps are sent from client to server to continue the train-
ing process. A visual representation of the activation
maps reveals a high similarity between certain activation
maps and the input data from the client, as demonstrated
in Figure 4 for the models trained on the MIT-BIH dataset.
The figure indicates that, compared to the raw input data
from the client (the first row of Figure 4), some activa-
tion maps (as plotted in the second row of Figure 4) have
exceedingly similar patterns. This phenomenon clearly
compromises the privacy of the client’s raw data. The
authors of [6] quantify the privacy leakage by measuring
the correlations between the activation maps and the
raw input signal by using two metrics: distance correla-
tion and Dynamic Time Warping. This approach allows
them to measure whether their solutions mitigate privacy
leakage work. Since our work uses HE, said metrics are
unnecessary as the activation maps are encrypted.

Figure 4: Top: client input data. Bottom: one of the output
channels from the 𝑀1 model’s second convolution layer.

U-shaped Split 1D CNN with Homomorphic En-
crypted Activation Maps We train the split neural
networks 𝑀1 on the MIT-BIH dataset using EAMs ac-
cording to subsection 4.2. To encrypt the activation maps
on client side (i.e. before sending them to the server), we
experiment with five different sets of HE parameters for
model 𝑀1. Additionally, we perform experiments using
different combinations of HE parameters. Table 1 shows
the results in terms of training time, testing accuracy, and
communication overhead for the neural networks with
different configurations. For the U-shaped SL version on
the plaintext, we captured all communication between
client and server. For training split models on EAPs,
we approximate the communication overhead for one
training epoch by getting the average communication of
training on the first ten batches of data, then multiply
that with the total number of training batches.

https://github.com/khoaguin/HESplitNet

Table 1
Training and testing results on the MIT-BIH dataset. Training duration and communication are reported per epoch.

Network Type of Network
HE Parameters

Training duration (s) Test accuracy (%) Communication (Tb)
BE 𝒫 𝒞 Δ

𝑀1

Local 4.80 88.06 0
Split (plaintext) 8.56 88.06 33.06e-6

Split (HE) False

8192 [60,40,40,60] 240 50 318 85.31 37.84
8192 [40,21,21,40] 221 48 946 80.63 22.42
4096 [40,20,20] 221 14 946 85.41 4.49
4096 [40,20,40] 220 18 129 80.78 4.57
2048 [18,18,18] 216 5 018 22.65 0.58

For the 𝑀1 model, the best test accuracy was 85.41%,
when using the HE parameters with polynomial mod-
ulus 𝒫 = 4096, coefficient modulus 𝒞 = [40, 20, 20],
scale ∆ = 221. The accuracy drop was 2.65% com-
pared to training the same network on plaintext. This
set of parameters achieves higher accuracy compared
to the bigger sets of parameters with 𝒫 = 8192, while
requiring much lower training time and communication
overhead. The result when using the first set of parame-
ters with 𝒫 = 8192 is close (85.31%), but with a much
longer training time (3.67 times longer) and communica-
tion overhead (8.43 times higher).

Uur experiments show that training on EAMs can pro-
duce optimistic results, with accuracy dropping by 2-3%
for the best sets of HE parameters.

The set of parameters with 𝒫 = 8192 achieve the
second highest test accuracy, though incurring the high-
est communication overhead and the longest training
time. The set of parameters with 𝒫 = 4096 can offer
a good trade-off as they can produce on-par accuracy
with 𝒫 = 8192, while requiring significantly less com-
munication and training time. Experimental results show
that with the smallest set of HE parameters 𝒫 = 2048,
𝒞 = [18, 18, 18], ∆ = 216, the least amount of commu-
nication and training time is required.

6. Conclusion
This paper focused on how to train ML models in a
privacy-preserving way using a combination of split
learning and homomorphic encryption. We constructed
protocols by which a client and a server could collabora-
tively train a model without revealing significant infor-
mation about the raw data. As far as we are aware, this
is the first time split learning is used on encrypted data.

Acknowledgments
This work was funded by the HARPOCRATES EU re-
search project (No. 101069535) and the Technology In-
novation Institute (TII), UAE, for the project ARROW-
SMITH.

References
[1] T. Khan, A. Bakas, A. Michalas, Blind faith: Privacy-

preserving machine learning using function approx-
imation, in: 2021 IEEE Symposium on Computers
and Communications (ISCC), IEEE, 2021, pp. 1–7.

[2] P. Vepakomma, O. Gupta, A. Dubey, R. Raskar, Re-
ducing leakage in distributed deep learning for sen-
sitive health data, arXiv:1812.00564 (2019).

[3] A. Singh, P. Vepakomma, O. Gupta, R. Raskar, De-
tailed comparison of communication efficiency of
split learning and federated learning, arXiv preprint
arXiv:1909.09145 (2019).

[4] P. Vepakomma, O. Gupta, T. Swedish, R. Raskar,
Split learning for health: Distributed deep learning
without sharing raw patient data, arXiv preprint
arXiv:1812.00564 (2018).

[5] J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic
encryption for arithmetic of approximate numbers,
in: International Conference on the Theory and Ap-
plication of Cryptology and Information Security,
Springer, 2017, pp. 409–437.

[6] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A.
Camtepe, Y. Gao, H. Kim, S. Nepal, Can we use
split learning on 1d cnn models for privacy preserv-
ing training?, in: Proceedings of the 15th ACM Asia
Conference on Computer and Communications Se-
curity, 2020, pp. 305–318.

[7] M. Wooldridge, The Road to Conscious Machines:
The Story of AI, Pelican Books, Penguin Books Lim-
ited, 2020.

[8] G. B. Moody, R. G. Mark, The impact of the mit-bih
arrhythmia database, IEEE Engineering in Medicine
and Biology Magazine 20 (2001) 45–50.

[9] O. Gupta, R. Raskar, Distributed learning of deep
neural network over multiple agents, Journal of
Network and Computer Applications 116 (2018).

[10] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, H. Yu,
Federated learning, Synthesis Lectures on Artificial
Intelligence and Machine Learning 13 (2019) 1–207.

[11] D. P. Kingma, J. Ba, Adam: A method for stochas-
tic optimization, arXiv preprint arXiv:1412.6980
(2014).

	1 Introduction
	2 Related Work
	3 Architecture
	3.1 1D CNN Local Model Architecture
	3.2 U-shaped Split 1D CNN Model

	4 Split Model Training Protocols
	4.1 Training U-shaped Split Learning with Plaintext Activation Maps
	4.2 Training U-shaped Split 1D CNN with Encrypted Activation Maps

	5 Performance Analysis
	5.1 Evaluation

	6 Conclusion

