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Abstract

For several healthcare applications, it is important to monitor the attention level of people, especially in the fields of
rehabilitation and psychology. The recent availability of cheap and portable EEG readers has enabled continuous and
unobtrusive acquisition of EEG signals. Those signals may be preprocessed and analysed with machine learning algorithms to
estimate the attention level of people without interfering with their current activities. In this paper, we report our experience
with attention level estimation using two kinds of devices: an off-the-shelf portable EEG headset, and a more sophisticated

EEG device.
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1. Introduction

The increasing availability of portable and wearable sen-
sors, more and more integrated in everyday objects, is
paving the way to a new generation of applications to
support personal health and well-being. Consequently,
impressive research efforts have been devoted to devise
effective techniques for recognizing human activities and
complex behaviors based on those sensor data [1, 2, 3].

Interestingly, while a vast amount of healthcare ap-
plications use sensor-based artificial intelligence for ad-
dressing the physical dimension of health, the mental
dimension is less investigated [4, 5]. However, a substan-
tial portion of the world’s population deals with mental
disability. Many people with mental illnesses do not have
equal access to healthcare, education, and employment
opportunities, do not receive specific disability-related
services, and experience exclusion from everyday life ac-
tivities. Unfortunately, there is a large amount of diverse
mental disabilities, which require ad-hoc and personal-
ized solutions. Moreover, the design and implementation
of effective and efficient technologies is a complex and ex-
pensive process involving challenging issues, including
usability and acceptability.

In this paper, we evaluate the use of a cheap and un-
obtrusive portable electroencephalography (EEG) sensor
for monitoring the human attention level. Indeed, the
ability to monitor human attention is fundamental for
treating several conditions, including the diagnosis and
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rehabilitation of children with attention-deficit/hyperac-
tivity disorder [6]. We propose a feature extraction tech-
nique based on sliding windows, and supervised machine
learning to distinguish between attentive and distracted
states. We experimentally compared the performance
of the portable EEG sensor with a more powerful EEG
device using real-world datasets. Results indicate that
the accuracy achieved by the simpler EEG sensor is close
to the one achieved by the more sophisticated device.
Moreover, the technique provides reliable results when
the machine learning algorithm is trained on the spe-
cific subject, while accuracy significantly drops when the
algorithm is trained on other subjects. This study pro-
vides useful indications and outlines different research
directions for improving the approach in future work.

2. Material and methods

In our work, we have considered two datasets contain-
ing brainwave data on which we have applied the same
feature extraction and classification techniques. The first
dataset, named ‘Tmage-labeling dataset’, was acquired
using an off-the-shelf portable EEG headset with 4 chan-
nels. The second dataset, named ‘Epoc’, was acquired
using a more sophisticated EEG device with data acquired
from 7 channels. We experimented the performance of
machine learning algorithms in distinguishing attentive,
distracted, and drowsed states of the individual based
on EEG signal processing. In our experiments, only the
preprocessing phase of EEG data diverges. Indeed, the
data of the Epoc dataset are raw, so it was necessary
to employ Fast Fourier transform algorithms to extract
Delta, Theta, Alpha and Beta brainwaves. Delta waves
are related to deep sleep, unconsciousness, anesthesia,
and lack of oxygen; Theta waves activity occurs when a
person experiences emotional pressure, unconsciousness,
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or deep physical relaxation; Alpha waves are instead vis-
ible when an individual is in a state of consciousness,
stillness, or rest, whereas when one is thinking, blinking
or otherwise stimulated, this wave type disappears (al-
pha block); finally, Beta waves is evident when a person
thinks or receives sensory stimulation.

2.1. Image-labeling dataset

The first dataset, collected by our research group, con-
siders the attention level of annotators labeling a series
of images. A detailed description of the dataset can be
found in [7]. For the EEG data collection, we used the
Muse2 headband version 2 of InteraXon'. Muse consists
of 4 electrodes that can collect information on brain ac-
tivity with a 256Hz sampling frequency in a non-invasive
way. The Muse electrodes gather signals from channels
TP9, AF7, AF8 and TP10. These electrodes are named
and positioned according to the International System 10-
20 [8]. We used the mobile application Mind Monitor?
along with the Muse sensor for receiving the EEG signals.
For the sake of this work, we collected:

«+ The date and time of the recording.
« Brainwaves Delta, Theta, Alpha, Beta [9] for each
Sensor.

The brainwave values are absolute band powers, based
on the logarithm of the spectral power density (PSD) of
the EEG data for each channel. These values are calcu-
lated internally by the Mind Monitor application with a
data rate of 10Hz.

The participant’s task was to label indoor images that
appeared randomly in a data annotation interface by se-
lecting one of the eight buttons with the correct label.
The task took 30 minutes to complete. At the end of
the task, the ‘Attentive’ and ‘Distracted’ classes were as-
signed to the first 10 and last 10 minutes of the recording,
respectively.

2.2. Epoc dataset

The second dataset was taken from the work of [10]. For
the EEG data collection, the authors used the Epoc EEG
headset ® with 12 electrodes. The data are collected with a
sampling rate of 128 Hz. The device was modified to allow
electrode placement on the frontal and parietal areas of
the scalp. Among the available channels, only O1, 02, P7,
P8, AF4, F3, F7, named and positioned according to the
International System 10-20, were used in the presented
work, since the other ones gave no insightful information
for attention monitoring, or were affected by an excessive
level of noise.

'https://choosemuse.com/
Zhttps://mind-monitor.com/
Shttps://www.emotiv.com/epoc/

Since brainwaves data in the dataset are raw, we pre-
processed the data by applying the fast Fourier trans-
form [11] to obtain Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha
(8-14 Hz) and Beta (14-30 Hz) brainwaves. The partic-
ipant’s task consisted of controlling a train using the
Microsoft Train simulator program, through simple key-
board commands, for a minimum duration of 30 minutes.
At the end of the task, the recording is divided into three
10-minute fragments related to a particular mental state:
‘Attentive’ during the first fragment, ‘Distracted” during
the second one, and ‘Drowsed’ during the last one.

2.3. Feature extraction

The various brainwaves signals were divided into 10-
second long non-overlapping sliding windows. For each
window, we calculated 7 features: mean and median,
variance and standard deviation, maximum, minimum,
and difference between maximum and minimum values.

These features are computed for each value of brain-
waves Delta, Theta, Alpha, Beta, for each channel. Hence,
we use 112 features for the Image-labeling dataset (4 chan-
nels), and 196 features for the Epoc dataset (7 channels).

2.4. Classification of human attention
level

Feature vectors are used to train and test a Random Forest
(RF) classifier [12]. In various problems and classification
domains, including problems with small training datasets,
RF have often been found among the most accurate clas-
sifiers. RF and random trees were also successfully used
for run-time brain-computer interface applications [13].
The RF randomly selects a subset of the available features
to train a decision tree classifier on it; then it repeats the
process with other subsets of random features to gen-
erate many decision trees. The final decision is made
by combining the results of all decision trees using an
ensemble approach.

3. Experimental evaluation

Our technique has been evaluated using two cross vali-
dation approaches. In the first approach, named subject-
specific cross validation, the data of each volunteer was
taken into account separately, performing a sequential 5
fold cross validation on each volunteer’s dataset. In the
second approach, which we name leave-one-person-out
cross validation, k fold cross validation was carried out,
in which each fold corresponds to the data collected by a
single volunteer.

The results obtained by applying the first cross valida-
tion approach to the Image-labeling dataset are reported
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in Table 1 and the results obtained by applying the sec-
ond cross validation approach to the same dataset are
reported in Table 2. Table 1 shows very different results
among the subjects, ranging from an Accuracy of 62% to
100%, probably due to the headband that is sensitive to
movement and not easy to place in the correct position.
The second approach obtained an average Accuracy of
61% (Table 2), probably due to inter-subject variability of
acquired EEG data. Overall, the subject-specific approach
achieves better results (80% average Accuracy) than the
leave-one-person-out approach.

Dataset | Accuracy Confusion Matrix
Attent. Distract.
Tester 1 68% 41 19 Attent.
19 4 Distracted
Attent. Distract.
Tester 2 62% 47 13 Attent.
32 28 Distracted
Attent. Distract.
Tester 3 86% 49 11 Attent.
5 55 Distracted
Attent. Distract.
Tester 4 84% 50 10 Attent.
9 51 Distracted
Attent. Distract.
Tester 5 82% 48 12 Attent.
10 50 Distracted
Attent. Distract.
Tester 6 100% 60 0 Attent.
0 60 Distracted
Attent. Distract.
Overall 80% 295 65 Attent.
75 285 Distracted
Table 1

Image-labeling dataset. Subject-specific cross validation.

Accuracy Confusion Matrix
Attent. Distract.
61% 207 153 Attent.
130 230 Distracted
Table 2

Image-labeling dataset. Leave-one-person-out cross validation

Table 3 and Table 4 report the results of the subject-
specific approach applied to the Epoc dataset to solve the
attentive/distracted and attentive/drowsed classification
problems, respectively. Finally, Table 5 and Table 6 show
the results obtained by applying the leave-one-person-
out approach to the Epoc dataset to solve the same prob-
lems. We can make similar considerations to those made
previously comparing the results of Tables 1 and Table 2,
although in this case, the gap between the results ob-
tained with the application of the two approaches is less
evident. In particular, in the subject-specific approach,
we have an overall Accuracy of 72% (Table 3) and 86%
(Table 4), compared to an accuracy of 68% (Table 5) and

80% (Table 6) obtained using leave-one-person-out cross
validation.

Dataset | Accuracy Confusion Matrix
Attent. Distract.
Tester 1 57% 175 125 Attent.
131 169 Distracted
Attent. Distract.
Tester 2 71% 234 66 Attent.
107 193 Distracted
Attent. Distract.
Tester 3 77% 229 71 Attent.
59 231 Distracted
Attent. Distract.
Tester 4 78% 196 44 Attent.
62 178 Distracted
Attent. Distract.
Tester 5 76% 174 66 Attent.
50 190 Distracted
Attent. Distract.
Overall 72% 1008 372 Attent.
409 961 Distracted
Table 3

Epoc dataset. Subject-specific cross validation. Attentive/dis-
tracted classification.

Dataset | Accuracy Confusion Matrix
Attent. Drowsed
Tester 1 75% 204 96 Attent.
52 248 Drowsed
Attent. Drowsed
Tester 2 87% 281 19 Attent.
58 242 Drowsed
Attent. Drowsed
Tester 3 89% 289 1 Attent.
53 247 Drowsed
Attent. Drowsed
Tester 4 92% 223 17 Attent.
20 220 Drowsed
Attent. Drowsed
Tester 5 89% 210 30 Attent.
21 219 Drowsed
Attent. Drowsed
Overall 86% 1207 173 Attent.
204 1176 Drowsed
Table 4

Epoc dataset. Subject-specific cross validation. Atten-

tive/Drowsed classification.

Accuracy Confusion Matrix
Attent. Distract.
68% 940 440 Attentive
429 951 Distracted
Table 5

Epoc dataset. Leave-one-person-out cross validation. Atten-
tive/distracted classification.



Accuracy Confusion Matrix
Attentive Drowsed
80% 1094 286 Attentive
240 1140 Drowsed
Table 6

Epoc dataset. Leave-one-person-out cross validation. Atten-
tive/drowsed classification.

4. Discussion and research
directions

Considering the Image-labeling dataset, we can observe
that the average accuracy of distinguishing attentive and
distracted states is 80% when we use a subject-specific
cross validation approach; i.e., when the classifier is
trained on the data of the same individual used for testing.
Unfortunately, when we use a leave-one-person-out cross
validation approach, the accuracy drops to 61%, which is
a rather weak result for a binary classification problem.
With the latter approach, we use more extensive training
data, but those data are acquired from different people
than the individual used for testing.

With the Epoc dataset, we achieved similar results.
Indeed, the average accuracy of distinguishing atten-
tive and distracted states is 72% when we use a subject-
specific cross validation approach. With the same ap-
proach, the average accuracy of distinguishing attentive
and drowsed states is 86%. The recognition achieved with
the latter problem is higher, probably because drowsi-
ness is easier to distinguish from attentiveness with re-
spect to distraction. Also with this dataset, using a leave-
one-person-out cross validation approach determines
a considerable drop of accuracy; i.e., 68% accuracy in
distinguishing attentive from distracted states, and 80%
accuracy in distinguishing attentive from drowsed states.

These results indicate that our method achieves rela-
tively high accuracy only when the system is trained with
data acquired from the final user of the system. Training
the system with data acquired from different persons
determines a relevant drop in accuracy. This fact un-
dermines the practical utility of this technique for some
applications, since the system would require an initial
training phase by the user which may be time-expensive
and uncomfortable. This problem may be addressed by
using transfer learning methods explicitly proposed for
EEG data [14].

Another worth noting finding of our experiment is that
the more sophisticated device used for the Epoc dataset
achieves essentially the same accuracy of the simpler de-
vice used for the Image-labeling dataset. This result indi-
cates that even an off-the-shelf device may be effective to
support some attention-aware applications. Future work
includes investigating different machine learning algo-
rithms for the classification task, including deep learning

methods, to improve the accuracy of the system, and
feature selection techniques to reduce overfitting.
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