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Abstract
Scientific workflows are increasingly popular for large-scale data analyses as they promise better documentation, increased
reproducibility, and easier scalability of complex analysis pipelines. However, reproducibility is severely reduced when a
given workflow is optimized for a specific infrastructure, as it would require other scientists to access the same computing
environment. Hence, it is important to develop techniques that automatically adapt a given workflow to changes in the
underlying infrastructure or characteristics of the analyzed data, for instance, by using different data partitions or different
tools for individual steps of the analysis. Automatic workflow adaptation requires a cost model setting properties of different
tools, data set sizes, and characteristics of the given infrastructure into perspective. As a first step in this direction, we here
study in detail the performance of an important analysis in genomics, namely RNASeq, in different settings. We experimentally
measured the runtime of different RNAseq workflows implemented in Nextflow on different infrastructures (stand-alone or
distributed), composed of different tool chains, using different data set sizes. As different tools also lead to (slightly) different
outputs, we additionally compared the output of different workflow variants. We show that workflow variants designed for a
given infrastructure perform much worse in other settings and that rewritings sometimes keep and sometimes change the
output, even when tools are only replaced by others with the same purpose. We see these experiments as an important first
step toward automatically adapting workflows to different infrastructures.
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1. Introduction
Data Analysis Workflows (DAWs) are used to solve a
specific data analysis problem using a chain of tools con-
nected by input/output dependencies. In bioinformatics,
the usage of DAWs is critical to perform reproducible
analyses [1]. However, porting DAWs to different infras-
tructures or using them for different input data sizes can
cause severe problems. For example, if the new infras-
tructure has fewer resources, the workflow can crash
due to insufficient memory, or time outs as computations
take longer than anticipated at workflow design time. On
the other hand, also with more resources scaling prob-
lems can affect the runtime of the analysis [2, 3, 4]. In
our research, we hypothesize that knowledge of the in-
frastructure, the input, the DAW itself and the particular
tools it is made of can be used to automatically adapt
a given DAW such that it performs gracefully also in a
new environment. The rewriting of chains of interde-
pendent commands has a long tradition, especially in
the database [5] and the big data world [6]. However,
rewriting DAWs for scientific data analysis differs from
these settings in two regards. First, DAWs are typically
designed and executed in a black box model both for the

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023, Ioannina, Greece)
Envelope-Open mecquenn@informatik.hu-berlin.de (N. D. Mecquenem);
leser@informatik.hu-berlin.de (S. b. U. Leser)
Orcid 0000-0003-3052-6129 (N. D. Mecquenem); 0000-0003-2166-9582
(S. b. U. Leser)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

data and the operations - the executing infrastructure can-
not make any assumptions regarding the functionality
of the operations nor the format of the data [7]. Sec-
ond, DAWs for complex scientific data analysis consist of
many steps that are heuristics, which means that the ”cor-
rect” result of an analysis actually is not known and that
different DAWs for the same purpose on the same data
might produce diverging results [8]. Therefore, DAW
adaptation may consider a wide range of valid primitive
operations, such as: the replacement a tool of the DAW
by another one with the same purpose (1), the change of
tool/DAW parameters (2), the modification of the DAW
structure (3), or the adjustment of the sizes of data parti-
tions (4). Before implementing such functionalities, it is
crucial to understand the impact of a given adaptation for
a given setting on the workflow runtime and the output.
In this paper, we study this problem for DAWs perform-
ing an RNA sequencing (RNAseq) analysis. RNASeq is
particularly interesting as it is a widespread of analysis
used to understand gene expression and regulation under
certain conditions or diseases such as cancer. RNASeq
DAWs take a large set of short strings as input, which are
sequenced fractions of mRNA, the transient molecules
generated during gene expression as an intermediate step
to protein sequences. DAWs next map each string to a
reference genome to then cluster sets of strings stemming
from the same transcript. Real-life DAWs also include
further steps, such as data pre-processing, quality filter-
ing, or computation of different quality metrics. Each
task of these DAWs can be performed by several tools
that serve the same purpose, but use different heuristics
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leading to different resource requirements and results.
A particularly complex step is the mapping, for which a
plethora of possible tools exist [8].

Here, we studied the behaviour of three RNAseq DAWs
on two different infrastructures using two different data
sets. We created the DAWs tool-chains based on the tools’
popularity and compatibility with each other. Each DAW
was implemented in two versions: one is designed for
a stand-alone server, and another one is designed for a
distributed infrastructure. Adaptation consists of split-
ting the load of resource-demanding tasks across several
nodes of the cluster by splitting the input files - which
is not supported equally well by all tools. We ran the
two versions of these three workflows on two different
infrastructures and measured the runtime and output
differences between the workflow versions depending
on several parameters. We consider this work as a base
to better understand the impact of DAW rewritings. Ulti-
mately, we aim at abstracting these findings into a set of
rules that lead to an automatic DAW rewriting according
to a given input and context specifications.

2. Related work
Several strategies have already been used to optimize
DAW execution in a given context. For instance, [9] sur-
veys genomic workflows for the Map-Reduce infrastruc-
ture. Zaid Al-Ars et al. created a version of the popular
RNAseq GATK workflow adapted to Spark [10]. Yakeen
et al. describe a large-scale variant caller optimized for
execution on a commercial cloud [11]. Roy et al. stud-
ied the influence of different Hadoop parameters on a
specific genomics DAW [12]. However, all these works fo-
cused on optimization for a specific target infrastructure;
in contrast, we research methods that can adapt DAWs
to any execution infrastructure. Another line of related
research is concerned with optimization of (relational)
queries with user-defined functions, especially in big
data processing pipelines [6]. These, however, typically
are built on the paradigm that (a) individual operations
(tasks in a workflow setting) have pre-defined semantics,
(b) data follows a relational model, and (c) all rewritings
preserve exactly the results of a query. These assump-
tions do not hold in the realm of DAWs for scientific
analysis - data can have arbitrary formats, tasks are typi-
cally exchanged as binaries without any guarantees, and
operations are partly computationally so complex that
they can only be approached using heuristics, leading to
different results for different concrete physical implemen-
tations. Accordingly, we envision that DAW rewriting
makes up for these more complex settings by relying on
knowledge provided by workflow designers that want to
support portability and re-usability of their workflows.
Finally, there is some commonality to recent studies in

the field of AutoML [13]. The main differences are that
in AutoML (1) pipelines are linear and only exchanges of
tasks are considered and (2) the results of different work-
flow variants may also vary, but that typically a notion of
”best” is defined (e.g. highest accuracy on a test data set),
which often is not the case in scientific data analysis.

Figure 1: Design of the experiments. RS1 was created with
three tool-chains (Salmon, STAR, Hisat2). A variation of these
workflows (RS2) was created. We ran it on two infrastructures
(infra1 and infra2) and two datasets (D1 and D2). Their run-
time was measured, and their output was compared.

3. Experiments
As described in Figure 1, we created two RNASeq work-
flows performing the same operations but optimized for
different infrastructures. Both have as central and most
time-consuming task the alignment, which matches short
stretches of genomic sequences to a reference genome.
The alignment is also fundamental in other bioinformat-
ics workflows studying genomic sequences [14]. RS1
follows a pipeline structure, which we assume fits bet-
ter to a stand-alone server. RS2 is optimized for a dis-
tributed infrastructure, as it splits the input to allow for
a distributed computation of the alignment step across
several nodes of a cluster. From each workflow, we fur-
thermore created three variants according to the spe-
cific tool used to compute alignments, i.e., STAR [15],
Salmon [16], and Hisat2 [17]. We implemented all DAWs
using Nextflow [18], a workflow engine of increasing
popularity in the Bioinformatics community. Nextflow
workflows are implemented in a specific DSL which al-
lows for automatic parallelization and distributed execu-
tion of tasks. For local execution, NextFlow uses its own
execution engine; for a distributed setup, it can work
together with Kubernetes resource managers. The goal
of this experiment is
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Data and Infrastructures
Two RNAseq-paired input datasets of different sizes were
considered. Both data sets were obtained by sequencing
the transcriptome of Drosophila melanogaster. The dif-
ference in size allows us to understand better the impact
of the input size on the decision to rewrite the workflow.
Dataset 1 consists of two paired files of 13GB each, and
Dataset 2 is two files of 48G.
The DAWs were run on two different infrastructures:

one stand-alone server and one cluster. The stand-alone
server (infra1) consists of 32 Intel Xeon CPU E5-2667 v2
Octa Core, with a memory of 387 GB and a SATA SSD
1,9TiB Raid 5. The cluster Infra2 in our experiments con-
sists of 10 homogeneous nodes, each with a Quadcore
Intel Xeon CPU E3-1230 V2 3.30GHz; Memory: 16 GB;
Disks: 3x1TB, connected by a network of 2x 1GBit. The
stand alone server has way more resources than the clus-
ter. Therefore, we expect all the runtimes to be faster on
Infra1.

4. Results

Runtime comparison
Table 1 shows the runtimes of the pipeline version (RS1)
and the distributed version (RS2) of the DAWs on the two
infrastructures with both datasets. Note that each value
displayed in this table was obtained from a single run.
We are currently generating duplicate runs to acquire
more robust values. However, as we had exclusive usage
of the infrastructures during the measurements, we are
confident about our experiments not being perturbed by
other computations. Furthermore, the duplicated runs
that were already computed are consistent with the re-
sults presented in the table.

We observe notable runtime differences that show ten-
dencies but not an entirely consistent picture. In general,
RS1 and RS2 show similar runtimes on the stand-alone
server Infra1, with the notable exception of Hisat2 on the
large dataset D2. For this case, time reduction is almost
50%, while runtimes for the smaller dataset D1 are very
similar. We attribute this behaviour to the low resource
usage of Hisat2. In a non-distributed setting, Nextflow
parallelizes the tasks over the different CPUs available,
which makes the runtime on Infra1 overall smaller. Al-
most no difference is observed for STAR on infra1 as it
requires a lot of RAM to run over a single chunk of the
input data. On Infra2, runtimes differ considerably. In al-
most all cases, RS2 (designed for distributed computation)
achieves much lower runtimes than RS1, with reductions
up to 66%. Again, there is one exception: Salmon actu-
ally takes longer with RS2 than with RS1. This runtime
difference is due to the task splitting the input files.

DAW Dataset Infrastructure RS1 RS2

STAR
D1

Infra1 58 m 48 m
Infra2 364 m 134 m

D2
Infra1 401 m 321 m
Infra2 2383 m 720 m

Hisat2
D1

Infra1 60 m 47 m
Infra2 175 m 85 m

D2
Infra1 569 m 232 m
Infra2 935 m 437 m

Salmon
D1

Infra1 8 m 15 m
Infra2 68 m 51 m

D2
Infra1 32 m 51 m
Infra2 186 m 270 m

Table 1
Runtimes of the three RNAseq DAWs, compared across DAW
versions and datasets for both infrastructures. The DAWs are
named by the aligner used in their tool-chain. In bold, we
highlight large reduction in runtimes from RS1 to RS2.

Interestingly, the DAWS require very different run-
times depending on which tool was used for the align-
ment step. On Infra1 with D2, the runtime of Salmon is
approx. 20 times faster than HiSat2 on RS1 and five times
faster on RS2. In almost all cases, workflows profited
from the plus in resources in the distributed Infra2 when
switching from RS1 to RS2, but to varying degrees.

However, recall that our intention is not to find the best
DAW for a given infrastructure, but to develop algorithms
that can rewrite a given DAW developed for a setting A
to adapt it to a new setting B - which might simply have
a slow network, such as Infra2. For instance, imagine a
researcher developed RS1 on Infra2 using HiSat2 for data
sets of the size of DS1. Now, she wants to run it on larger
datasets yet avoid that 5-fold increase in runtime. An
adaptation an optimizer could propose is to rewrite the
workflow into RS2, which would only lead to a 2-fold run-
time. Or imagine another user who wants to reuse this
workflow, but is forced to use STAR as aligner because it
is the lab-internal standard. Runtime would be doubled,
or even increased by a factor of 13 when also switching to
larger files. An optimizer could recognize that switching
to RS2 would decrease the expected increase by 65%.

Quality comparison
In scientific data analysis, different DAWs for the same
problem often lead to (slightly) different results due to
the usage of different heuristics for solving complex sub-
problems. Sometimes, avoiding such changes can be
mandatory, for instance, when a certain analysis method
is defined as an organizational standard. However, often
such changes are acceptable, for instance, in the early
phases of a data analysis project in which different trade-
offs are explored, such as runtime, result quality, analysis
cost etc. In any case, users need to be informed about the
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STAR Salmon Hisat2
Dataset 1 100 % 82,06 % 97,39 %
Dataset 2 100 % 71,71 % 99,65 %

Table 2
Percentage of similarity of transcript counts between the
pipeline version (RS1) and the scatter/gather version (RS2)
of each DAW.

expected degree of changes a DAW rewriting would incur.
To this end, we compared the results of the different DAW
versions to understand how much the DAG structure
modification impacts analysis results. We measured the
similarity between the results of the RS1 and RS2 versions
of each DAW in Table 2. Clearly, the DAWs using Hisat2
and STAR are very robust to this rewriting, while the one
using Salmon produces largely different results.

5. Conclusion and future work
We presented the results of an initial study on the impact
of DAW adaptations to different infrastructures, consid-
ering both the replacement of central tools as well as
changing the workflow structure. The main purpose is
to show that such rewritings impact performance con-
siderably and that certain variants are more suitable for
certain infrastructures and that suitability also depends
on the input size. Relationships are overall complex and
certainly will vary with different analysis problems, dif-
ferent DAWs for solving them, and different infrastruc-
tures. We are consolidating these results with experi-
ment replicates and more workflows and dataset sizes.
In future work, we will focus on languages to provide
descriptions of core aspects of infrastructures, methods
to derive properties of tools on different infrastructures,
annotation schemes to describe the equivalence of tools
in genomics and a cost model as a basis for a rule-based
DAW adaptation algorithm that takes these properties
into account. We will then develop an automatic DAW
rewriting that implements this algorithm.
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