
Scalable Query Processing on Big Spatial Data

Thanasis Georgiadis,
supervised by Nikos Mamoulis

University of Ioannina, Greece

Abstract
We live in the era of big data. Huge amounts of complex information, such as spatial data, are being
generated daily by organizations, the industry and individuals at an increasing rate. At the same time,
distributed and cloud computing systems are becoming more efficient, more available and with cheaper
memory than ever. Thus, they are being established as the leading tool for big data management.

The goal of this doctoral work is to research and design novel scalable techniques that will support
fast query processing on spatial data in a distributed environment. First, we aim to create new
techniques that will simplify operations performed when processing complex spatial objects such as
polygons, while simultaneously retaining result accuracy. Additionally, we study memory management
mechanisms for individual machines, while optimizing size and performance trade-offs. Finally, we
discuss the challenges of a distributed environment and provide ways to use optimized spatial data
management techniques while ensuring scalability.

Keywords
Spatial Data, Distributed Systems, Query Processing, Scalable Techniques

1. Introduction

Spatial data management has been widely studied
for the last forty years [1, 5], with an increased
interest lately due to the large amounts of data
that are generated daily. Spatial data refers to
geometrical objects such as points, lines, polygons
etc. that can be used to represent real world entities
like buildings, lakes or points of interest (restaurants,
banks etc.). They are usually generated and handled
by Geographic Information Systems (GIS) that have
to effectively organize and manage large quantities
of such data, in order to use it commercially and
scientifically.

Some of the most commonly used query types
on spatial data include intersection joins (pairs of
objects that intersect) [2], within joins (pairs of
objects that the first is completely inside of the sec-
ond), range queries (objects that intersect a given
rectangular or polygonal area), distance joins (pairs
of objects with less than a specified maximum dis-
tance between them) and 𝑘-nearest neighbors (the 𝑘
geographically closest objects to the target object).

Resolving spatial queries is usually done in two
steps: the filter and the refinement stages [1]. The
first step filters a large portion of the data through
simple operations, so that only a small amount of

Published in the Workshop Proceedings of the
EDBT/ICDT 2023 Joint Conference (March 28-March
31, 2023, Ioannina, Greece)
email: ageorgiadis@cs.uoi.gr (T. Georgiadis)

© 2023 Copyright for this paper by its authors. Use permit-
ted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

candidates will move on to the expensive refinement
phase. In the second step, the objects are geomet-
rically checked with one another to identify their
relationship, which can be proved costly for complex
geometries such as polygons.

When dealing with such geometries, the filter
step usually processes some approximation of the
objects (instead of their original geometries) and
they are usually stored into hierarchical indices such
as R-tree [3] or quadtree [4]. For example, poly-
gons can be processed roughly using their Minimum
Bounding Rectangles (MBRs), which are far more
simpler to operate upon. There have been many
approximations throughout the years (Convex Hull,
5C, Maximum Enclosed Rectangle and more) [5, 6],
each one with its own attributes and various appli-
cability on different query types.

Additionally, the concurrent progress and in-
creased availability of distributed and cloud com-
puting systems in the last couple of decades, has
rendered them a powerful tool for big data man-
agement [7]. Techniques that partition the data to
worker nodes which in turn can process it indepen-
dently and simultaneously with one another, enable
processing huge volumes of data in an environment
with larger collective memory.

2. Motivation & Challenges

The major problem in spatial query evaluation, is
that spatial relationships between complex geome-
tries such as polygons, are expensive to identify,
because they include edge intersection detection

mailto:ageorgiadis@cs.uoi.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


and point-in-polygon tests (for intersection and con-
tainment, respectively). Thus, being able to reduce
the total refinement workload is crucial when at-
tempting to improve query evaluation time.

Additionally, tree-based spatial indices are not fit
for highly dynamic data due to their large update
cost. Approximations other than the MBR, are
usually not stored in such indices. Instead, they
are used in an intermediate filter right after the
MBR-filtering stage, to further reduce the refine-
ment candidates. However, not all approximation
perform well and they are usually able to detect
either true hits or true negatives, but not both.

Distributed commercial and scientific GIS
(Apache Sedona, Spatial Hadoop, SIMBA, Mag-
ellan), cloud data warehousing services (Amazon
Redshift) and companies that generate and use spa-
tial data daily for their services (Twitter, Uber,
Google), have an increasing demand for fast and
scalable spatial data processing.

To increase parallelism, distributed systems must
partition the data in a way that allows as much
of the work as possible to be done independently
by the worker nodes. For different data types how-
ever, this adds new challenges and is not always
clear what partitioning method performs best for
each query type. Geometrical approximations can
be useful for data homogeneity and detecting true
negatives faster, but they can not always identify
true positives so they tend to lack in accuracy.

Additionally, most spatial data management sys-
tems focus on partitioning the data effectively, with
little to no optimization done on a single machine.
Our ultimate goal is to study scalable ways to pro-
cess spatial data in a distributed environment and
to face the challenges it establishes.

3. Scalable Query Processing

In this section we discuss the main goals of this doc-
toral research and how we deal with the previously
mentioned challenges. It focuses on two individual
aspects of distributed big data management: the
techniques of processing queries on spatial data and
the application of such methods in a distributed
environment, while ensuring scalability.

The performance of single node query processing
can benefit from novel indexing techniques and spe-
cialized data type-focused approaches [5, 8, 9], as
well as certain polygon approximations that can
speed up the query evaluation by reducing the
amount of objects that need to be geometrically
refined.

3.1. Raster Intervals Polygon
Approximation

We have created a novel approximation technique
for polygons called Raster Intervals(RI) [8], which
has been proven to perform well in intersection and
within joins. Additionally, it has the prospect to
work well for range queries in which the window
may not only be a rectangle, but also a complex
polygon.

Figure 1: How grids of different granularity create vari-
ously detailed approximations.

RI are created through a pre-processing of the
original data by rasterizing each object using a
global grid and then ordering each cell using the
Hilbert Curve [10]. Grid granularity not only af-
fects the detail of each approximation but also the
size in bytes it requires in memory (Figure 1). A
granularity of 216 × 216 is usually enough, however
depending on data distribution and space, more
detailed grids may be necessary. Then, consecutive
cell identifiers are merged to create the intervals.
Additionally, a cell may be only partially covered by
the original geometry, so extra information about
each cell has to be taken into account in order to
use the approximation for accurate results.

Full
Strong
Weak
Empty

0

1 2

3 4

7 6

5

13

12

8

11 10

914

1716

15

28

27

26

1819

20

21 22

23 24

25

29

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

[9,12]
[15,15]
[17,18]
[23,40]
[45,46]
[50,57]
[61,61]

Intervals

Figure 2: The Hilbert curve cell enumeration and interval
generation for a polygon in a 8× 8 space.

Inspired by the Raster Approximation [11], we
use a modified classification for each cell, depending
on the percentage of its area that overlaps with the
original geometry: Full (100%), Strong (> 50% ),



Weak (≤ 50%), as seen in Figure 2. This means that
only Strong-Weak, Weak-Strong and Weak-Weak
cases need to be further refined, while the rest of
the cases can be safely either accepted or rejected.

In order to store this information in a compressed
manner, a unique binary code is assigned to each
case, depending on which one of the two data sets is
currently being processed (Table 1). We then glue
together the cell codes for each interval, creating a
single interval coding for it. Therefore each object
is now represented by a set of intervals and a set of
their respective codings.

input 𝑅 input 𝑆

full 011 101
strong 101 011
weak 100 010

Table 1
3-bit type codes for each input dataset

3.1.1. Compression

RI may generate many intervals for large polygons
or high granularity, which results in too much mem-
ory usage. By compressing the interval array we
can save space, with low decompression overhead
and without affecting the evaluation time too much.
Variable byte compression (Vbyte) is extremely pop-
ular and has been proven to achieve good ratio and
decompression speed [12, 13]. It is a byte-aligned
compression scheme for integers in which seven bits
of a byte are used to represent a number and the
eighth bit is used to indicate whether or not more
bytes follow for that same number (1 if yes, else 0).
The decompression is performed by removing the
least (or in some versions the most) significant bit
and concatenating the septets of bits together.

By employing SIMD instructions for faster binary
operations, Vbyte can achieve even better perfor-
mance for large arrays of integers [14]. However
they are not particularly useful in our case, since
an object will usually have a number of intervals
ranging from dozens to a few hundreds, unless cre-
ated using a very high granularity grid (larger than
217 × 217).

3.1.2. Intersection/Within Joins

The RI approximation can be used in intersec-
tion/within joins for real world applications. Instead
of comparing the original geometries of polygons,
which as described previously is really expensive,
possible interval overlaps are detected and their
codes are compared to assess the situation between

two objects. However, this method is used as an
intermediate filter in the pipeline, rather than the
first step of the whole process. It still depends on
an MBR filter such as the Two-Layer Partitioning
[9] to discard pairs of irrelevant objects.

To tackle the unavoidable added cost of the in-
termediate filter, we will also investigate a modified
version, in which we separate and duplicate the
main intervals (ALL-intervals), so that we have
any Full-Strong-only (FS -intervals) and Full-only
(F -intervals) cases as separate sets. Then, after
detecting an overlap in a pair’s ALL-intervals, the
filter will check for overlaps in the SF -intervals, fol-
lowed by the ALL-F and F -ALL types of intervals
respectively for each set.

3.1.3. Range Queries

RI can also be used in range queries on polygo-
nal data, by creating the RI approximation of the
selection window and effectively joining it with a
collection of objects. Instead of comparing the win-
dow’s shape with the actual polygonal geometry,
we detect interval overlaps between the window’s
and the polygons’ approximations. Since the perfor-
mance of a range query increases in relation to the
window’s shape and complexity, the RI approxima-
tion works pretty well for complicated, polygonal
windows by reducing it into a set of integer tuples.

3.2. Distributed Query Processing
One of the major challenges found in distributed
spatial data management, is data partitioning. The
worker nodes must be able to process queries on
their assigned data with minimal dependence to
data partitioned across the other nodes.

3.2.1. Partitioning

Grid. Grid partitioning works quite well, since it as-
signs different sections (cells) of the total geographic
area to nodes and they only process objects that lie
on their designated areas. Nearby cells are usually
assigned to different worker nodes, so that objects
concentrated in that area (and are thus likely to
participate as pairs in a query) are distributed to
more than one worker nodes, enabling the system
to utilize more of its resources in each case.

Trees. Similarly to a grid, trees can also be used
to partition data. KD-trees [15] for points or R-trees
[3] for polygons successfully divide space and same-
level areas can be partitioned across a collection
of nodes, so that each worker works on a specified
data region. However, load balancing on tree-based



partitions is greatly depended on query type. For
example, in intersection joins it might work well
since the participating data sets are joined in their
entirety. But in range queries, where a certain area
is specified, all the workload might be put on a
single machine, depending on data distribution.

Duplicate Detection. In both partitioning
methods discussed, geometries usually intersect
more than one of the designated sections, so du-
plicate entries are distributed across the system and
may affect the final result and the total processing
time. A duplicate detection mechanism must exist
and it is usually done by either assigning each ob-
ject to exclusively one section [16] through a pivot
point or by minimizing the amount of checks for
each object during the query processing[9].

Approximation Partitioning Considering
that the de-duplication mechanism usually takes
place in the MBR filter, we will focus on scalable
intermediate filters for different types of queries and
spatial data, since the refinement phase is what
takes up 99% of the total evaluation time has the
greatest room for improvement. For example, each
node can use the Raster Intervals approximation
in an intermediate filter, independently of how the
data has been partitioned (i.e. the intermediate fil-
ter does not include the de-duplication mechanism).
Additionally, we will investigate how well the grid
partitioning performs for different approximations
and queries, since it achieves considerably better
workload balancing than trees.

4. Conclusion

To sum up, in this work we focus on the main issues
that big spatial data management has to battle in
order to be scalable. We discussed techniques that
help preserve individuality and independence whilst
preserving good throughput at query processing.
In the future, more data types such as points and
lines (which are typically not approximated) will
be studied in order to be supported by these parti-
tioning techniques and query processing methods,
to improve system applicability.

5. Acknowledgments

T. Georgiadis was supported by the Hellenic Foun-
dation for Research and Innovation (HFRI) under
the “2nd Call for HFRI Research Projects to sup-
port Faculty Members & Researchers” (Project No.
2757).

References
[1] N. Mamoulis, Spatial Data Management, Synthe-

sis Lectures on Data Management, Morgan & Clay-
pool Publishers, 2011.

[2] E. H. Jacox, H. Samet, Spatial join techniques,
ACM Trans. Database Syst. 32 (1) (2007) 7.

[3] A. Guttman, R-trees: A dynamic index structure
for spatial searching, in: B. Yormark (Ed.), SIG-
MOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984, ACM
Press, 1984, pp. 47–57.

[4] R. A. Finkel, J. L. Bentley, Quad trees: A data
structure for retrieval on composite keys, Acta In-
formatica 4 (1974) 1–9.

[5] T. Brinkhoff, H. Kriegel, R. Schneider, B. Seeger,
Multi-step processing of spatial joins, in: Proceed-
ings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, Minneapolis, Min-
nesota, USA, May 24-27, 1994, ACM Press, 1994,
pp. 197–208.

[6] T. Brinkhoff, H. Kriegel, R. Schneider, Compari-
son of approximations of complex objects used for
approximation-based query processing in spatial
database systems, in: Proceedings of the Ninth In-
ternational Conference on Data Engineering, April
19-23, 1993, Vienna, Austria, IEEE Computer So-
ciety, 1993, pp. 40–49.

[7] V. Pandey, A. Kipf, T. Neumann, A. Kemper, How
good are modern spatial analytics systems?, Pro-
ceedings of the VLDB Endowment 11 (2018) 1661–
1673.

[8] T. Georgiadis, N. Mamoulis, Raster intervals: An
approximation technique for polygon intersection
joins, in: Proceedings of the 2023 ACM SIGMOD
International Conference on Management of Data,
Seattle, Washington, USA, June, 2023.

[9] D. Tsitsigkos, K. Lampropoulos, P. Bouros,
N. Mamoulis, M. Terrovitis, A two-layer partition-
ing for non-point spatial data, in: 37th IEEE Inter-
national Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, IEEE,
2021, pp. 1787–1798.

[10] D. Hilbert, Über die stetige Abbildung einer Linie
auf ein Flächenstück, 1970, pp. 1–2.

[11] G. Zimbrao, J. M. de Souza, A raster approxima-
tion for processing of spatial joins, in: VLDB’98,
Proceedings of 24rd International Conference on
Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, 1998, pp. 558–569.

[12] D. Lemire, L. Boytsov, Decoding billions of in-
tegers per second through vectorization, Softw.
Pract. Exp. 45 (1) (2015) 1–29.

[13] H. E. Williams, J. Zobel, Compressing integers for
fast file access, Comput. J. 42 (3) (1999) 193–201.

[14] D. Lemire, C. Rupp, Upscaledb: Efficient integer-
key compression in a key-value store using SIMD
instructions, Inf. Syst. 66 (2017) 13–23.

[15] J. Bentley, Multidimensional binary search trees
used for associative searching, communications of
the ACM September, 1975. vol. 18: pp. 509-517 :
ill. includes bibliography. 18.

[16] J.-P. Dittrich, B. Seeger, Data redundancy and du-
plicate detection in spatial join processing, 2000,
pp. 535 – 546.


	1 Introduction
	2 Motivation & Challenges
	3 Scalable Query Processing
	3.1 Raster Intervals Polygon Approximation
	3.1.1 Compression
	3.1.2 Intersection/Within Joins
	3.1.3 Range Queries

	3.2 Distributed Query Processing
	3.2.1 Partitioning


	4 Conclusion
	5 Acknowledgments

