CEUR-WS.org/Vol-3379/PhDWorkshop_2023_geyer—paper.pdf

Optimizing Analytical Query Processing on Disaggregated

Hardware

Andreas Geyer

Supervised by: Wolfgang Lehner

Dresden University of Technology (TU Dresden), Dresden, 01069, Germany

Abstract

In a world of ever-growing amounts of data, hardware-scalability and energy-efficiency become more important with every
year. Traditional scale-up and scale-out database management systems (DBMS) struggle to scale well with their growing
analytical workloads. Due to this, the emerging technology of disaggregated hardware becomes more and more popular.
However, there is no free ride and specific challenges arise. In my PhD topic, I want (i) to look into these challenges for
analytical query workloads on disaggregated hardware and (ii) to provide appropriate solutions. First initial results concerning
data movement are promising and show the potential of adapted solutions.

Keywords

RDMA, Disaggregated Memory, Disaggregated Hardware

1. Introduction

With the ongoing shift to a data-driven world in almost
all application domains, the management and analyt-
ics of data gain importance. However, the demand for
computing power as well as memory capacities is also
growing to enable efficient data analytics over an ever-
increasing amount of data. To satisfy these ever-growing
hardware demands in a scalable and flexible way, the
emerging technology of hardware disaggregation is con-
sidered the "next big thing" [1]. Hardware disaggregation
is an approach that decomposes general-purpose mono-
lithic servers into separated, network-attached resource
pools, each of which can be built, managed, and scaled
independently. This hardware disaggregation offers var-
ious valuable possibilities such as (i) fast, fine-grained
scalability depending on individual workloads, (ii) en-
ergy proportionality, or (iii) resource sharing capabilities.
However, there is no free ride and specific challenges
arise. In my thesis, I want to focus on analytical query
processing on disaggregated memory systems and solv-
ing the specific challenges in that scope.

The foundation of our work is an appropriate system
architecture, similar to the one from [2], with dedicated
units for computation and memory. These are named
Compute Units (CUs) and Memory Units (MUs). CUs and
MUs are explicitly decomposed and connected via a net-
work. With modern network technologies like Com-
pute Express Link (CXL) or Remote Direct Memory Ac-
cess (RDMA) over InfiniBand (IB), there are already high-
throughput, low-latency interconnects available. Never-

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023, Ioannina, Greece)
Q Andreas.Geyer@tu-dresden.de (A. Geyer)
© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)
=] CEUR Workshop Proceedings (CEUR-WS.org)

theless and as we focus on analytical query processing
(OLAP) as a prime representative for data-intensive work-
loads, the efficient data exchange between MUs and CUs
is a major challenge.

To minimize the amount of data to be transferred
between CUs and MUs, solution approaches such as
function-to-data (operator push-down) like in [3] or near-
memory computing schemes [4] are heavily applied.
However, these approaches lead to the fact that they
cannot scale the computations, due to limited resources,
as we would be able to achieve it by the general decompo-
sition of CUs and MUs. Thus, they only provide limited
applicability. To overcome that shortcoming, we focus
on solutions regarding the data-to-function schema by
making the data transfer explicit as first-class citizen in
such an architecture. With this explicit treatment, we are
able to synchronize the assignments of computations to
CUs and the necessary data exchange in a scalable and
flexible way. This synchronisation includes several as-
pects such as (i) different computations on the same data
across different queries can be grouped at one CU, so that
the necessary data must be transferred only to this CU,
(ii) data transfer can be done in an asynchronous way to
interleave it with the computation to hide latency, or (iii)
preparing data during transfer for subsequent processing
at the CU by e.g., adapting the data layout.

While still being in an early stage of my PhD thesis
(1st year), we argue that this research direction has high
potential. To show that, the remainder of this paper is
organized as follows: In Section 2, we discuss a selec-
tion of already existing solutions. Then, we give a more
detailed view of our current approach including some
preliminary results in Section 3. Finally, we conclude
with a summary and outlook in Section 4.


mailto:Andreas.Geyer@tu-dresden.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

MUs

Query
Batch

Query
Optimizer

Pipelines

Query
Batcher

‘PUHPUHPU‘

Data
Transfer
Manager

T\

P

Pipeline
Grouper

SchedulerH

Data
Transfer

Parameter
Server

i

Optimizer Goals

Pipeline Group Executor

Figure 1: Envisioned design for a data transfer centric disaggregated DBMS.

2. Related Work

Disaggregated hardware revolutionizes the design and ar-
chitecture of modern database systems and thus database
researchers have just started to investigate the potential
implications of such a novel hardware model. For ex-
ample, [1, 3, 5, 6] discuss the general impact and among
other things infer a new architecture as well as database
primitives. We fully agree that disaggregation leads to
an alteration of traditional query handling.

The authors of [2] introduce an approach for dis-
tributed shared-memory databases (DSM-DB). Their sys-
tem architecture is similar to ours as we will describe
in Section 3.1, but it focuses on OLTP workloads, while
we focus on OLAP. However, it will be interesting to
compare this similar strategy to our own in the future.

There are already system prototypes like LegoOS [7],
PolarDB [8], Teleport [6], Farview [3], and more emerge.
LegoOS tackles the operating system side for steering
and controlling the actual hardware components, which
is an extremely interesting feature for elasticity, but or-
thogonal to our proposed processing model. PolarDB —
very similar to our architectural blueprint — plans with
separate compute nodes but attributes the remainder of
the resources to individual pools. Contrarily, we argue
that dedicated units with individual compute resources
as in our system architecture yield benefits, for example,
the preservation of the opportunity for operator push-
down. In Teleport, the authors observe that the high
network latency of ‘remote’ accesses is impacting data-
intensive systems and thus opt for compute or operator
push-down. Approaches with network-attached memory
(NAM) [9, 10] are promising but lack the possibility of
operator push-down, similar to Teleport. Farview’s on-
demand provisioning of compute nodes paired with the
FPGA-controlled storage serves as a general inspiration
for our work. However, Farview considers the execution
of individual pipelines, which is contrary to our process-
ing model, which is based on shared data access similar

to the principle of scan sharing [11].

On the one hand, recent work also has just shown the
viability of CXL-attached main memory [12]. Our pro-
totype implementation is currently based on one-sided
RDMA verbs, but our memory access layer is already
prepared to also work with memory via CXL as soon as
we have access to corresponding hardware. On the other
hand, DFI [13] is a framework to efficiently exploit high-
speed networks, such as IB. They show that adding an
abstraction layer on top of RDMA verbs does not impose
a significant performance degradation. However, their
experiments are tailored towards tuple-based data pro-
cessing, whereas we focus on column- or batch-oriented
data transfer.

3. Our Contributions

The focus of my thesis lies on pipeline execution, as
state-of-the-art execution model for analytical query pro-
cessing (OLAP), introduced in [14], on disaggregated
hardware. The challenges coming with it arise from the
main OLAP properties. First, D it is necessary to access
a lot of data for these workloads, which traditionally re-
sults in scans of whole columns or even tables. Second,
@ alot of queries are executed simultaneously and most
probably access the same data multiple times. Therefore,
data transfer is a potential bottleneck and thus, an intel-
ligent and optimized data transfer is crucial. The idea of
making the data transfer explicit allows us to tune the
pipeline execution in a way that the latency through net-
work communication is nearly negligible. Additionally,
we argue that this allows us to utilize the given flexibil-
ity that disaggregated hardware offers when it comes to
resource management.

3.1. General System Architecture

As there is a wide variety of possibilities to structure a
system based on disaggregated hardware, we start with



© ©
+

~

o

Processing Time [s]

o r N W & W

0/3 13 2/3 3/3
Overlap

Local
-+- NUMA e

Chunked Pipeline
Chunked Prefetch e

Column Pipeline
Column Prefetch

(a) 4 pipelines executed sequentially with 4 threads for each
pipeline

o N ® ©

Processing Time [s]

o Fr N W B W

0/3 13 2/3 3/3
Overlap

Local
-+- NUMA e

Chunked Pipeline
Chunked Prefetch e

Column Pipeline
Column Prefetch

(b) 4 pipelines executed fully parallel with 1 thread for each
pipeline

Figure 2: Two different pipeline group execution strategies with different amounts of data-overlap

our anticipated system design as introduced in our CIDR
2023 publication [15]. Figure 1 depicts a related sketch.
As already introduced, we separate our system into CUs
and MUs based on their respective task. While MUs fea-
ture high memory capacities (DRAM, NVRAM, ...) with a
limited amount of compute resources, CUs provide a high
amount of compute resources with a limited main mem-
ory capacity. Thus, CUs are merely responsible for exe-
cuting queries, managing the lifecycle of intermediates
and feeding results to the clients. Apart from operator
pushdown, base data has to be fetched from MUs.

This architecture works with one-to-one connections
for CU and MU, as long as the MU holds all relevant
data. However, the idea is to have an N-to-M connection
between CUs and MUs. The connections are realised
through a high-throughput, low-latency interconnect
like IB or CXL, for instance.

As this architecture is already realizable with commod-
ity systems, we argue that it allows transferring knowl-
edge from the well-known system architectures to the
new one based on disaggregated hardware. In the ab-
sence of real disaggregated hardware, we emulate both
CU and MU with standard monolithic server systems
directly connected through IB. As soon as disaggregated
hardware is available for us, we will apply our proposed
architecture and components to it.

3.2. Communication Layer

Even with fast interconnects, the network is prone to
be the bottleneck of the whole architecture, especially
in data heavy OLAP scenarios. Thus, we started our
research by developing a flexible communication layer
based on RDMA over IB, which is well prepared to in-
corporate CXL as soon as we get access to the respec-
tive hardware. Following the communication scheme of
RDMA there are reserved buffers on each system. We
implemented this by a separation into Receive Buffer (RB)
and Send Buffer (SB). As the name suggests, the SB is

responsible for the sending process (one-sided IB verb
RDMA_WRITE) and writes to the RB of the remote sys-
tem. Since we make the buffers exclusive for each CU-to-
MU connection, we can prevent conflicts of concurrent
write processes to the same buffer.

Through extensive evaluation of different configura-
tions of our initial communication layer, we found a
multi-buffer approach as best fitting. This approach im-
plies that there can be multiple SBs and RBs on each
system. Thereby, we can hide the latency introduced by
the consumption of the content from the RB and write
continuously to other free buffers. With this approach,
we found that already a configuration with one SB and
two remote RBs has big benefits in comparison to a single-
buffer approach. Using multiple threads on each node
also improves the performance further.

This communication layer is continuously developed
to further allow a multitude of other interconnect tech-
nologies additional to RDMA over IB.

3.3. Pipeline Group Concept

Based on the implementation of the communication layer,
the pipeline-based processing model is re-evaluated on
the given system architecture. As base tables are assumed
to be in-memory on the MU, when answering the query,
the data needs to be transferred from the MU to the CU.
The naive implementation based on the state-of-the-art
pipeline-execution model shows that the processing time
for a pipeline is mainly dominated by the data transfer.
Following these results and tackling properties D and
@, the main target is to reduce the amount of trans-
ferred data and interleave the communication with the
computation. Thus, we propose an approach of group-
ing pipelines with similar or the same data-needs into
pipeline-groups. This grouping allows us to prevent re-
dundant data transfer.

Figure 2 depicts two experiments to highlight the ben-
efits of our pipeline-group approach. Both graphs show



the processing time for the execution of 4 simple pipelines
depending on the amount of overlap within their data-
need. For these experiments Local means all data is lo-
cated in-memory attached to the working CPU, NUMA
that there is a NUMA-hop between the memory and
the CPU, Chunked that the data is transferred over the
network in smaller pieces and Column that whole data
columns are transferred at once. In Figure 2a, the more
traditional approach of executing each pipeline with full
resources one after the other is displayed. Orthogonal to
this, Figure 2b shows the fully parallel execution of the
same four pipelines. It is visible, that a higher overlap
in the data-need reduces the processing time of the four
pipelines tremendously in both cases. However, with full
parallelism, it is possible to nearly match the performance
of the NUMA-curve, while the traditional approach does
not perform that well. With these experiments, we argue
that pipeline groups offer the potential to nearly elimi-
nate the latency introduced by network communication.
This work has been submitted to CIDR 2023 and was
accepted for publication [15].

3.4. Resource Adaption

One of the key aspects of the pipeline group is also that it
allows utilisation of the given flexibility of disaggregated
hardware by scaling the resources individually with the
workload. Several of the blue components of Figure 1
offer dimensions to exploit this flexibility. The shown
Pipeline Group Executor is capable of managing the re-
source allocation in the best fitting way. Thus, it can
for example distribute the workload across multiple CUs
to prevent network-bottlenecks or move the workload
to a CU closer to the data-holding MU. With different
scheduling strategies, it is possible to determine how
many resources are needed. Hence, for example, scenar-
ios, where there is a budget involved can greatly benefit
from our approach as resources (CPU cores, RAM, etc.),
are allocated just when they are needed and released af-
ter the work is done. Additionally, when we integrate
some form of operator push-down, we can react nearly
immediately on the side of the MU to the increased work-
load. More CPU power can be allocated to work on this
operator, without impact on the other connections of the
MU. However, even though we already have a proof of
concept for our pipeline group approach, most of these
components are still up for development.

4. Conclusion and Future Work

We outlined the advantages and challenges of DBMS on
disaggregated hardware, gave a brief overview of the
existing solutions and touched on why we think they are
not sufficient to solve the outlined challenges completely.

Additionally, our described approach of pipeline group
execution showed some results of our previous work, to
prove that the concept is capable of solving the challenges
of DBMS on disaggregated hardware as well as utilizing
its flexibility and other advantages.

To research the topic of a DBMS processing model
that makes the best use of the opportunities and finds
solutions to the introduced challenges of disaggregated
hardware will be one of the key topics of my PhD thesis.
Thus, we will continue to develop our introduced pipeline

group approach.

References

[1] Q.Zhang, et al., Rethinking data management sys-
tems for disaggregated data centers, in: CIDR, 2020.
R. Wang, et al., The case for distributed shared-
memory databases with rdma-enabled memory dis-
aggregation, 2022.

D. Korolija, et al., Farview: Disaggregated memory
with operator off-loading for database engines, in:
CIDR, 2022.

G. Singh, et al,, Near-memory computing: Past,
present, and future, CoRR abs/1908.02640 (2019).
Q. Zhang, et al, Understanding the effect of
data center resource disaggregation on production
dbmss, Proc. VLDB Endow. 13 (2020).

Q. Zhang, et al., Optimizing data-intensive systems
in disaggregated data centers with teleport, in:
SIGMOD, 2022, p. 1345-1359.

Y. Shan, et al, LegoOS: A disseminated, dis-
tributed OS for hardware resource disaggregation,
in: USENIX ATC, 2019.

W. Cao, et al., Polardb serverless: A cloud native
database for disaggregated data centers, in: SIG-
MOD, 2021, pp. 2477-2489.

C. Binnig, et al,, The end of slow networks: It’s
time for a redesign, CoRR abs/1504.01048 (2015).
E. Zamanian, et al., The end of a myth: Distributed
transactions can scale, Proc. VLDB Endow. 10 (2017)
685-696.

L. Qiao, et al., Main-memory scan sharing for multi-
core cpus, PVLDB 1 (2008) 610-621.

M. Ahn, et al., Enabling CXL memory expansion
for in-memory database management systems, in:
DaMoN, 2022, pp. 8:1-8:5.

L. Thostrup, et al., DFI: the data flow interface
for high-speed networks, in: SIGMOD, 2021, pp.
1825-1837.

V. Leis, et al., Morsel-driven parallelism: a numa-
aware query evaluation framework for the many-
core age, in: SIGMOD, 2014, pp. 743-754.

A. Geyer, et al., Pipeline group optimization on
disaggregated systems, in: CIDR, 2023.

(2]

(9]



	1 Introduction
	2 Related Work
	3 Our Contributions
	3.1 General System Architecture
	3.2 Communication Layer
	3.3 Pipeline Group Concept
	3.4 Resource Adaption

	4 Conclusion and Future Work

