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Abstract
The detection of temporal abnormal patterns over streaming data is challenging due to volatile data

properties and lacking real-time labels. The abnormal patterns are usually hidden in the temporal context,

which can not be detected by evaluating single points. Furthermore, the normal state evolves over time

due to concept drift. A single model does not fit all data over time. Autoencoders are recently applied

for unsupervised anomaly detection. However, they usually get expired and invalid after distributional

drifts in the data stream. In this paper, we propose an autoencoder-based approach (STAD) for anomaly

detection under concept drift. In particular, we use a state-transition-based model to map different data

distributions in each period of the data stream into states, thereby addressing the model adaptation

problem in an interpretable way. We empirically demonstrate the state transition process and evaluate

the anomaly detection performance on the Covid-19 dataset of Germany.
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1. Introduction

Anomaly detection in streaming data is gaining traction in the current big data research. Despite

the high demand in a variety of real-world applications [1] (e.g., health care, device monitoring

and predictive maintenance), rare existing models show convincing performance in real-time

deployment. The detection of abnormal patterns in streaming data is challenging. On the

one hand, labels are unavailable or expensive to acquire in real-time, such that supervised

approaches usually fail. On the other hand, the conventional batch models easily get expire,

while a single stationary model does not fit the ever-changing data stream.

Recently, autoencoders have been employed for anomaly detection in an unsupervised manner

[2]. Autoencoders are trained to reconstruct the normal data
1
, such that for any unknown data

instance, a high reconstruction error indicates an anomaly. Specifically, for time series data, the

temporal dependencies between data points can be captured by constructing autoencoders using

Recurrent Neural Networks (RNNs) and their variants [3, 4]. Although such methods show
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impressive performance on time series data, they usually ignore that such data are commonly

collected in a streaming way and do not allow full access during the training phase. Therefore,

an adaptive autoencoder is desired, which can be initialized with a few normal data and be

updated according to the real-time data distribution changes.

Another major challenge of anomaly detection in streaming data is distinguishing between

abnormal patterns and concept drifts. Once the data stream drifts to a novel distribution,

a stationary model trained only on outdated data may detect most of the upcoming data

undesirably as anomalies.

Given the severe problems, our goal is to consider the concept drift detection and anomaly

detection as a whole, adapt the model to the latest data distribution, and detect anomalies only

concerning the temporal context where they are located. Previous concept drift researches

focus on detecting changes of the joint probability 𝑃 (𝑋, 𝑦) under supervised setting, namely,

the decision boundary changes along with the distributional changes in the input data [5]. How-

ever, for anomaly detection, the class distribution between normal and abnormal is extremely

unbalanced, and labels are usually missing, so it is impractical to use traditional supervised ap-

proaches [6, 7], e.g., detect drifts based on the changes of real-time prediction error rate. Instead,

the adaptation based on changes of the prior probability 𝑃 (𝑋) will ensure the autoencoder

reconstructs the normal data in from the current concept. Statistical tests are commonly used for

unsupervised drift detection [8]. For instance, the two-sample tests examine whether samples

from two collections are generated from the same data distribution. However, existing methods

conduct tests mostly in the original input space, which only works for linearly detectable drifts.

Ceci et al. [9] introduce both PCA and autoencoder to embed features into a latent space for

the change detection. However, their change detector is distance-based and highly depends on

a user-defined threshold.

In this paper, we propose STAD (State-Transition-aware Anomaly Detection). In STAD, data

distribution in a time period is defined as a states. We use state transitions to model the concept

drifts between periods. As autoencoders are well studied for non-linear time series anomaly

detection, we are motivated to extend the state transition paradigm to autoencoders. We follow

the standard usage of autoencoders for anomaly detection and novelly couple the detection

of concept drifts and anomalies with the informative latent representation of autoencoders.

An existing autoencoder can be reused when a data concept reappears in the stream. A state

transition is triggered by the detection of concept drift, and this will further guide the reuse

or adaptation of autoencoders for the next period. The states quantify the uncertainty caused

by concept drifts and raise interpretability in understanding the decision of autoencoders and

changes in the data stream.

2. Problem definition

2.1. Terminology

2.1.1. Data Stream

Let 𝒳 = {𝑋𝑡}𝐷𝑡∈N be a D-dimensional data stream, where 𝑋𝑡 denotes the observation at

timestamp 𝑡. The data stream contains unlabeled anomalies as well as distributional changes



caused by concept drifts. Instead of explicitly categorizing different concept drift types [5], we

uniformly consider that a concept drift occurs in the data stream between timestamps 𝑡 and

𝑡+ 𝑐 if the prior probability 𝑃<𝑡(𝑋) ̸= 𝑃>𝑡+𝑐(𝑋), where 𝑃<𝑡 and 𝑃>𝑡+𝑐 are respectively the

data distribution from the last concept drift to 𝑡 and from 𝑡+ 𝑐 to the next concept drift. The

period [𝑡, 𝑡+ 𝑐] is the drift period, which is defined as the minimum period that covers the whole

distributional change. The data distribution other than drift periods is assumed to be stable.

Due to the lack of labels under the unsupervised setting, we only consider the prior (virtual)

shifts [5] in the data stream.

2.1.2. State transition

Imitating the automata theory, we formulate concept drifts in streaming data with a state

transition modelℳ = ⟨𝒳 ,𝒮, 𝛿⟩where 𝒳 is a multivariate data stream, 𝒮 = {𝑆1, 𝑆2, ..., 𝑆𝑁} is

a set of states (𝑁 is the user-defined maximum number of states that can be maintained), 𝛿 is a

set of transition functions 𝛿 : {𝑆𝑖 ⇒ 𝑆𝑗}(𝑆𝑖, 𝑆𝑗 ∈ 𝒮, 𝑖 ̸= 𝑗). For each state 𝑆𝑖 = ⟨𝑃𝑖, 𝐴𝐸𝑖⟩(𝑖 =
1, ..., 𝑁), 𝑃𝑖 is the empirically estimated distribution in latent space, 𝐴𝐸𝑖 is the autoencoder

trained on the new concept data. In this work, we assume that sufficient data after the concept

drift is available to learn 𝑃𝑖 and 𝐴𝐸𝑖.

Considering that no information about the upcoming new concept is accessible, despite a

potential high error rate, we still keep using the previous model for anomaly detection until the

model adaptation is finished. Or in other words, the previous model is used during the upcoming

drift period. For distributional stationary data streams where no concept drift occurs, there

will be only a single state without transition, and the model reduces to a single conventional

autoencoder.

2.1.3. Anomaly

An observed data snippet 𝑋𝑡+𝑎
𝑡 = {𝑥𝑡, ..., 𝑥𝑡+𝑎}(𝑡, 𝑎 ∈ N) is abnormal if it is significantly

deviated from its temporal neighbors (data snippets in the same state). The significance of

the deviation can be determined by thresholding or statistical techniques. Both concept drifts

and anomaly snippets are distributionally deviate from their temporal neighbors. In our study,

we distinguish them in terms of length. After the concept drifts, we assume that the data

distribution stays stationary in the new concept for a significantly longer period. In contrast,

the data stream returns to the previous distribution after a short anomaly snippet.

2.2. Problem statement

Given a D-dimensional data stream 𝒳 = {𝑋𝑡}𝐷𝑡∈N, we aim to identify any period [𝑡, 𝑡 + 𝑎]
where the corresponding data snippet 𝑋𝑡+𝑎

𝑡 is abnormal. The detection process should be

unsupervised and in real-time. We also detect concept drifts in the data stream and switch to an

existing autoencoder or train a new one on the newly arrived data.
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Figure 1: STAD overview: The left block is a multivariate data stream, where red dots denote abnormal
data points and the dashed box is a data snippet. The middle block is an conventional autoencoder-based
anomaly detection module, which detects abnormal snippets from the data stream. The right block takes
latent representations from the autoencoder and conducts concept drift detection, which consequently
triggers state transition and model adaptation.

3. State-transition-aware anomaly detection

In this section, we propose STAD, a state-transition-aware anomaly detection model, which

employs autoencoders as the base model. The latent representations of autoencoders are used

to detect concept drifts, which consequently trigger state transitions. An overview of STAD is

shown in Figure 1.

3.1. Reconstruction and latent representation learning

Let 𝑓𝐸𝑛𝑐 : R𝐷 → R𝐻
and 𝑓𝐷𝑒𝑐 : R𝐻 → R𝐷

be the encoder and decoder of an autoencoder. The

encoder maps a snippet 𝑋𝑡+𝑤
𝑡 of the multivariate streaming data into a H-dimensional latent

representation 𝐿 ∈ R𝐻
, while the decoder reconstructs the same format snippet 𝑋 ′𝑡+𝑤

𝑡 from

𝐿, where 𝑤 is the snippet length and 𝑡, 𝑤 ∈ N. A common assumption for anomaly detection

using autoencoders is that pure normal data are available for the initial model training. The

reconstruction error 𝑒𝑡+𝑤
𝑡 = |𝑋𝑡+𝑤

𝑡 −𝑋 ′𝑡+𝑤
𝑡 | indicates the goodness of fit to the normal data.

In the test phase, abnormal snippets will cause larger reconstruction errors than normal data

such that they are separable. The encoder and decoder can be implemented with a variety of

deep models [10, 11]. Considering the temporal dependencies in streaming data, Recurrent

Neural Networks (RNNs) and their variants [3, 4] are naturally suitable for the target. In the

following illustration, as an example, we take the LSTM-Autoencoder [4], which takes data

snippets as input and produces a single latent representation for each snippet. To map the

multivariate reconstruction error to the likelihood of anomalies, a commonly used approach is

to estimate a multivariate Gaussian distribution from the reconstruction error of normal data

and measure the Mahalanobis distance between the reconstruction error of an unknown data

point to the estimated distribution [4]. Moreover, the Gaussian Mixture Model (GMM) [10]

and energy-based model [11] can also be used for likelihood estimation. The thresholding over

the estimated anomaly likelihood in an unsupervised manner is challenging, especially in the



Algorithm 1 Concept Drift Detection

Input: Stack ℒℎ𝑖𝑠𝑡 with minimum size 𝑚, queue ℒ𝑛𝑒𝑤 with size 𝑛, current state 𝑆 = ⟨𝑃,𝐴𝐸⟩,
state transition modelℳ = ⟨𝒳 ,𝒮, 𝛿⟩

1: while stream does not end do
2: 𝐿𝑡← AnomalyDetection(𝐴𝐸,𝑋𝑡+𝑤

𝑡 ) ◁ Get latent representation

3: ℒ𝑛𝑒𝑤 ← ℒ𝑛𝑒𝑤 ∪ 𝐿𝑡

4: if ℒ𝑛𝑒𝑤.𝑠𝑖𝑧𝑒 > 𝑛 then ◁ Move the oldest element of ℒ𝑛𝑒𝑤 to ℒℎ𝑖𝑠𝑡
5: 𝐿𝑡−𝑛+1 = ℒ𝑛𝑒𝑤.𝑝𝑜𝑝()
6: ℒℎ𝑖𝑠𝑡 ← ℒℎ𝑖𝑠𝑡 ∪ 𝐿𝑡−𝑛+1

7: end if
8: if ℒℎ𝑖𝑠𝑡.𝑠𝑖𝑧𝑒 ≥ 𝑚 then
9: for ℎ = 0, ..,𝐻 − 1 do ◁ Dimension-wise test

10: if KSTest(ℒℎℎ𝑖𝑠𝑡,ℒℎ𝑛𝑒𝑤) is True then ◁ Equation 1

11: 𝑆 ← StateTransition(𝑆, ℒ𝑛𝑒𝑤, 𝒮 , 𝛿)

12: Report concept drift, clear ℒℎ𝑖𝑠𝑡 and ℒ𝑛𝑒𝑤
13: break

14: end if
15: end for
16: end if
17: end while

real-time prediction scenario. A possible non-parametric dynamic thresholding technique is

proposed in [12]. The unsupervised approach for the adaptive threshold in different periods

is not the main focus of this paper and will be addressed in our future work. In the following

sections, we focus on adapting autoencoders based on the state transitions.

3.2. Drift detection in the latent space

In real-time, the latent representations of the autoencoder are accumulated for concept drift

detection. Existing concept drift detection approaches mostly work in the original space,

targeting linear separable concept drifts. Considering the complex concept drifts in multivariate

streaming data, even non-linear distributional changes can be observed in the autoencoder latent

space. We perform dimension-wise two-sample Kolmogorov–Smirnov test (KS-test) [13, 14] as a

non-parametric and distribution-free statistical test to check whether two latent representations

are drawn from the same continuous distribution. Algorithm 1 shows the online concept drift

detection process. Formally, let ℒℎ𝑖𝑠𝑡 = {𝐿𝑡−𝑚−𝑛+1, 𝐿𝑡−𝑚−𝑛+2, ..., 𝐿𝑡−𝑛} be the accumulated

latent representation since the last concept drift and ℒ𝑛𝑒𝑤 = {𝐿𝑡−𝑛+1, 𝐿𝑡−𝑛+2, ..., 𝐿𝑡} be the

latest latent representations. 𝐹ℎ𝑖𝑠𝑡 and 𝐹𝑛𝑒𝑤 are the empirical estimated cumulative distribution

functions from the two latent representation sets. The null hypothesis (i.e., the observations in

ℒℎ𝑖𝑠𝑡 and ℒ𝑛𝑒𝑤 are from the same distribution) will be rejected if

𝑠𝑢𝑝
𝐿
|𝐹ℎ𝑖𝑠𝑡(𝐿)− 𝐹𝑛𝑒𝑤(𝐿)| > 𝑐(𝛼)

√︂
𝑚+ 𝑛

𝑚 · 𝑛 (1)



where 𝑠𝑢𝑝 is the supremum function, 𝛼 is the significance level, 𝑚, 𝑛 are the size of ℒℎ𝑖𝑠𝑡
and ℒ𝑛𝑒𝑤, 𝑐(𝛼) =

√︁
− ln(𝛼2 ) · 12 . Since the KS-test is designed for univariate data, we conduct

parallel tests in each latent dimension and report concept drift if the null hypothesis is rejected

in at least one of the dimensions. Once a concept drift is detected, the historical and latest

sample sets are emptied and we further collect samples from the new data distribution.

3.3. State transition model

Modeling reoccurring data distributions (e.g., seasonal changes), coupling autoencoders with

drift detection, and reusing models based on the distributional features can increase the efficiency

of updating a deep model in real-time. In STAD, for each period between two concept drifts in

the data stream, the data distribution, as well as the corresponding autoencoder are represented

in a fixed-length queue 𝒮 . The first state 𝑆0 ∈ 𝒮 represents the beginning period of the data

stream before the first concept drift. After every new concept drift, a new autoencoder will

be trained from scratch if no existing element in the queue fits the current data distribution;

otherwise, the state will transit to the existing one and reuse the corresponding autoencoder. In

our study, we assume that sufficient data after the concept drifts can be accumulated to initialize

a new autoencoder. In future work, we plan to discover state transitions with limited data (e.g.,

tolerantly reusing existing autoencoders).

To compare the distributional similarity between the newly arrived latent representation

𝑄 and the distributions of existing states {𝑃𝑖|𝑖 = 1, ..., 𝑁}, we employ the symmetrized

Kullback–Leibler Divergence. The similarity between 𝑄 and an existing state distribution 𝑃𝑖 is

defined as

𝐷𝐾𝐿(𝑃𝑖, 𝑄) = 𝐷𝐾𝐿(𝑃𝑖||𝑄) +𝐷𝐾𝐿(𝑄||𝑃𝑖)

=
∑︁
𝐿∈ℒ

𝑃𝑖(𝐿)𝑙𝑜𝑔
𝑃𝑖(𝐿)

𝑄(𝐿)
+𝑄(𝐿)𝑙𝑜𝑔

𝑄(𝐿)

𝑃𝑖(𝐿)
(2)

The next step is to estimate the corresponding probability distributions from the sequence of

latent representations. In [14, 13], the probability distribution of categorical data is estimated

by the number of object appearances in each category. In our case, the target is to estimate

the probability distribution of fixed length real-valued latent representations. In previous

research, one possibility for density estimation of streaming data is to maintain histograms of

the raw data stream [15]. In STAD, we take advantage of the fix-sized latent representation

of autoencoders and maintain histograms of each period in the latent space for the density

estimation. Let ℒ = {𝐿1, 𝐿2, ..., 𝐿𝑡} be a sequence of observed latent representations, where

𝐿𝑖 = ⟨ℎ𝑖1, ℎ𝑖2, ..., ℎ𝑖𝐻⟩ and 𝐻 is the latent space size, the histogram of ℒ is

𝑔(𝑘) =
1

𝑡

∑︁
𝐿𝑖∈ℒ

𝑒ℎ
𝑖
𝑘∑︀𝐻

𝑗=1 𝑒
ℎ𝑖
𝑗

(𝑘 = 1...𝐻) (3)

and the density of a given period is estimated by 𝑃 (𝑘) = 𝑔(𝑘). Hence, Equation 2 can be

converted to

𝐷𝐾𝐿(𝑃𝑖, 𝑄) =
∑︁

𝑘=1...𝐻

𝑃𝑖(𝑘)𝑙𝑜𝑔
𝑃𝑖(𝑘)

𝑄(𝑘)
+𝑄(𝑘)𝑙𝑜𝑔

𝑄(𝑘)

𝑃𝑖(𝑘)
(4)



Algorithm 2 State Transition Procedure

1: function StateTransition(𝑆ℎ𝑖𝑠𝑡, ℒ𝑛𝑒𝑤, 𝒮 , 𝛿)

2: 𝑃𝑛𝑒𝑤 = DensityEstimation(ℒ𝑛𝑒𝑤)
3: if 𝑚𝑖𝑛

𝑆𝑖=⟨𝑃𝑖,𝐴𝐸𝑖⟩∈𝒮
{𝐷𝐾𝐿(𝑃𝑛𝑒𝑤, 𝑃𝑖)} ≤ 𝜖 then ◁ Equation 4

4: 𝛿 ← 𝛿 ∪ (𝑆ℎ𝑖𝑠𝑡 ⇒ 𝑆𝑚𝑖𝑛)
5: return 𝑆𝑚𝑖𝑛

6: end if
7: 𝑆𝑛𝑒𝑤 ← ⟨𝑃𝑛𝑒𝑤, 𝐴𝐸𝑛𝑒𝑤⟩ ◁ 𝐴𝐸𝑛𝑒𝑤: Trained on new concept data

8: 𝒮 ← 𝒮 ∪ 𝑆𝑛𝑒𝑤

9: 𝛿 ← 𝛿 ∪ (𝑆ℎ𝑖𝑠𝑡 ⇒ 𝑆𝑛𝑒𝑤)
10: if 𝒮.𝑠𝑖𝑧𝑒 > 𝑁 then
11: Remove the oldest state and relevant transitions

12: end if
13: return 𝑆𝑛𝑒𝑤

14: end function

For a newly detected concept with distribution 𝑄, if there exists a state 𝑆𝑖(𝑖 ∈ [1, 𝑁 ]) with

corresponding probability distribution 𝑃𝑖 satisfies 𝐷𝐾𝐿(𝑃𝑖, 𝑄) ≤ 𝜖, where 𝜖 is a tolerant factor,

and 𝑆𝑖 is not the direct last state, the concept drift can be treated as a reoccurrance of the

existing concept, therefore the corresponding autoencoder can be reused, and the state transfers

to the existing state. If no autoencoder is reusable, a new one will be trained on the latest arrived

data after concept drift. To prevent an explosion in the number of states, the state transition

modelℳ = ⟨𝒳 ,𝒮, 𝛿⟩ only maintains the 𝑁 latest states. The state transition procedure is

described in Algorithm 2.

4. Case study

We carry out a case study using the Covid-19 daily infection case dataset of Germany
2
, where

the waves of the epidemic can be considered as human-interpretable concept drifts and the

public holidays with abnormal statistic numbers are the anomalies. The Covid dataset (Figure 2)

contains daily new infection cases and death cases in Germany from March 2020 to April

2021. The data stream follows a 7-day period and fluctuates with the trend depending on the

development of the epidemic, seasons, and local prevention policies. The LSTM-autoencoder

and scoring function in [4] is applied as the base model. Both the encoder and decoder consist of

a single LSTM unit, and the latent representation is three dimensional. We use the data between

March and May 2020 to initialize the autoencoder and let the rest data arrive in a streaming

fashion. The model takes sliding windows (snippets) of 7 timestamps length (a week) without

overlap as inputs for the autoencoder. For both initial and real-time training, the autoencoders

are trained with 50 epochs with 0.4 dropout rate. For the KS-test, 𝑚 = 3, 𝑛 = 2, and the

significance level is set to 𝛼 = 0.05. The real-time processing starts from June 2020. The dashed

lines in Figure 2 are the positions where concept drifts are detected in the latent space. All four

2

https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74

https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
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Figure 2: Covid-19 daily infection (blue) and death (pink) cases in Germany

detected drifts are near significant changes in the evolution of the epidemic. The threshold 𝜖 of

KL-divergence is set to 0.0025. The size of the new buffer ℒ𝑛𝑒𝑤 is 14. As shown in Figure 3,

no reusable autoencoder is found for the first three concept drifts such that three new states

with corresponding new autoencoders are created. After the concept drift near March 2021,

the upcoming data in ℒ𝑛𝑒𝑤 has KL-divergence below 𝜖 with state 𝑆2 (end September to early

December), therefore it triggers a backward state transition to 𝑆2.

In the test phase, we manually labeled 11 weeks containing public holidays in Germany as

abnormal snapshots and ranked the anomaly scores in the periods corresponding to each state.

In the evaluation of recall in the ranking list, we got 18% for 𝑅@1, 54% for 𝑅@5 and 90%
for 𝑅@10. A major reason is that some data points from the beginning of concept drifts are

mistakenly alarmed as anomalies before the model update. In the follow-up work, we aim to

reduce the false positive detection of anomalies by distinguishing concept drifts and abnormal

snapshots by their length.

𝑆0 𝑆1 𝑆2 𝑆3

Figure 3: State transition of Covid-19 data stream (Dotted arrow: reusing state)

5. Conclusion

We have proposed an autoencoder-based streaming data anomaly detection approach STAD,

which uses the latent representation to detect concept drift and model state transitions between

different data distributions in the data stream. With a demo experiment, we showed the state-

transition-aware anomaly detection process during the stream evolution. However, there are

still open challenges. In the current work, we assume that sufficient data are available for online

training. However, the states of some periods in the real data stream are too short, such that

the data for training a new model in real-time is not sufficient. One future work is to discover

efficient strategies for reusing autoencoders for such cases. Another further research direction

is to discover semantic explanations for each state, which helps the human better understand

the model as well as the changes of data.
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