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Abstract
Discovering the coding behavior of programmers is an emerging application domain in the process
mining field. Comprehension of how programmers head the coding of software have a strong potential to
better support the coding workflow. In our previous work, we introduced and evaluated an environment,
called CodingMiner, to generate event logs from IDE usage enabling the adoption of fuzzy-based process
mining techniques to model the programmers’ coding process. The mined processes have shown different
IDE usage patterns for programmers with different skills and performances. Our approach, currently, is
not able to represent the behavior concerning the usage of programming core constructs such as, in the
case of Object-Oriented paradigm, abstraction, object state and behavior. In this paper, we are interested
to discuss the main research challenges and sketch possible actions to adopt for improving the realization
of the proposed environment to also represent the behavior in using the core constructs.
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1. Introduction

The comprehension of software coding processes is not a simple task. By nature, these pro-
cesses are profoundly iterative and characterized by a very loose ordering of their activities [1].
Programmers, starting from a model of the problem, write the source code by applying best
practices of programming, and core structures and principles of the programming language
paradigm [2]. This involves the hierarchical breakdown of the source code into smaller com-
ponents, and, in turn, the choice or application of core structures and principles to implement
such components [3]. This is a complex process mainly based on human creativity where
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the attitude, knowledge, and experience of programmers have a great impact on the resulting
behavior during coding. Moreover, differences on coding behavior are not strictly related to the
level of attitude, knowledge, and experience of programmers.

Even among programmers of very similar experience levels, differences of as much
as 100 to 1 were found across programmers in the time taken to write a given
program. Additionally, across problems constructed to be of similar difficulty, an
individual programmer often displayed a six-fold difference in writing time[4].

The awareness of the above-discussed critical issues suggests the study of process mining
techniques to understand the behavior of the software coding, as many studies on the subject
testify [5, 6, 7, 8, 9, 10]. Furthermore, when the programmers are students, understanding
the coding behavior is valuable to predict their outcomes [11]. In a previous work [12], we
mainly focused on using a fuzzy-model process mining approach to understand the behavior
of the programmers in writing the software source code. In this regard, in [12] we defined an
environment, called CodingMiner, to generate event logs from IDE usage enabling the adoption
of fuzzy-based process mining techniques to study the programmers’ coding process. We
executed an empirical evaluation using logs from the coding sessions of students attending
the 2nd-year of a BSc degree in computer science. By using the CodingMiner, we highlighted
emergent and interesting programmers’ behaviors during coding. The mined processes show
different IDE usage patterns for programmers with different skills and performances. This
environment, however, is not able to represent the different usage of language constructs, such
as the ones above mentioned. In this paper, we are interested to discuss the main research
challenges and sketch possible actions to adopt to improve the realization of the proposed
environment and, in general, of a fuzz-based process mining approach to discover the coding
behavior.

Specifically, this paper briefly describes how the CodingMiner environment is defined, then
discusses research challenges to improve the discovery of the coding behavior and, finally,
points out possible approaches to address these challenges.

The rest of the paper is structured as follows. In Section 2 the CodingMiner environment is
introduced whereas in Section 3 challenges and guidelines to improve the realization of this
framework. Section 4 provides paper conclusions.

2. The CodingMiner Environment

Figure 1 gives an overview of the workflow mining approach based on IDE instrumentation.
The core component is the Log Processor, a plugin for the Eclipse IDE that extends logging
and monitoring capabilities of the development environment. As shown in the figure 1, while
programmers interact with the development environment to implement a software system, they
generate a stream of human-computer interaction (HCI) events. The Log Processor is triggered
to capture these interactions. CodingMiner collects all these interactions and stores them as
event logs in a central repository. The collected logs, when stored, need to be refined to apply
process mining. Specifically, the following steps are executed:

1. interactions that are unrelated with projects in the programmer workspace are removed;



Figure 1: The CodingMiner environment architecture.

2. inconsistencies in the data are detected and corrected;
3. the low-level logs are converted to the XES1 event log model;
4. low-level and high-level event streams are integrated.

The refined and combined events stream can be analyzed by the Fuzzy Miner [13] to mine
the coding process executed by programmers.

These mined processes are shown, within the CodingMiner environment, to provide feedback
to programmers about their behaviors during coding. In the following sub-sections, the Log
Processor (Section 2.1) and the Fuzzy Miner (Section 2.2) components are briefly discussed.
More details about CodingMiner environment are in [12].

2.1. The Log Processor

The Log Processor is an extension of the Fluorite plugin, an open-source instrumentation plugin,
capable of recording low-level programmers’ interactions with the IDE without interrupting the
coding activities. Log Process tracks both low-level events (e.g. mainly keyboard key presses,
shortcuts, mouse movements and gestures) adding contextual information and high-level events
(e.g., all the commands issued at IDE level, like create or open a file, close a project, open a view,
reset perspective, etc.).

For each single coding session performed by a single programmer a synthetic id to group
events is recorded. Moreover, all the collected events have related to involved resources
(including file resources). In this way, coding events are linked to the programmer’s actions on
resources in the IDE.

The Log Processor is also able to capture IDE commands (i.e., an action or command issued
by the programmer to the IDE). It is also able to model a specific kind of interaction among
the programmers and contains contextual information (e.g., the involved resources and their
possible state changes). The events captured can be categorized as follows:

• IDE Commands: all global commands issued to IDE (e.g. open a view, switch a perspec-
tive or accessing a resource like a file);

1http://www.xes-standard.org



• Editor Commands: all activities happening in the editor (e.g., cut and paste commands,
text selection and modification and all actions regarding code writing);

• Debugging Events: all debugging activities (e.g., breakpoints definition, whatches on
variables and their inspection at runtime, debug profiles definitions, etc.);

• Refactoring Events: all the commands related to refactoring activities (e.g., selecting a
refactoring among the one available, istructing the IDE on how to perform it and launch
its execution).

2.2. Fuzzy Miner Component

The collected events logs are finally mined by the Fuzzy Miner included in the ProM toolkit
[13].

The Fuzzy Miner takes as input the logs of the programmer activities captured by the Log
Processor and creates an appropriate representation of the development processes expressed
in the mined log. Fuzzy Miner is particularly suitable for mining less-structured processes
exhibiting unstructured and flexible behavior, like development process tend to be. The Fuzzy
Miner is based on the main idea that some kinds of processes are better represented using
adaptive techniques providing explicit flexibility [13]. It represents the mined process using a
fuzzy model that is deliberately imprecise to omit behavior that has low significance or is not
correlated with interesting patterns.

3. Challenges and Guidelines

Each step of the CodingMiner environment presented in Fig. 1 gives rise to research challenges.
In the following, we give an overview of some of these challenges and propose approaches to
tackle them.

• Recording. The main challenge in this step is to identify what actions must be recorded.
The same action (e.g., InsertString command) can either be important or irrelevant in
a given context. For example, typing text for adding a new method is an important
event while typing text for an inline comment is an irrelevant event. For this reason,
when a programmer makes a change it is necessary to know both the element type (e.g.
class, interface, field, subclass, etc) involved and the change type made. Examples of
change type for a class are: change of accessibility, add/remove/change inheritance, ad-
d/remove/change attribute, add/remove/change comment, add/remove/change attribute,
etc. Furthermore, capturing information about element and change type could help to
construct a process model able to represent if and when the object-oriented language core
topics have been used. Object-Oriented core topics are design, abstraction, hierarchy,
typing, and encapsulation [14].
For example, Object-oriented design is meant as decomposition into objects carrying state
and having behavior. A process model representing the coding behavior should represent
when and how many properties of an object have been defined as well as when and how
many methods have been defined. Furthermore, without information on element and



change type, the process model will only reflect the way the programmers use the IDE to
write source code but not the way they code.
Existing coding event recording plugins, also including CodingMiner, are not actually
able to capture this information. For example, the Eclipse plugin developed by Caldeira
et al. [5], capable of listening to the actions programmers executes, aims to support
the discovery of the coding processes and compare them in terms of efficiency and
effectiveness. The authors evaluated the proposed approach on subjects attending the
3rd year of a BSc degree on computer science. The results obtained give some evidence
that teams’ proficiency can be inferred by analyzing mined process models representing
their behavior. However, the plugin captures only events within a project context and
generic events at the Eclipse global context. This implies that the behavior observed
concerns the usage of Eclipse IDE and not properly the developers’ coding behavior. In
[8], the authors declare to detect both element and change type. The authors developed a
constructor that classifies a source code history by fine grained changes and constructs
an event log file. They used the Process Mining approach, the Inductive Miner process
discovery algorithm, to understand the way programmers perform code production
activities. A preliminary evaluation has been performed involving only three students in
developing a program made up of one class. Unfortunately, at this time it is not possible
consider the process model constructed as significant because it only represents the
coding workflow of a single method defined in a class. In a real world coding process,
instead, the coding workflow has to represent a more complicated reality made up of
classes, sub-classes, abstraction, accessibility and so on. In [15] the authors developed
a library, called Entry, for generating log of programmer’s behavior in the process of
block programming and defined required common items in creating block log process.
This library [16] is able to capture several information such as, for example, ”the number
of times blocks / scenes / objects are created and used”, the number of times modifying
conditional expression/internal variable of block”, ”operation time taken to finish the goal
resolve the problem”, etc. This library could be used to construct tables of frequencies,
durations and other statistics and also process models, by applying process discovery
techniques but, also in this case, the models constructed would be not able to distinguish
relevant from irrelevant situations.

• Noise filtering. One of the main challenges of this stage is to separate noise from events
that contribute to tasks. In a coding session noises can be represented by activities that
can occur spontaneously at any point in the execution. Such activities, called chaotic
activities [17], impacts the quality of the resulting process models obtained with process
discovery techniques. For example, a searching activity can occur at any point for any
task in the execution. To filter out such chaotic events, in [17] four novel promising
techniques, rooted in information theory and Bayesian statistics, are described. The
authors have shown, through experiments on seventeen real-life datasets, that all four
proposed activity filtering techniques outperform frequency-based filtering on real data
and that in all cases the performance is highly dependent on the characteristics of the
event log. This means, however, that the ultimate decision on which activities to include
has always to be supervised by the final user.

• Segmentation. A coding session log, in its raw form, consists of one single sequence of



events recorded during a session. During this session, a programmer may have performed
several executions of one or multiple tasks. In other words, a coding session log may
contain information about several tasks, whose actions and events are mixed in some
order that reflects the particular order of their execution by the programmer. Moreover,
the same task can be ”spread” across multiple logs, for example the creation of a class can
be performed on several logs. A possible solution could consist in segmenting a coding
session log into traces, such that each trace to one execution of a task (e.g. the definition
of a class, the definition of an interface, etc).

• Simplification. Coding process is not executed within rigid, inflexible workflowmanage-
ment systems and the like, which enforce correct, predictive behavior. Programmers write
their source code mainly based on their knowledge, skills, and experience. Such a process
does not enforce any defined behavior at all, in a somewhat it describes a more ”loose”
manner that does not strictly define a specific path of execution. It is obvious that execut-
ing such a process within such less restrictive environments will lead to more diverse and
less-structured behavior. This abundance of less-structured observed behavior leads to
construct “spaghetti” process models. In this cases a possible solution is represented by
using the fuzzy miner approach. The Fuzzy Miner controls such imprecision by means of
two metrics: significance and correlation. In particular, significance can be determined
both for events and precedence relations over them: it provides us with a measure of
the relative importance of behavior. It specifies the level of interest we have in events
occurring in well-defined control flow conditions (e.g. precedence relationships, chain
of events, and other relationships). For instance, frequency measurement or precedence
constraints are a way to measure significance. Correlation is important when studying
precedence constraints over the event stream. It measures how two events, following
one another, are closely related. Based on these two metrics, which have been defined
specially for this purpose, we can sketch the approach, proposed in the CodingMiner
environment, for process simplification as follows:

– more significant behaviors are preserved;
– low significant but highly correlated behaviors are aggregated;
– Less significant and lowly correlated behaviors are abstracted.

Anyway, the Fuzzy Miner is not sufficient. Even if an event belongs to a task, it may still
be redundant. For example, when a programmer defines the name of a new method with
a mistake, and then he immediately renames it. In this case, the events that belong to
the second time of naming the method are redundant. Depending on the context, the
same event may be integral part of a routine or it may be redundant. Thus, classical
frequency-based filtering approaches, like [18], cannot be applied to address this problem.
One of the possible solutions is to use sequential pattern mining techniques to distinguish
between events that are part of mainstream behavior and outlier events [19]. However, in
case some events are rarely seen during a task execution they can be mistakenly treated
as outliers. The outlined problem creates a need for semantic filtering. Groups of events
can be combined into actions of a higher semantic meaning. The challenge here is to
identify the semantic boundaries of an action and the attributes to form its payload.



4. Conclusions

In previous work, we have exposed an environment, called CodingMiner, capable of analyzing
coding logs of fine-grained programmer interactions with Eclipse IDE system, for Java appli-
cation, to represent the coding behavior. We have already applied the CodingMiner in a CS2
course obtaining encouraging but not completely satisfactory results. As a preliminary step to
improve this environment, here we sketched challenges that need to be overcome to improve
the CodingMiner’s components and, in general, the fuzzy-based process mining approach to
discover the coding behavior. We also provided some guidelines to tackle these challenges. One
of the key challenges consists in how to discover the object-oriented language core topics in
coding activities. Each action has to be associated to the element involved and the change type
applied. We belief that, with this capability, our approach will become more meaningful, and
applicable for teachers and programmers.
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