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Abstract

Nowadays, critical functionalities are increasingly tackled by autonomous decision-making systems, which depend on Artificial
Intelligence (e.g. Deep Learning) models. Still, most of these models are designed to maximize the generic performance rather
than preventing potential irreversible errors. While robustness and reliability techniques have been developed, in the recent
years, to fill this gap, the sources of uncertainty in those decision models are still ambiguous. With a view to standardizing
the uncertainty sources, in this paper we present a formal methodology to disentangle those sources from a probabilistic
viewpoint for any (regression and classification) supervised learning model. Once we associate a formula to each uncertainty
type, we expose the terminology disagreement in the literature and we propose one that is aligned with other previous works.
Finally, based on the proposed formulation, we present an integrated visualization method to represent all the uncertainty

sources in a single figure to, ultimately, assisting the design of uncertainty-tailored actions.
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1. Introduction

Artificial Intelligence (AI)-based Autonomous systems
are the cornerstone of a revolution that involves a wide-
range of fields including health [1, 2], self-driving cars
[3, 4, 5], financial decisions [6, 7], industrial processes
[8] and even Al protein folding [9, 10]. In this context,
Deep Learning (DL) constitutes one of the main Al-based
models given their strong capabilities of learning com-
plex functions by maximizing a certain accuracy metric.
Consequently, in recent years, a strong DL research line
has emerged with the aim of constantly improving the
general accuracy of such systems for the sake of adopting
them in more and more real-world problems. However,
when wrong decisions imply significant costs, ethical is-
sues emerge [11, 12, 13] and the priorities regarding only
obtaining “generic good estimators” change to “avoiding
critical errors”.

When considering Functional Safety (FUSA), normally
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regulated through domain-specific standards, critical er-
rors must be mitigated to decrease their probability of
occurrence, and safety measures need to be deployed
to manage errors so that remedial actions can be taken
before those errors (e.g., due to incorrect decisions) can
cause any harm. Such process is provably effective only
if the sources of uncertainty of the decisions taken can
be properly identified and quantified.

Importantly, the reliability concept that motivates this
paper is different than the interpretability of the deci-
sions made by the system or, otherwise, the causal effect
analysis that can be essential to build a complete safe
system. The fundamental goal here is to develop a formal
probabilistic methodology to identify which are the main
sources of uncertainty for any (regression or classifica-
tion) supervised learning problem.

Afterwards, the present article exposes the current dis-
agreement that exists regarding the notation and identifi-
cation of those uncertainty sources in the literature (e.g.
between the uncertainty quantification community and
the machine learning community) and proposes to use
the Domain, Epistemic and Aleatoric (DEA) uncertainty
disentanglement, by following and combining other lit-
erature references [14, 15, 16, 17, 18, 19, 20, 21].

Finally, based on the DEA mathematical formulation,
this work introduces an integrated methodology to vi-
sualize all these sources of uncertainty in a regression
plot with a view to recognize which uncertainty types
are more clearly influencing the tackled problem at hand
and to design uncertainty-tailored measures.
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p(x*,y* | X,Y) = p(x* | X) fMp(M | X,Y,x*) : p(y* | X,Y,M,x*) dM
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Figure 1: Proposed probabilistic disentanglement of the uncertainty sources for a supervised learning system (i.e. the predictive
Al-based system). Note that only the last two types of uncertainty depend on the selected predictive system or model.

2. Formal Methodology

Generically for regression or classification problems, su-
pervised learning models deal with two different kinds of
random variables, (X, Y"). The former one, X, which cor-
responds to the available information, and the latter one,
Y, which is assumed to depend on X. The supervised
goal is to find this probabilistic dependency.

In real-world problems, the joint distribution p(X,Y)
is a theoretical construction and we only have access
to the data set, i.e. a certain population of instances,
D = {(z;,y:)}L,, where each instance is assumed to
be drawn i.i.d. from the aforementioned joint distribu-
tion. By using this existing data set, D, the supervised
learning task corresponds to find a (probabilistic) func-
tion, ¢as : X — Y, by performing Empirical Risk Mini-
mization (ERM) [22, 23, 24], which classically takes into
account (1) the representativity - i.e., the assumed class
of functions identified by its hyper-parameters, M ~ M,
(2) the optimization process, - i.e. which learning pro-
cess is selected, and (3) the generalization capabilities, -
i.e. evaluating the intra- and extrapolation ability of the
learnt function, ¢ s, over new scenarios.
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Figure 2: Level curves representation of the mismatch be-
tween a certain original distribution p(X) and the new evalu-
ated one, p(X*), which is our first uncertainty type tackled.

In particular, evaluating the generalization capabili-
ties introduces the problem of detecting when the learnt
function will be applied into a lower probability region
with respect to p(X). In other words, it is expected that
a new evaluated point, 2*, could be sampled from a new
random variable ™ ~ X that hopefully will be similar
to X. This difference is shown in Figure 2, which illus-
trates how it changes the “domain” or range of values
affecting ¢as. In order to detect these changes, we should
consider p(z* | X). At this point, Y is not considered.
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Figure 3: Representation of how the considered class of hyper-
parameters, M, constrains the models produced, identified by
M and their proximity to the real (and ideal) solution.

Given that we are tackling a supervised problem, we
are interested to evaluate the full pair of any new samples,
(z*,y"), where the dependent random variable used in
training, Y, should be also considered apart from X.
Therefore, our goal will be to extend the previous con-
ditional probability to compute p(z*,y* | X,Y). Differ-
ently than in the previous p(z* | X) case, here in order
to forecast the corresponding y* value we require the
predictive model, ¢ s, which we assume it is identified by
its hyper-parameters M. Following the representativity
property n° (1) of the ERM, depending on the assumed
class of functions (i.e. the space of solutions) character-



ized by M, we can reach a closer or farther point to the
hypothetical ideal solution, as it is shown in Figure 3. In
that case, we are trying to estimate p(M | X,Y,z") for
all the possible M ~ M, i.e. the set of models that max-
imize this conditional probability. Importantly, each of
these models will produce a different response, - when it
is evaluated as a function, - and the discrepancy between
them is the uncertainty we are interested to capture here,
which, in turn, is measuring the goodness of each model.
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Figure 4: Required transformation of the supervised learning
model from a point-wise forecaster to infer the conditional
distribution, p(y* | z*, X, Y, M).

Finally, non of the previous probability terms are con-
sidering the conditional variability of the dependent
variable, y*, given the data set, (X,Y), the desired
model, ¢ar, and the input information to forecast, z*,
ie. p(y* | X,Y, M, z"). This conditional probability in-
cludes effects such as occlusion or lack of input variables
to unambiguously forecasting the y* value. In order to
tackle it, we require that our model does not outputs a
deterministic pointwise prediction but it should charac-
terizes the aforementioned conditional distribution, as
shown in Figure 4.

On the whole, the three described probabilities are the
terms of the chain rule of the following joint distribution,

p(z",y" | X,Y) = p(z” | X)-

~/p<M|x*7x,Y)~p(y* |2, X, Y, M)dM (1)
M

which is graphically represented over the predictive
Al system in Figure 1. These three terms of Eq. (1) are the
types of uncertainty we will follow hereafter. Once we
have associated a formula to each one, we will now enter
into the terminological discussion around their names.

3. Uncertainty Types Taxonomy

Understanding the sources of the uncertainty is not
strictly a data science or machine learning concern. In
fact, their characterization is the main goals of the uncer-
tainty quantification science [25] but also a major issue
in many fields in natural sciences, engineering and even
constitute a philosophical debate [26, 27].

One of the more extended taxonomy is the one that
disentangles the types of uncertainty depending on their
are reducible or not [28]. Theoretically, we can reduce
uncertainty by improving our observational data and
experimental techniques (e.g. we can increase the mea-
surement precision, we can collect more high-quality
data or we can consider a more proper family of mod-
els). However, realistically, there are problems where
actual limitations or assumptions (e.g. time or resources
constrains) prevent us to perform these improvements.
In these scenarios appear irreducible uncertainties. In
the literature [29], when the uncertainty is reducible it is
called “Epistemic uncertainty” and when is irreducible it
is called “Aleatoric uncertainty”.

Compared with Figure 1, this reducible-irreducible
dichotomy do not explicitly refers to the use of a predic-
tive model. In particular, we can observe that the last
term of Eq. (1), p(y* | =%, X, Y, M), is clearly Aleatoric
- due to it is focused on modelling the irreducible con-
ditional variability of the response variable -. Similarly,
the inherent noise in the input variables, X, - e.g. due
to an precision measuring error, - it is also irreducible in
realistic problems, therefore, it is Aleatoric in these ter-
minology'. On the other hand, the reducible uncertainty
can be identified into the data itself, - which consist to
the p(z* | X) term -, or also when the model is consid-
ered, which includes the marginalization over M and the
p(M | z*, X,Y) term.

On the whole, there is an Aleatoric and Epistemic un-
certainty for the data part and an Aleatoric and Epistemic
uncertainty for the model part of any supervised learning
scheme.

The fact that different meanings of uncertainty use the
same terminology exacerbates the debate on the appro-
priate use or not of the terms “Epistemic” and “Aleatoric”
for this disentanglement. For instance, in the case of

'Importantly, in the uncertainty disentanglement presented in this
paper, we are considering this kind of irreducible uncertainty negli-
gible. Therefore, it is not present in Eq. (1)



Epistemic uncertainties, p(M | z*, X,Y) 2 is also iden-
tified with terms like “model”, “procedural”, “parame-
ter”, “systematic” uncertainty, which is different than the
p(z* | X) that can be named as “distribution shift”, “data
uncertainty”, “outlier detection” or “out-of-distribution
detection”. Similarly, the Aleatoric p(y* | *, X, Y, M)
is also known as “occlusion”, “ statistical”, “random” or
even “lack-of-rows” (when a table-viewpoint is applied),
which is different than the measurement-noise or residual
variability that is non-conditional.

Given that we are assuming this (non-conditional) in-
herent noise in the input variable X as negligible, in
consonance with other approaches [30, 31, 32, 33, 19], in
this paper we decided to use this irreducible and non-
irreducible terms only for the model part. Therefore, in
our terms, Epistemic uncertainty will correspond to the
integral and p(M | z*, X,Y) of Eq. (1) and the Aleatoric
uncertainty will correspond to the p(y* | *, X, Y, M)
term of Eq. (1), as shown in Figure 1.

Finally, we require a name for the p(z* | X) term of
Eq. (1). Based on other works [18], we name it as “domain
uncertainty”. Therefore, the presented framework of
this paper (see Figure 1) will consider the Domain, the
Epistemic and the Aleatoric (DEA) uncertainty sources
disentanglement and, since they come from an expression
that integrates them all, this expression directly indicates
us how the different types of uncertainty can be combined
regardless of the dimensionality of X or Y and obtaining
a single integrated uncertainty term, p(z*,y* | X,Y).

4. DEA as a Single Integrated Term

Importantly, the previously exposed DEA disentangle-
ment does not assume any specific supervised task such
as regression or classification. Furthermore, the dimen-
sionality of X and Y is not specified. The only crucial
point is to compute the Eq 1 integrated term p(z*, y* |
X,Y') and use this information to build reliable DL-based
models (e.g. conditioning the human intervention de-
pending on that uncertainty information).

Moreover, the disentanglement allows the possibility
to characterize the tackled problem, by analysing which
of the DEA uncertainties dominate over the others, as
proposed in [21]. Generically speaking, a problem where
the detected Aleatoric uncertainty, p(y* | *, X, Y, M),
prevails over the other ones indicates that the input in-
formation X omits relevant variables for the forecasting
task, consequently, a point-wise approximation would
neglect critical information. In contrast, if the predicted
uncertainty is mostly the Epistemic one, then it can indi-
cates that the considered family of models could be too
restrictive or there exist a notable model bias. Finally, if
the Domain uncertainty monopolize the integrated value,

*Here the marginalization of M is implicitly considered.

then we would apparently be facing frequent anomalies
in the test phase, which may indicate us that the test dis-
tribution is differently than the training one, e.g. because
suddenly there was a distribution change between the
original input information, X, and the new one to be
evaluated, X *.

5. Visualizing the DEA integration

Until now, the DEA disentanglement introduces a proce-
dure to split the uncertainty sources depending on the
associated probability it has, which are obtained using
the chain rule. Based on this and following [21], in the
next subsections we will describe how to visualize each
uncertainty type and how to merge them all in a single
visualization plot for a regression problem with a single
dimension for X and Y to be visualized in a 2D plot’.

5.1. The Domain uncertainty
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Figure 5: The Domain uncertainty is captured by modelling
p(X). This value is shown in the background in blue.

First of all, it is important to highlight that the Domain
uncertainty does not consider the variable to be predicted,
Y, nor the model to perform such prediction, character-
ized by M. Therefore, we should be careful when we
represent this uncertainty in a standard regression plot
where the horizontal axis is some input variable and the
vertical axis is the predicted values, due to p(z* | X) not
depend on Y. Consequently, one way to represent this
uncertainty can be using the background colour as repre-
sented in Figure 5. In that case, each horizontal value has
a different background colour where purpler zones cor-
respond to high confidence X values while zones with
lower X confidence will be bluish.

Analysing Figure 5 we can see that zones where there
are less data points have a whitish colour (e.g. between
0.2 and 0.4 or between 0.8 and 1). Furthermore, we
should highlight that the p(z* | X)) value is independent
of the conditional variability p(y* | *, X,Y), as we can
observe, for instance, between the 0.4 and the 0.6 points.

3As a position paper, the implementation details are omitted here for
an extended version of the article to focus now in the combination
procedure of the DEA uncertainties. Importantly, this DEA combi-
nation procedure does not depend on the X or Y dimensionality.



5.2. The Epistemic uncertainty
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Figure 6: Each NN component of the ensemble is approx-
imating the conditional median. The discrepancy on those
components encodes the Epistemic uncertainty. In blue, the
normalized standard deviation is shown in the background.

Epistemic uncertainty, p(M | z*, X,Y"), which corre-
sponds to the uncertainty related to selecting a certain
family of models M (see Figure 3) is a similar case than
the Domain uncertainty: The new response random vari-
able y™ is not involved in this uncertainty. However, here
the prediction of each model, - characterized by M, -
is usually approximating some statistic of Y given X"
This last detail produces several ways of visualizing this
uncertainty depending on what is approximating each
model but we should be careful to distinguish between
the Epistemic and Aleatoric approximation part. To do
it, here we will consider only point-wise approximator
models, e.g. a model that is predicting the conditional
median.

At the end, considering a certain family M of such mod-
els is to consider an ensemble with a finite - or not - num-
ber of components or models. Their discrepancy refers
to the Epistemic uncertainty we are capturing. There-
fore, one way to visualize its discrepancy is to plot each
prediction separately, as it is shown in Figure 6.

Comparing Figure 6 with Figure 5, we can see clearly
the difference between capturing the Domain or Epis-
temic uncertainty: For instance, in the horizontal interval
from 0.2 to 0.4, the behaviour of both uncertainties are
completely different. This is because the density of p(X)
is small in such interval but, differently, the approximated
conditional medians of the ensemble are producing a sim-
ilar forecast given the previous and posterior shape of the
data is clearly defined (and the consequence behaviour
that use to perform NN models). This fact could tend to
change when X is high dimensional but, if the ensemble
is naively approximated, we do not have any guarantee
that the discrepancy will be always higher in zones where
p(X) is lower using such NN models.

Importantly, similarly to the Domain case, it is worth to
highlight that high conditional variability zones between

*The standard gold approach in regression problems is to approxi-
mate the conditional mean, - or median -, which comes from min-
imizing the mean square error [34], - or mean absolute error, re-
spectively [35]-.

the response variable and the input one, such as in the
horizontal interval from 0.4 to 0.6, does not imply to
having an Epistemic discrepancy if the approximated
statistic is clearly defined. Therefore, we should need
to model Aleatoric uncertainty to detect this extra new
source of uncertainty.

5.3. The Aleatoric uncertainty

Il Density predicted by UMAL

Figure 7: Conditional distribution approximated using the

UMAL model [32]. Aleatoric uncertainty is captured as the
approximated likelihood.

Our Aleatoric uncertainty is focused on modelling the
conditional variability of the response variable p(y™ |
z*, X, Y, M) of Eq. (1).

Unlike previous uncertainty types, visualizing
Aleatoric uncertainty has a direct impact on the response
variable to be modelled, therefore, this uncertainty
can be represented without the vertical bars used in
Figure 5 and 6 because now it depends on the vertical
axis values. Additionally, this uncertainty is irreducible,
therefore, our goal will be to show the distributional
shape to design shape-tailored techniques. This is why
it is important to avoid strong assumptions regarding
to the conditional distribution, such as symmetry or
unimodality, if we do not have clear evidences that they
cannot harm the forecasting or visualization procedure,
as it is deeply discussed in [21].

To provide a richer estimation of the likelihood be-
yond the standard aleatoric conditional symmetric and
unimodal approaches [30], in Figure 7 we can see a UMAL
forecast® [32] of the previously presented data set, where
blueish areas are the ones that has higher likelihood.

Overall, we can observe that lower likelihood points
are those where the conditional variability is higher.
Therefore, between [0.,0.2], [0.4,0.6] and [0.8, 1]. This
behaviour contrast with the presented in previous Fig-
ures 5 and 6 as we will discuss in the next subsection
when an integrated approach will be designed.

Importantly, isolated aletoric uncertainty fixes a cer-
tain model parametrized by M. This can be seen as one

5The UMAL model learns a conditional mixture of an infinite number
of Asymmetric Laplacians using a neural network. Therefore, it
can learn multi-modalities and asymmetries if they appear.
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Figure 8: Continuous Integrated uncertainty visualization based on Figures 5, 3 and 7. All uncertainties are considered as

probabilities.

of the components of the ensemble in the previous Epis-
temic subsection and, based on this idea, we can build
an integration procedure to visualize all the presented
uncertainty sources as follows.

5.4. The integrated visualization

Proposing an integrated procedure to represent all the
uncertainty types is useful to synthesize all this complex
information in a single plot. Based on the previously
introduced visualization types, we can represent the pre-
sented Domain, Epistemic and Aleatoric uncertainties
in an integrated visualization using Eq. 1, as shown in
Figure 8. This representation displays the confidence in
all the uncertainty sources using the p(z*,y* | X,Y)
estimated information, which includes modelization of
the outlier detection, model uncertainty and conditional
irreducible uncertainty.

6. Conclusion

In recent times, technological advances have led to in-
crease the use of Artificial Intelligence (AI) systems for
critical autonomous decision-making. This emphasizes
the importance of developing robust and reliable meth-
ods, where determining the sources of the uncertainty
constitutes an essential pillar.

Still, in the literature, there is not a clear standard to
identify the sources of the uncertainty. To support this
objective, in this paper we have presented the Domain,
Epistemic and Aleatoric (DEA) disentanglement; a for-
mal methodology to divide the uncertainty sources from
a probabilistic viewpoint for any (regression or classi-
fication) supervised learning model. Furthermore, we
presented a comparison of the DEA disentanglement to
other literature nomenclatures and approaches.

Finally, the proposed unified approach launches the
possibility to combine all the literature uncertainty mod-
elling techniques. Furthermore, it provides an integrated
procedure to visualize them together for the sake of rec-
ognizing which is the effect of each uncertainty type.

Overall, we hope that the presented framework can
help to build a backbone where to connect future research
in designing autonomous Al-based systems that requires
Safety certifications and to tackle other needs beyond.
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