
Evaluation of GAN Architectures for Adversarial Robustness of
Convolution Classifier

Weimin Zhao, Sanaa Alwidian and Qusay H. Mahmoud

Department of Electrical, Computer, and Software Engineering

Ontario Tech University, 2000 Simcoe St., ON, Oshawa, L1G 0C5, Canada

Abstract
Deep learning models are vulnerable to adversarial attacks, which could generate adversarial

perturbation to make deep learning classifiers fail in classification tasks. In this paper, we

reviewed a variety of defensive methods against adversarial attacks and proposed our solution.

We present a modification of Generative Adversarial Network (GAN) architecture to train a

classifier for the purpose of defending against adversarial attacks. We trained multiple deep

learning classifiers with different generator formulations to compare and evaluate their

robustness against adversarial attacks. We show how the GAN architecture could contribute to

the adversarial machine learning problem and how the capacity of the generator affects the

training performance. Our results show that GAN architectures can improve the adversarial

robustness of a deep learning classifier with more efficiency training time. The CIFAR 10

classifier accuracy remains around 45% under 8/255 L infinity norm adversarial distortion.

Keywords 1
Machine learning, deep learning, adversarial attacks, adversarial samples, adversarial training,

generative adversarial networks (GAN)

1. Introduction

In recent years, there has been an increasing

attention to the security of deep learning networks

regarding the area of adversarial machine

learning. Deep learning models are prone to the

threats caused by well-known attack algorithms

that could generate malicious data samples (e.g.,

fast gradient sign method [1] and projected

gradient descent [2]). These attacks are known as

Adversarial Attacks, and the data samples

generated from the attack algorithms are known

as Adversarial Samples. Recent research has

proved that these attack algorithms are highly

effective in generating small perturbations for any

given sample of data that could substantially

affect the output of any deep learning model. The

The AAAI-23 Workshop on Artificial Intelligence Safety (SafeAI

2023), February 13–14, 2023, Washington DC, USA
EMAIL: weimin.zhao@ontariotechu.net (A. 1);

sanaa.alwidian@ontariotechu.ca (A. 2);

qusay.mahmoud@ontariotechu.ca (A. 3)
ORCID: 0000-0002-6664-5632 (A. 1); 0000-0002-9339-1308 (A.

2); 0000-0003-0472-5757 (A. 3)

Copyright © 2023 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

famous example of the algorithms includes the

Fast Gradient Sign Method (FGSM) [1] and the

Projected Gradient Descent (PGD) [2], which

exploit the loss gradient of the deep learning

model and use it to generate adversarial samples.

The other algorithms such as Carlini and Wagner

attack [3] and evolutionary based algorithms [4]

generate adversarial samples under different

constraints.

There are several proposals for mitigating the

problems of adversarial samples. Adversarial

training is one of the well-established defense

methods that augment the training data with the

attack algorithms to make the classifiers

generalize on adversarial samples [1, 2].

Adversarial training is effective in defending the

attack algorithm and provide a baseline

robustness to defend other similar or weaker

attack algorithms [2]. The other algorithms

include defensive distillation [5] and data

augmentation [6]. However, adversarial training

remains one of the top effective methods of

defending adversarial attacks.

The limitations of adversarial training include

the challenge of generalization, the clean and

robustness trade-offs, and the high training

complexity. Usually, a classifier needs to be

trained against a multi-iteration adversarial attack

to achieve a good robustness against strong

adversarial attacks [2]. Hence, in each training

loop, some extra iterations of gradient descent

need to be computed to obtain the worst-case

adversarial noise for data augmentation. This

process increases the training time exponentially

with a more complex dataset and larger data

number.

Wang et al. [7] proposed a training framework

by replacing the attack algorithm with a

generative network in an extension of adversarial

training. As a result, the framework formulates a

GAN architecture, where the generator acts as an

attacker, and the discriminator acts as a classifier.

This method removed the need for an attack

algorithm during the training and reduced the

multi-step backpropagation complexity compared

to the PGD-adversarial training. In this paper, we

consider extending the GANs defensive training

architecture from Wang et al. [7] to evaluate

multiple generators and classifiers. The

contributions of this paper are:

1. The design and development of a GAN

architecture to improve the adversarial

robustness of a deep learning classifier on the

classification against the gradient-based white-

box attack algorithms.

2. A dual generator framework architecture

to improve the effectiveness of generating

adversarial samples during the training

process.

3. The implementation of different

formulations of generators and evaluation of

the training performance and the robustness of

the classifiers that train against the different

formulations. Furthermore, we evaluated if the

generative network could capture the strong

adversarial noise perturbation direction and

perform on par with the strong adversarial

attack in adversarial training.

The rest of the paper is organized as follows:

Section 2 discusses the related work regarding

adversarial attacks and defenses and introduces

the defensive methods related to GANs. Section 3

introduces the methodologies and architectures of

our frameworks. Section 4 presents our

experimental setups and results and provides

discussion regarding the results. Finally, Section

5 concludes the paper and provides a discussion

about the future work.

2. Related Work

In this section, we discuss recent works related

to adversarial attacks, adversarial training and

GANs’ contributions to the adversarial machine

learning community. The paper focuses on

reviewing the gradient-based adversarial attacks

since they have a closer relationship with GANs

training process.

2.1. Gradient-Based Adversarial
Attacks

A simpler formulation of gradient-based attack

algorithm is Fast Gradient Sign methods (FGSM)

[1], which has the following formulation:

𝑋’ = 𝑋 + Ɛ ˑ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑋, 𝑦)), (1)

where X is the original sample data and ∇x L(X, y)

represents a one-step gradient calculation

regarding the classifier loss L. This loss gradient

is usually computed from a backpropagation of a

deep learning classifier. The algorithm takes the

sign direction of the gradient and adds it to the

original sample with a scaler Ɛ to generate the

adversarial samples. The scaler Ɛ constrains the

maximum L infinity norm of the perturbation

vector, which also is known as the attack strength.

Projected Gradient descent (PGD) attack [2]

was an improved version of the gradient-based

attack that iteratively computed the gradients of

the classifier. The base formula is written as

follows:

𝑋𝑡+1 = ∏𝑥+𝑠(𝑋’ + Ɛ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦))), (2)

where the gradient sign sign(∇x L(x, y)) is

calculated multiple times and iteratively adds on

the original input X. X’ in this formula represents

the perturbed input from the last step of the

calculation, and Xt+1 is the output of the current

iterative. We think these gradient-based

algorithms had a similar property to GANs

formulation, that the generator of GANs could

also be used to capture the loss gradient of a

classifier.

2.2. Adversarial Training

Adversarial training refers to the training

schema that incorporates an adversarial attack

algorithm to augment the training data [1, 2]. In

general, any attack algorithms could be used for

data augmentation. However, the most common

ones are gradient-based attacks since they are

efficient for implementation, and the classifier's

loss gradient could be directly accessed during the

training process. Gradient-based adversarial

training was introduced by Goodfellow et al. [1]

after the discovery of FGSM. The general

formulation of adversarial training could be

expressed as follows:

min ∑ max 𝐿(𝑓(𝑥𝑖 + 𝛿), 𝑦𝑖), (3)

where the classifier is optimized to minimizes the

cross-entropy loss L on adversarial sample x+δ,

and the adversarial sample x+δ maximizes the

loss of the classifier. Later, Madry et al. [2]

suggested using multi-step gradient PGD attacks

to improve the performance of adversarial

training to defend against more precise first-order

attacks. The PGD adversarial training achieved

state-of-the-art accuracy against the strong PGD

attacks and was used as a baseline adversarial

training method. However, limitations were found

with a more complex dataset. Zhang et al. [8]

suggested a trade-off between robustness and

accuracy. The recent developed classifier had a

limited parameter and capacity to generalize on

both clean and adversarial data. Furthermore, the

training time increases significantly with the

implementation of the multi-iteration gradient

attack within every training iteration [2].

2.3. GANs

GANs are popular deep learning techniques

for data synthesis. Recently, some high-quality

synthetic images could be generated by using

some state-of-the-art GANs [9]. The formulation

of GANs incorporates a generator network and a

discriminator network to form a min-max game.

The discriminator could be optimized to

differentiate the generated data and real data. The

gradient is backpropagated from the discriminator

to improve the generator performance. Normally,

the goal of GANs is to optimize the generator to

improve data synthesis. Xiao et al. [10] used a

generator network to capture the loss gradient

regarding the input images of a classifier network.

The generator can be also used as an effective

adversarial sample generator after training.

On the other side, multiple GANs frameworks

were proposed to defend the adversarial attack.

Shen et al. [11] and Samangouei et al. [12]

proposed a GANs to cleanse the adversarial

perturbation. These GANs optimize a generator to

transfer the adversarial images to harmless

samples and reduce the effect of adversarial

perturbation. The other defensive GANs [13, 14,

15, 16] also utilized the feature-to-feature transfer

generative model to denoise the adversarial

samples. Liang et al. [17] implemented a

defensive GANs architecture to learn the

perturbation features and provide a robust

classification result. Liu et al. [18] proposed a

GANs adversarial training schema to improve

adversarial robustness of a classifier. Wang et al.

[7] also suggested that GANs can improve the

adversarial robustness of the deep learning

classifier model. This framework [7] has an

alternative optimization goal that focuses on the

performance of the classifier instead of the

generator. The formulation of the optimization is

expressed as follows:

𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑋𝑖), 𝑦𝑖) + ∑ 𝐿(𝐷(𝑋𝑖 +

𝜖𝐺(𝑋𝑖)), 𝑦𝑖), (4)

The key difference between this framework and

adversarial training is that it replaced the attack

algorithm as a generative network to synthesize

the adversarial samples. The generator outputs a

vector of perturbation G(X), and the perturbation

G(X) adds to the original sample X with a scaler ϵ

to construct the final adversarial samples. The

scaler ϵ is a variable to constrain the L infinity

norm of the perturbation vector from the

generator. The optimization goals were to

minimize the classification loss L(D(Xi),yi) of

discriminator D regarding both original sample X

and perturbed sample Xi+ϵG(Xi), and generator G

is optimized to maximize the loss of D. The

results showed that this framework could improve

the robustness of the classifier (i.e., discriminator)

and the classifier could generalize on the

generated samples easier than traditional

adversarial attack samples. Our work makes

inspirations from this work. We propose multiple

modifications to this framework and aim to

improve the stability and overall performance of

the training.

In this paper, we applied GAN architecture to

adversarial training formulation. Different from

the previous works, we implemented four

frameworks with four different generators’

formulations. The four formulations estimate the

adversarial noises as four function

transformations from different inputs. The

training performance of the GAN frameworks

involved different generator formulations was

compared and analyzed.

3. Methodology

The general formulation of our network is a

modification to equation (4) from Wang et al. [7].

It can be described as following:

𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑋𝑖), 𝑦𝑖) + ∑ 𝐿(𝐷(𝑥𝑖 +

𝜖𝐺(𝑰)), 𝑦𝑖), (5)

with a slight difference in considering a set of

different inputs for the generator. The different

inputs are represented by I in the formula and it

affects the formulation of the generator for

adversarial noise generation. The following

describes the four different formulations we

considered for the generator:

𝑁 = 𝐺1(𝑥), (6)

𝑁 = 𝐺2(𝑥, 𝑧), (7)

𝑁 = 𝐺3(𝑠𝑖𝑔𝑛(∇)), (8)

𝑁 = 𝐺4(𝑠𝑖𝑔𝑛(∇), 𝑥), (9)

The four types of generator formulation are

represented as:

1. G1: formulates adversarial noise N as

function transformation of only target image x,

2. G2: formulates adversarial noise N as

function transformation of the target image x

and a latent noise z,

3. G3: formulates adversarial noise N as

function transformation of sign of the loss

gradient sign(∇) of the current classifier state

regarding the target input x,

4. and G4: formulates adversarial noise N as

function transformation of the target image x

and the sign of the loss gradient sign(∇) of the

current classifier state regarding the target

input x.

The loss gradient of the classifier is calculated

each time before the input is fed into the generator

for the formulations (8) and (9). For simplicity, we

will refer to the formula (8) and (9) as G(∇) and

G(∇, x) in the subsequent sections.

The optimization goal is to minimize the

discriminator (classifier) loss on both clean and

synthesized data from the generator and maximize

the synthesis image's loss regarding the

discriminator’s classification output. The

generator in our framework is responsible for

constructing perturbation vectors instead of

images. The perturbation vectors are added to the

original images to produce adversarial samples

that feed into the classifier for training. The

perturbation from generator output is soft-clipped

by "tanh" activation and constrained by a scaler

value ϵ that is defined manually. This scaler value

is the control variable that defines the maximum

L infinity norm of the perturbation. The details of

the value settings will be discussed in the

experiment section. We also refer to this scaler as

the strength of the perturbation or attack strength

in the later section.

The GAN architecture also involves dual

generators during the training. Both generators

provide perturbation solutions for the classifier to

train. Im et al. [19] suggested that involving

multiple generator and discriminator pairs could

improve the stability of training, and the generator

could generate more variety of distributed

samples. The pairs architecture should act as a

regularization to the GANs that reduces the

overfitting effect of the network. The architecture

of our framework is illustrated in Figure 1.

Figure 1 Framework architecture. The dotted
lines represent gradient propagation.

Additionally, we used a standard categorical

cross-entropy loss as the loss function for the

discriminator. As for the generator, the

optimization should maximize the cross-entropy

loss of the discriminator. Hence, the loss function

is defined as a negative cross-entropy loss in

contrast to the discriminator loss.

4. Experimental Results

We considered the Canadian Institute For

Advanced Research (CIFAR) 10 dataset for the

experiments. We chose the CIFAR 10 dataset as

it is a more challenging problem to optimize a

robust classifier for colorful images and

scalability of CIFAR 10 is within our scope of the

project.

 In our experiment, we used a generator similar

to the cycle GAN generator [20]. We consider this

type of generator because it is useful for image

and texture transformation. The architecture of the

generator is illustrated in Figure 2. A shallow

Generator

Classifier

Output minimize loss

Output maximize loss

Dataset
Image

+

Generator +

Inputs

VGG-like architecture was implemented as the

discriminator. Each layer used batch

normalization and ReLU activation. The details of

the filter parameters of the models are shown in

Table 1. We implemented multiple generator filter

settings and one discriminator filter setting for our

experiments. The “×1” generator filter setting is

more efficient to train and was used in generator

formulations comparison. However, from some

extensive experiments, we found that the “×2”

filter setting slightly improve the overall

performance, so we implemented this setting for

the further experiments.

Figure 2 The generator architecture. The Ɛ
variable constrains the maximum L infinity norm
of the output vector.
Table 1
The filter settings of the generator and
discriminator.

Output
size
(genera

tor)

Generator
Filters x1

Generator
Filters x2

Output
size
(discrim

inator)

Discriminat
or Filters

32×32 7×7, 32,
stride 1

7×7, 32,
stride 1

32×32 [3×3, 32,
stride 1] ×2

16×16 5×5, 64,
stride 2

5×5, 128,
stride 2

16×16 Max pool,
stride 2

8×8 5×5, 128,
stride 2

5×5, 256,
stride 2

16×16 [3×3, 64,
stride 1] ×2

8×8 [
3 × 3, 128
3 × 3, 128

]

× 4

[
3 × 3, 256
3 × 3, 256

]

× 4

8×8 Max pool,
stride 2

16×16 5×5, 64,
stride 2

5×5, 128,
stride 2

8×8 [3×3, 128,
stride 1] ×3

32×32 5×5, 32,
stride 2

5×5, 32,
stride 2

4×4 Max pool,
stride 2

32×32 7×7, 3, stride
1

7×7, 3, stride
1

4×4 [3×3, 256,
stride 1] ×3

 2×2 Max pool,
stride 2

 1024 Flatten
 10 10-d fc

During training, we added dropouts as

regularization layers to each layer of the

discriminator. For every shallow VGG model, the

dropout value is 0.3 for the first two layers and 0.4

for the rest of the layers except the output layer.

The optimizer implemented for all the

experiments training is the Adam optimizer with

a 0.0002 learning rate, 0.5 Beta1, 0.9 Beta2 for

generators and 0.0001 learning rate, 0.5 Beta1, and

0.9 Beta2 for discriminators. The learning rate for

the generators is higher because, during the

training dynamic, we expect the generator to

capture the loss gradient of the discriminator's

current state. Hence, we reduced the learning

process of the discriminator to make the learning

process easier for generators.

We used a scaler (ϵ) of 16/255 as perturbation

strength to constrain the generator perturbation

vectors.

All the images’ pixels were normalized within

the range of [0, 1] before training and testing.

Additional data augmentations were used,

including random horizontal flips and random

shifts within the range of 0.1 fractions of the

original image size.

A baseline models was also trained without

GANs framework. We used a conventional

training schema to train the baseline models. The

structure of baseline model is consistent with the

shallow VGG model.

4.1. Generator Formulations

This section lists and compares the training

results from different formulations. In this

section, we used “×1” generator filter number for

experiments, shown in Table 1. The same filter

parameters were used for all formulations from

section 3. The baseline model was also tested for

comparison. To evaluate the robustness of the

models, we implemented FGSM and PGD as two

standard testing attack algorithms. It is suggested

that only the robustness evaluated under the

strong multi-iteration attack is valid [2]; however,

we still include the one-step gradient attack

algorithm FGSM to compare the effectiveness by

using generator to estimate the adversarial noise.

The max-iteration of PGD attack is set to 100. The

results are plotted in Figure 3.

From the plot, all the models trained with

GANs framework significantly improved in terms

of robustness against different levels of

adversarial noise. The discriminators trained

against the generators that included target image

x as an input option (G(x) and G(x, z)) generally

gained similar robustness against FGSM and

PGD. The accuracy against FGSM was slightly

higher compared to against PGD under the highest

noise norm setting (16/255). This result means

that the discriminators (classifiers) trained against

G(x) and G(x, z) formulations had improved

adversarial robustness but also had a more

obvious loss gradient compared to other models.

Residual
Blocks

Down Sampling x2 Up Sampling x2

+

C
o

n
v 3

x3

C
o

n
v 3

x3

Residual Blocks x4

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

XInput

Ɛ

Output

C
o

n
v 7

x7

C
o

n
v 7

x7

Residual Block

One step of gradient descent is sufficient to

discover adversarial samples similar to those

computed from multi-step gradient descents. We

also observe that the formulations, including

gradient inputs, generally gain better robustness

than other formulations. Formulations G(∇) and

G(∇,x) generally had a similar performance under

all attack settings. However, the performance

under PGD attacks downgrades when noise norm

increases compared to FGSM attacks, but the

accuracies stay higher than other formulations.

Furthermore, the clean data accuracy of the

baseline model is higher than all the formulations.

The generator that considered both gradient and

image inputs had the lowest clean accuracy.

Figure 3: The discriminator robustness
comparison between different formulations.
0/255 indicates no perturbation is added to the
images.

From this experiment, we observe that the

GAN architectures help increase the robustness of

a classifier. The formulation of the generator has

an impact on the adversarial noise estimation

capacity. The generator with initial gradient

information from the classifier had better training

results in GANs frameworks. We suggested that

with the first step gradient information, the initial

direction of the perturbation is available to the

generator. The generator only needs to discover

the perturbation’s further direction compared to

the full perturbation direction. This formulation

decreases the difficulty of the generator

optimization; hence the generator can discover a

worse-case perturbation more efficiently. The

classifier trains against this generator formulation

should yield a better robustness result. However,

there is still a limitation on the generator capacity

to find the worst-case adversarial noise. The

robustness performances under the highest norm

constraints (16/255) only reached around 20%

accuracy at best. Furthermore, the clean data

accuracies downgrade significantly with GANs

frameworks. The frameworks with gradient input

generators have the worst clean data accuracies.

We observed overfitting effects with all GANs

frameworks’ discriminators, with the training set

data accuracy could reach over 90% after GANs

training, but testing set accuracy is only around

70%. With the same discriminator architecture,

the conventional training accuracy is around 81%

for both training and test set data. We tried adding

L2 regularization for each layer or using an Adam

optimizer with weight decay (AdamW). However,

the regularization helped little to the results, and

the performance downgraded when the weight

decay was above 0.0001. Currently, we have no

idea why the overfit is happening. We suspect the

synthetic data from the generator has a different

data distribution that shifts the decision

boundaries of the discriminator.

4.2. Training Epochs

In this section, we evaluate the discriminators’

accuracy performance with different training

epochs. The architecture selected for this

evaluation is the G(∇) formulation generator with

“×2” filter numbers and the same discriminator,

shown in Table 1. The other setting for the

experiment is consistent with the previous section.

Figure 4 shows the results of the experiment.

Figure 4: Discriminator robustness comparison
between the different training epochs.

With increasing the training epochs, the clean

data accuracies did not deviate too much. We

observed that the accuracies under FGSM attacks

increased with more training epochs; however, the

accuracies under PGD slightly decreased with

more training epochs. This effect is more

significant with larger noise norm sizes. Usually,

we expect an improved robustness for both FGSM

and PGD with same training iterations; however,

this plot is inconsistent with our expectations. The

reason behind this performance downgrade is not

apparent. We hypothesize that the generator

started to overly fit to FGSM perturbation and

produce the one perturbation direction with later

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0/255 4/255 8/255 16/255

A
cc

ra
cy

 U
n

d
e

r
A

tt
ac

ks

Attack L Infinity Norm Constraint

Different Generator Input Comparison

G (x) FGSM

G (x) PGD

G (x,z) FGSM

G (x,z) PGD

G (▽) FGSM

G (▽) PGD

G (▽,x) FGSM

G (▽,x) PGD

Baseline FGSM

Baseline PGD

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0/255 4/255 8/255 16/255

A
cc

ra
cy

 U
n

d
e

r
A

tt
ac

ks

Attack L Infinity Norm Constraint

Train Epochs Comparison

G (▽) 100 epochs FGSM

G (▽) 100 epochs PGD

G (▽) 200 epochs FGSM

G (▽) 200 epochs PGD

G (▽) 300 epochs FGSM

G (▽) 300 epochs PGD

training iterations, and the discriminator learned

to classify the images with this perturbation

direction; however, the gradient was saturated for

the generator to learn a new adversarial direction.

4.3. Results for PGD 1000 Iterations

In previous sections, we used PGD with 100

iterations to evaluate our models. However, the

results obtained by 100 iterations may not

describe the overall robustness. Therefore, in this

section, the accuracy results from 1000 iterations

are collected and shown in Table 2. All

parameters and settings are the same to the last

section 4.2. The model trained with 100 training

epochs was selected for this experiment. From the

table, we did not observe a significant accuracy

difference when iteration increases. With all norm

constraints, the accuracy of the model stays

relatively identical. This result shows that the

robustness evaluation for this model is sufficient

by using the PGD 100 iterations. Therefore, we

suggest that the evaluations from previous

sections are valid and sufficient to conclude the

overall robustness of the model.

Table 2
The model accuracies under PGD 100 and 1000

L infinity

norm size

4/255 8/255 16/255

Accuracy

PGD 100

57.41% 45.6% 23.71%

Accuracy

PGD 1000

57.33% 45.28% 23.31%

4.4. Visualization of Adversarial
Directions

Figure 5: Adversarial noise visualization with model’s logit outputs. The left-hand side shows the
figures of the original image (a), adversarial noise from the FGSM attack (b), adversarial noise from
the PGD attack (c), and adversarial noise from our generator (d). The right-hand side shows the pre-
SoftMax output values trending when the original image is perturbated by a random noise (e), the
FGSM adversarial noise (f), the PGD adversarial noise (g), and the generator adversarial noise(h). The
labels of the right-hand side plots are shared.

Noise L infinity norm size

Lo
git O

u
tp

u
ts o

f th
e

 C
lassifie

rs (D
iscrim

in
ato

rs)
Original image
with random
noise
perturbation

The adversarial
noise generated
by FGSM

The adversarial
noise generated
by PGD

The adversarial
noise generated
by our generator

30

20

10

0

30

20

10

0

-10

30

20

10

0

-10

30

15

10

5

-0

-5

-10

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

a)

b)

c)

d)

e)

f)

g)

h)

In this section, we visualize the perturbation

generated by the generator from our GANs

frameworks. We chose the generator with G(∇)

formulation and “×2” filter numbers (Table 1).

The perturbations were generated with the

framework trained after 300 epochs. We chose the

maximum epochs from our experiments since we

want to investigate the maximum effect of

training with the framework. The FGSM and PGD

noises were generated based on the classifier’s

(discriminator’s) state after the 300 epochs of

training. The visualization is shown in Figure 5.

The target image (a) is the top left image with

a correct label of “ship”. The noise images under

the target image are the perturbation vectors

generated by FGSM (b), PGD (c), and our

generator (d), respectively. The right-hand side

plots (e, f, g, h) show the classifier’s logits outputs

trending regarding the different norm size by

adding the respective noise vector onto the target

image. The top-right plot (e) shows the logits

output trending when the classifier is perturbed by

a random Gaussian noise vector with zero mean

and one standard deviation. We do not show the

Gaussian noise since the plot indicates the

model’s behavior in standard non-adversarial

condition and there is no significant information

within the Gaussian noise vector. Furthermore,

the negative norm size in the x axis represents the

opposite perturbation direction by the noise

vector, which means subtracting the noise vector

from the target image.

When the target image is perturbed by random

noise (e), the logit distribution shows a relative

symmetry shape whether the noise norm increases

in either direction. However, with adversarial

noise perturbation (f, g, h), the logit output

regarding the correct class label decreases more

dramatically with increasing norm size in a

positive direction. We labeled the cross points

when another class label output value started

surpassing the correct class label’s output. The

surpassed point for FGSM is labeled with the blue

line, and the surpassed point for PGD is labeled

with the yellow line. The orange line indicates the

position where the noise norm is zero, which

means no perturbation is added to the image. As

expected, the surpassed point of PGD is closer to

the zero-norm point compared to the FGSM’s

surpassed point since PGD could find an

adversarial sample with smaller perturbation with

its iterative gradient descent. The surpass point for

the noise of the generator stays closer to the zero-

norm point compared to the FGSM noise and stay

further compared to the PGD noise. These results

suggest that the adversarial noise from the

generator is stronger than the noise from a single-

step adversarial attack but weaker than the noise

from an iterative adversarial attack. We also

observed that the noise from the generator is more

uniform compared to the noisier noise from the

gradient descent attacks. This more uniform noise

may relate to the convolution generator’s

properties and capacities.

4.5. Discussion

With the experiments illustrated in this paper,

we showed that the framework of GANs could be

used to improve the adversarial robustness of the

deep learning classifier. The discriminator could

be trained with increasing robustness against the

gradient-based adversarial attack algorithms.

However, the trade-off still presents between

clean data accuracy and robustness of the model,

especially with a high dimensional dataset. In the

current state, we need more experiments to

analyze the training dynamics of GANs and make

further improvements. We also found that the

structure of the generator could affect its

performance in perturbation generation. This

finding is different from the previous work [7].

Furthermore, using the signed gradient from one-

step backpropagation is the best option using for

the generator input to approximate the strong

adversarial perturbation. This formulation helps

to bridge the gap between the computation

overhead of the one-step gradient attack algorithm

and the multi-step attack algorithm during

adversarial training.

5. Conclusion and Future Work

This work intends to verify the possibility of

GANs contributing to adversarial attack defenses.

We suggest that the properties of GANs could be

utilized further for defending against adversarial

attacks. We might be able to improve the

formulation of the framework to make it more

applicable to real-life implementation scenarios.

There are a lot of hidden properties to be

discovered from GANs and the phenomenon of

adversarial samples. We believe the synthetic

adversarial sample could explain more about the

properties of deep learning models. In the next

step, we hope to extend this framework to other

types of deep learning models, such as attention-

based models, and evaluating how they perform

under the GANs training. Beside image models,

GANs can also train deep learning models used in

other application domains, including text

recognition models, malware detection models,

and reinforcement learning models. We are also

interested in exploring the different application

domains with GAN robustness training

architecture to address the problem of adversarial

samples.

6. References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy,

Explaining and Harnessing Adversarial

Examples, arXiv:1412.6572, 2015.

[2] A. Madry, A. Makelov, L. Schmidt, D.

Tsipras, and A. Vladu, Towards Deep

Learning Models Resistant to Adversarial

Attacks, arXiv:1706.06083, 2019.

[3] N. Carlini and D. Wagner, Towards

Evaluating the Robustness of Neural

Networks, arXiv, 2017. doi:

10.48550/arXiv.1608.04644.

[4] J. Chen, M. Su, S. Shen, H. Xiong, and H.

Zheng, POBA-GA: Perturbation optimized

black-box adversarial attacks via genetic

algorithm, volume 85 of Computers &

Security, 2019, pp. 89–106. doi:

10.1016/j.cose.2019.04.014.

[5] N. Papernot, P. McDaniel, X. Wu, S. Jha, and

A. Swami, Distillation as a Defense to

Adversarial Perturbations Against Deep

Neural Networks, in: IEEE Symposium on

Security and Privacy (SP), 2016, pp. 582–

597. doi: 10.1109/SP.2016.41.

[6] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A.

Yuille, Mitigating Adversarial Effects

Through Randomization, arXiv, 2018. doi:

10.48550/arXiv.1711.01991.

[7] H. Wang and C.-N. Yu, A Direct Approach

to Robust Deep Learning Using Adversarial

Networks, arXiv, 2019. doi:

10.48550/arXiv.1905.09591.

[8] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. E.

Ghaoui, and M. Jordan, Theoretically

Principled Trade-off between Robustness

and Accuracy, in: Proceedings of the 36th

International Conference on Machine

Learning, 2019, pp. 7472–7482.

[9] T. Karras, T. Aila, S. Laine, and J. Lehtinen,

Progressive Growing of GANs for Improved

Quality, Stability, and Variation, arXiv,

2018. doi: 10.48550/arXiv.1710.10196.

[10] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and

D. Song, Generating Adversarial Examples

with Adversarial Networks, arXiv, 2019. doi:

10.48550/arXiv.1801.02610.

[11] S. Shen, G. Jin, K. Gao, and Y. Zhang, APE-

GAN: Adversarial Perturbation Elimination

with GAN, arXiv, 2017. doi:

10.48550/arXiv.1707.05474.

[12] P. Samangouei, M. Kabkab, and R.

Chellappa, Defense-GAN: Protecting

Classifiers Against Adversarial Attacks

Using Generative Models, arXiv, 2018. doi:

10.48550/arXiv.1805.06605.

[13] F. Yu, L. Wang, X. Fang, and Y. Zhang, The

Defense of Adversarial Example with

Conditional Generative Adversarial

Networks, volume 2020 of Security and

Communication Networks, p. e3932584,

2020, doi: 10.1155/2020/3932584.

[14] A. ArjomandBigdeli, M. Amirmazlaghani,

and M. Khalooei, Defense against

adversarial attacks using DRAGAN, in: 2020

6th Iranian Conference on Signal Processing

and Intelligent Systems (ICSPIS), 2020, pp.

1–5. doi:

10.1109/ICSPIS51611.2020.9349536.

[15] G. K. Santhanam and P. Grnarova,

Defending Against Adversarial Attacks by

Leveraging an Entire GAN, arXiv, 2018.

Doi: 10.48550/arXiv.1805.10652.

[16] R. Bao, S. Liang, and Q. Wang, Featurized

Bidirectional GAN: Adversarial Defense via

Adversarially Learned Semantic Inference,

arXiv, 2018. doi:

10.48550/arXiv.1805.07862.

[17] Q. Liang, Q. Li, and W. Nie, LD-GAN:

Learning perturbations for adversarial

defense based on GAN structure, volume 103

of Signal Processing: Image

Communication, p. 116659, 2022, doi:

10.1016/j.image.2022.116659.

[18] G. Liu, I. Khalil, and A. Khreishah, GanDef:

A GAN Based Adversarial Training Defense

for Neural Network Classifier, in: ICT

Systems Security and Privacy Protection,

Cham, 2019, pp. 19–32. doi: 10.1007/978-3-

030-22312-0_2.

[19] D. J. Im, H. Ma, C. D. Kim, and G. Taylor,

Generative Adversarial Parallelization,

arXiv, 2016. doi:

10.48550/arXiv.1612.04021.

[20] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros,

Unpaired Image-To-Image Translation

Using Cycle-Consistent Adversarial

Networks, 2017, pp. 2223–2232.

