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Abstract  
Deep learning models are vulnerable to adversarial attacks, which could generate adversarial 

perturbation to make deep learning classifiers fail in classification tasks. In this paper, we 

reviewed a variety of defensive methods against adversarial attacks and proposed our solution. 

We present a modification of Generative Adversarial Network (GAN) architecture to train a 

classifier for the purpose of defending against adversarial attacks. We trained multiple deep 

learning classifiers with different generator formulations to compare and evaluate their 

robustness against adversarial attacks. We show how the GAN architecture could contribute to 

the adversarial machine learning problem and how the capacity of the generator affects the 

training performance. Our results show that GAN architectures can improve the adversarial 

robustness of a deep learning classifier with more efficiency training time. The CIFAR 10 

classifier accuracy remains around 45% under 8/255 L infinity norm adversarial distortion. 
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1. Introduction 

In recent years, there has been an increasing 

attention to the security of deep learning networks 

regarding the area of adversarial machine 

learning. Deep learning models are prone to the 

threats caused by well-known attack algorithms 

that could generate malicious data samples (e.g., 

fast gradient sign method [1] and projected 

gradient descent [2]). These attacks are known as 

Adversarial Attacks, and the data samples 

generated from the attack algorithms are known 

as Adversarial Samples. Recent research has 

proved that these attack algorithms are highly 

effective in generating small perturbations for any 

given sample of data that could substantially 

affect the output of any deep learning model. The 
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famous example of the algorithms includes the 

Fast Gradient Sign Method (FGSM) [1] and the 

Projected Gradient Descent (PGD) [2], which 

exploit the loss gradient of the deep learning 

model and use it to generate adversarial samples. 

The other algorithms such as Carlini and Wagner 

attack [3] and evolutionary based algorithms [4] 

generate adversarial samples under different 

constraints. 

There are several proposals for mitigating the 

problems of adversarial samples. Adversarial 

training is one of the well-established defense 

methods that augment the training data with the 

attack algorithms to make the classifiers 

generalize on adversarial samples [1, 2]. 

Adversarial training is effective in defending the 

attack algorithm and provide a baseline 

robustness to defend other similar or weaker 



attack algorithms [2]. The other algorithms 

include defensive distillation [5] and data 

augmentation [6]. However, adversarial training 

remains one of the top effective methods of 

defending adversarial attacks.  

The limitations of adversarial training include 

the challenge of generalization, the clean and 

robustness trade-offs, and the high training 

complexity. Usually, a classifier needs to be 

trained against a multi-iteration adversarial attack 

to achieve a good robustness against strong 

adversarial attacks [2]. Hence, in each training 

loop, some extra iterations of gradient descent 

need to be computed to obtain the worst-case 

adversarial noise for data augmentation. This 

process increases the training time exponentially 

with a more complex dataset and larger data 

number.  

Wang et al. [7] proposed a training framework 

by replacing the attack algorithm with a 

generative network in an extension of adversarial 

training. As a result, the framework formulates a 

GAN architecture, where the generator acts as an 

attacker, and the discriminator acts as a classifier. 

This method removed the need for an attack 

algorithm during the training and reduced the 

multi-step backpropagation complexity compared 

to the PGD-adversarial training. In this paper, we 

consider extending the GANs defensive training 

architecture from Wang et al. [7] to evaluate 

multiple generators and classifiers. The 

contributions of this paper are: 

1. The design and development of a GAN 

architecture to improve the adversarial 

robustness of a deep learning classifier on the 

classification against the gradient-based white-

box attack algorithms. 

2. A dual generator framework architecture 

to improve the effectiveness of generating 

adversarial samples during the training 

process. 

3. The implementation of different 

formulations of generators and evaluation of 

the training performance and the robustness of 

the classifiers that train against the different 

formulations. Furthermore, we evaluated if the 

generative network could capture the strong 

adversarial noise perturbation direction and 

perform on par with the strong adversarial 

attack in adversarial training. 

The rest of the paper is organized as follows: 

Section 2 discusses the related work regarding 

adversarial attacks and defenses and introduces 

the defensive methods related to GANs. Section 3 

introduces the methodologies and architectures of 

our frameworks. Section 4 presents our 

experimental setups and results and provides 

discussion regarding the results. Finally, Section 

5 concludes the paper and provides a discussion 

about the future work. 

2. Related Work 

In this section, we discuss recent works related 

to adversarial attacks, adversarial training and 

GANs’ contributions to the adversarial machine 

learning community. The paper focuses on 

reviewing the gradient-based adversarial attacks 

since they have a closer relationship with GANs 

training process. 

2.1. Gradient-Based Adversarial 
Attacks 

A simpler formulation of gradient-based attack 

algorithm is Fast Gradient Sign methods (FGSM) 

[1], which has the following formulation: 

𝑋’ =  𝑋 +  Ɛ ˑ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑋, 𝑦)),                   (1) 

where X is the original sample data and ∇x L(X, y) 

represents a one-step gradient calculation 

regarding the classifier loss L. This loss gradient 

is usually computed from a backpropagation of a 

deep learning classifier. The algorithm takes the 

sign direction of the gradient and adds it to the 

original sample with a scaler Ɛ to generate the 

adversarial samples. The scaler Ɛ constrains the 

maximum L infinity norm of the perturbation 

vector, which also is known as the attack strength. 

Projected Gradient descent (PGD) attack [2] 

was an improved version of the gradient-based 

attack that iteratively computed the gradients of 

the classifier. The base formula is written as 

follows: 

𝑋𝑡+1 = ∏𝑥+𝑠(𝑋’ +  Ɛ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦))),  (2) 

where the gradient sign sign(∇x L(x, y)) is 

calculated multiple times and iteratively adds on 

the original input X. X’ in this formula represents 

the perturbed input from the last step of the 

calculation, and Xt+1 is the output of the current 

iterative. We think these gradient-based 

algorithms had a similar property to GANs 

formulation, that the generator of GANs could 

also be used to capture the loss gradient of a 

classifier. 

 

 

 



2.2. Adversarial Training 

Adversarial training refers to the training 

schema that incorporates an adversarial attack 

algorithm to augment the training data [1, 2]. In 

general, any attack algorithms could be used for 

data augmentation. However, the most common 

ones are gradient-based attacks since they are 

efficient for implementation, and the classifier's 

loss gradient could be directly accessed during the 

training process. Gradient-based adversarial 

training was introduced by Goodfellow et al. [1] 

after the discovery of FGSM. The general 

formulation of adversarial training could be 

expressed as follows: 

min ∑ max 𝐿(𝑓(𝑥𝑖 + 𝛿), 𝑦𝑖),                              (3) 

where the classifier is optimized to minimizes the 

cross-entropy loss L on adversarial sample x+δ, 

and the adversarial sample x+δ maximizes the 

loss of the classifier. Later, Madry et al. [2] 

suggested using multi-step gradient PGD attacks 

to improve the performance of adversarial 

training to defend against more precise first-order 

attacks. The PGD adversarial training achieved 

state-of-the-art accuracy against the strong PGD 

attacks and was used as a baseline adversarial 

training method. However, limitations were found 

with a more complex dataset. Zhang et al. [8] 

suggested a trade-off between robustness and 

accuracy. The recent developed classifier had a 

limited parameter and capacity to generalize on 

both clean and adversarial data. Furthermore, the 

training time increases significantly with the 

implementation of the multi-iteration gradient 

attack within every training iteration [2]. 

2.3. GANs 

GANs are popular deep learning techniques 

for data synthesis. Recently, some high-quality 

synthetic images could be generated by using 

some state-of-the-art GANs [9]. The formulation 

of GANs incorporates a generator network and a 

discriminator network to form a min-max game. 

The discriminator could be optimized to 

differentiate the generated data and real data. The 

gradient is backpropagated from the discriminator 

to improve the generator performance. Normally, 

the goal of GANs is to optimize the generator to 

improve data synthesis. Xiao et al. [10] used a 

generator network to capture the loss gradient 

regarding the input images of a classifier network. 

The generator can be also used as an effective 

adversarial sample generator after training.  

On the other side, multiple GANs frameworks 

were proposed to defend the adversarial attack. 

Shen et al. [11] and Samangouei et al. [12] 

proposed a GANs to cleanse the adversarial 

perturbation. These GANs optimize a generator to 

transfer the adversarial images to harmless 

samples and reduce the effect of adversarial 

perturbation. The other defensive GANs [13, 14, 

15, 16] also utilized the feature-to-feature transfer 

generative model to denoise the adversarial 

samples. Liang et al. [17] implemented a 

defensive GANs architecture to learn the 

perturbation features and provide a robust 

classification result. Liu et al. [18] proposed a 

GANs adversarial training schema to improve 

adversarial robustness of a classifier. Wang et al. 

[7] also suggested that GANs can improve the 

adversarial robustness of the deep learning 

classifier model. This framework [7] has an 

alternative optimization goal that focuses on the 

performance of the classifier instead of the 

generator. The formulation of the optimization is 

expressed as follows: 

𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑋𝑖), 𝑦𝑖) + ∑ 𝐿(𝐷(𝑋𝑖 +

𝜖𝐺(𝑋𝑖)), 𝑦𝑖),                                                      (4) 

The key difference between this framework and 

adversarial training is that it replaced the attack 

algorithm as a generative network to synthesize 

the adversarial samples. The generator outputs a 

vector of perturbation G(X), and the perturbation 

G(X) adds to the original sample X with a scaler ϵ 

to construct the final adversarial samples. The 

scaler ϵ is a variable to constrain the L infinity 

norm of the perturbation vector from the 

generator. The optimization goals were to 

minimize the classification loss L(D(Xi),yi) of 

discriminator D regarding both original sample X 

and perturbed sample Xi+ϵG(Xi), and generator G 

is optimized to maximize the loss of D.  The 

results showed that this framework could improve 

the robustness of the classifier (i.e., discriminator) 

and the classifier could generalize on the 

generated samples easier than traditional 

adversarial attack samples. Our work makes 

inspirations from this work. We propose multiple 

modifications to this framework and aim to 

improve the stability and overall performance of 

the training.  

In this paper, we applied GAN architecture to 

adversarial training formulation. Different from 

the previous works, we implemented four 

frameworks with four different generators’ 

formulations. The four formulations estimate the 

adversarial noises as four function 



transformations from different inputs. The 

training performance of the GAN frameworks 

involved different generator formulations was 

compared and analyzed. 

3. Methodology 

The general formulation of our network is a 

modification to equation (4) from Wang et al. [7]. 

It can be described as following: 

𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑋𝑖), 𝑦𝑖) +  ∑ 𝐿(𝐷(𝑥𝑖 +

𝜖𝐺(𝑰)), 𝑦𝑖),                                                         (5) 

with a slight difference in considering a set of 

different inputs for the generator. The different 

inputs are represented by I in the formula and it 

affects the formulation of the generator for 

adversarial noise generation. The following 

describes the four different formulations we 

considered for the generator: 

𝑁 = 𝐺1(𝑥),                                                               (6) 

𝑁 = 𝐺2(𝑥, 𝑧),                                                           (7) 

𝑁 = 𝐺3(𝑠𝑖𝑔𝑛(∇)),                                                   (8) 

𝑁 = 𝐺4(𝑠𝑖𝑔𝑛(∇), 𝑥),                                              (9) 

The four types of generator formulation are 

represented as: 

1. G1: formulates adversarial noise N as 

function transformation of only target image x,  

2. G2: formulates adversarial noise N as 

function transformation of the target image x 

and a latent noise z, 

3. G3: formulates adversarial noise N as 

function transformation of sign of the loss 

gradient sign(∇) of the current classifier state 

regarding the target input x,  

4. and G4: formulates adversarial noise N as 

function transformation of the target image x 

and the sign of the loss gradient sign(∇) of the 

current classifier state regarding the target 

input x. 

The loss gradient of the classifier is calculated 

each time before the input is fed into the generator 

for the formulations (8) and (9). For simplicity, we 

will refer to the formula (8) and (9) as G(∇) and 

G(∇, x) in the subsequent sections. 

The optimization goal is to minimize the 

discriminator (classifier) loss on both clean and 

synthesized data from the generator and maximize 

the synthesis image's loss regarding the 

discriminator’s classification output. The 

generator in our framework is responsible for 

constructing perturbation vectors instead of 

images. The perturbation vectors are added to the 

original images to produce adversarial samples 

that feed into the classifier for training. The 

perturbation from generator output is soft-clipped 

by "tanh" activation and constrained by a scaler 

value ϵ that is defined manually. This scaler value 

is the control variable that defines the maximum 

L infinity norm of the perturbation. The details of 

the value settings will be discussed in the 

experiment section. We also refer to this scaler as 

the strength of the perturbation or attack strength 

in the later section. 

The GAN architecture also involves dual 

generators during the training. Both generators 

provide perturbation solutions for the classifier to 

train. Im et al. [19] suggested that involving 

multiple generator and discriminator pairs could 

improve the stability of training, and the generator 

could generate more variety of distributed 

samples. The pairs architecture should act as a 

regularization to the GANs that reduces the 

overfitting effect of the network. The architecture 

of our framework is illustrated in Figure 1. 

 
Figure 1 Framework architecture. The dotted 
lines represent gradient propagation. 

Additionally, we used a standard categorical 

cross-entropy loss as the loss function for the 

discriminator. As for the generator, the 

optimization should maximize the cross-entropy 

loss of the discriminator. Hence, the loss function 

is defined as a negative cross-entropy loss in 

contrast to the discriminator loss. 

4. Experimental Results 

We considered the Canadian Institute For 

Advanced Research (CIFAR) 10 dataset for the 

experiments. We chose the CIFAR 10 dataset as 

it is a more challenging problem to optimize a 

robust classifier for colorful images and 

scalability of CIFAR 10 is within our scope of the 

project.  

 In our experiment, we used a generator similar 

to the cycle GAN generator [20]. We consider this 

type of generator because it is useful for image 

and texture transformation. The architecture of the 

generator is illustrated in Figure 2. A shallow 
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VGG-like architecture was implemented as the 

discriminator. Each layer used batch 

normalization and ReLU activation. The details of 

the filter parameters of the models are shown in 

Table 1. We implemented multiple generator filter 

settings and one discriminator filter setting for our 

experiments. The “×1” generator filter setting is 

more efficient to train and was used in generator 

formulations comparison. However, from some 

extensive experiments, we found that the “×2” 

filter setting slightly improve the overall 

performance, so we implemented this setting for 

the further experiments. 

 
Figure 2 The generator architecture. The Ɛ 
variable constrains the maximum L infinity norm 
of the output vector. 
Table 1 
The filter settings of the generator and 
discriminator. 

Output 
size 
(genera

tor) 

Generator 
Filters x1 

Generator 
Filters x2 

Output 
size 
(discrim

inator) 

Discriminat
or Filters 

32×32 7×7, 32, 
stride 1 

7×7, 32, 
stride 1 

32×32 [3×3, 32, 
stride 1] ×2 

16×16 5×5, 64, 
stride 2 

5×5, 128, 
stride 2 

16×16 Max pool, 
stride 2 

8×8 5×5, 128, 
stride 2 

5×5, 256, 
stride 2 

16×16 [3×3, 64, 
stride 1] ×2 

8×8 [
3 × 3, 128
3 × 3, 128

] 

× 4 

[
3 × 3, 256
3 × 3, 256

] 

× 4 

8×8 Max pool, 
stride 2 

16×16 5×5, 64, 
stride 2 

5×5, 128, 
stride 2 

8×8 [3×3, 128, 
stride 1] ×3 

32×32 5×5, 32, 
stride 2 

5×5, 32, 
stride 2 

4×4 Max pool, 
stride 2 

32×32 7×7, 3, stride 
1 

7×7, 3, stride 
1 

4×4 [3×3, 256, 
stride 1] ×3 

   2×2 Max pool, 
stride 2 

   1024 Flatten 
   10 10-d fc 

During training, we added dropouts as 

regularization layers to each layer of the 

discriminator. For every shallow VGG model, the 

dropout value is 0.3 for the first two layers and 0.4 

for the rest of the layers except the output layer.  

The optimizer implemented for all the 

experiments training is the Adam optimizer with 

a 0.0002 learning rate, 0.5 Beta1, 0.9 Beta2 for 

generators and 0.0001 learning rate, 0.5 Beta1, and 

0.9 Beta2 for discriminators. The learning rate for 

the generators is higher because, during the 

training dynamic, we expect the generator to 

capture the loss gradient of the discriminator's 

current state. Hence, we reduced the learning 

process of the discriminator to make the learning 

process easier for generators. 

We used a scaler (ϵ) of 16/255 as perturbation 

strength to constrain the generator perturbation 

vectors. 

All the images’ pixels were normalized within 

the range of [0, 1] before training and testing. 

Additional data augmentations were used, 

including random horizontal flips and random 

shifts within the range of 0.1 fractions of the 

original image size. 

A baseline models was also trained without 

GANs framework. We used a conventional 

training schema to train the baseline models. The 

structure of baseline model is consistent with the 

shallow VGG model. 

4.1. Generator Formulations 

This section lists and compares the training 

results from different formulations. In this 

section, we used “×1” generator filter number for 

experiments, shown in Table 1. The same filter 

parameters were used for all formulations from 

section 3. The baseline model was also tested for 

comparison. To evaluate the robustness of the 

models, we implemented FGSM and PGD as two 

standard testing attack algorithms. It is suggested 

that only the robustness evaluated under the 

strong multi-iteration attack is valid [2]; however, 

we still include the one-step gradient attack 

algorithm FGSM to compare the effectiveness by 

using generator to estimate the adversarial noise. 

The max-iteration of PGD attack is set to 100. The 

results are plotted in Figure 3. 

From the plot, all the models trained with 

GANs framework significantly improved in terms 

of robustness against different levels of 

adversarial noise. The discriminators trained 

against the generators that included target image 

x as an input option (G(x) and G(x, z)) generally 

gained similar robustness against FGSM and 

PGD. The accuracy against FGSM was slightly 

higher compared to against PGD under the highest 

noise norm setting (16/255). This result means 

that the discriminators (classifiers) trained against 

G(x) and G(x, z) formulations had improved 

adversarial robustness but also had a more 

obvious loss gradient compared to other models. 
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One step of gradient descent is sufficient to 

discover adversarial samples similar to those 

computed from multi-step gradient descents. We 

also observe that the formulations, including 

gradient inputs, generally gain better robustness 

than other formulations. Formulations G(∇) and 

G(∇,x) generally had a similar performance under 

all attack settings. However, the performance 

under PGD attacks downgrades when noise norm 

increases compared to FGSM attacks, but the 

accuracies stay higher than other formulations. 

Furthermore, the clean data accuracy of the 

baseline model is higher than all the formulations. 

The generator that considered both gradient and 

image inputs had the lowest clean accuracy. 

 
Figure 3: The discriminator robustness 
comparison between different formulations. 
0/255 indicates no perturbation is added to the 
images. 

From this experiment, we observe that the 

GAN architectures help increase the robustness of 

a classifier. The formulation of the generator has 

an impact on the adversarial noise estimation 

capacity. The generator with initial gradient 

information from the classifier had better training 

results in GANs frameworks. We suggested that 

with the first step gradient information, the initial 

direction of the perturbation is available to the 

generator. The generator only needs to discover 

the perturbation’s further direction compared to 

the full perturbation direction. This formulation 

decreases the difficulty of the generator 

optimization; hence the generator can discover a 

worse-case perturbation more efficiently. The 

classifier trains against this generator formulation 

should yield a better robustness result. However, 

there is still a limitation on the generator capacity 

to find the worst-case adversarial noise. The 

robustness performances under the highest norm 

constraints (16/255) only reached around 20% 

accuracy at best. Furthermore, the clean data 

accuracies downgrade significantly with GANs 

frameworks. The frameworks with gradient input 

generators have the worst clean data accuracies. 

We observed overfitting effects with all GANs 

frameworks’ discriminators, with the training set 

data accuracy could reach over 90% after GANs 

training, but testing set accuracy is only around 

70%. With the same discriminator architecture, 

the conventional training accuracy is around 81% 

for both training and test set data. We tried adding 

L2 regularization for each layer or using an Adam 

optimizer with weight decay (AdamW). However, 

the regularization helped little to the results, and 

the performance downgraded when the weight 

decay was above 0.0001. Currently, we have no 

idea why the overfit is happening. We suspect the 

synthetic data from the generator has a different 

data distribution that shifts the decision 

boundaries of the discriminator. 

4.2. Training Epochs 

In this section, we evaluate the discriminators’ 

accuracy performance with different training 

epochs. The architecture selected for this 

evaluation is the G(∇) formulation generator with 

“×2” filter numbers and the same discriminator, 

shown in Table 1. The other setting for the 

experiment is consistent with the previous section. 

Figure 4 shows the results of the experiment. 

 
Figure 4: Discriminator robustness comparison 
between the different training epochs. 

With increasing the training epochs, the clean 

data accuracies did not deviate too much. We 

observed that the accuracies under FGSM attacks 

increased with more training epochs; however, the 

accuracies under PGD slightly decreased with 

more training epochs. This effect is more 

significant with larger noise norm sizes. Usually, 

we expect an improved robustness for both FGSM 

and PGD with same training iterations; however, 

this plot is inconsistent with our expectations. The 

reason behind this performance downgrade is not 

apparent. We hypothesize that the generator 

started to overly fit to FGSM perturbation and 

produce the one perturbation direction with later 
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training iterations, and the discriminator learned 

to classify the images with this perturbation 

direction; however, the gradient was saturated for 

the generator to learn a new adversarial direction. 

4.3. Results for PGD 1000 Iterations 

In previous sections, we used PGD with 100 

iterations to evaluate our models. However, the 

results obtained by 100 iterations may not 

describe the overall robustness. Therefore, in this 

section, the accuracy results from 1000 iterations 

are collected and shown in Table 2. All 

parameters and settings are the same to the last 

section 4.2. The model trained with 100 training 

epochs was selected for this experiment. From the 

table, we did not observe a significant accuracy 

difference when iteration increases. With all norm 

constraints, the accuracy of the model stays 

relatively identical. This result shows that the 

robustness evaluation for this model is sufficient 

by using the PGD 100 iterations. Therefore, we 

suggest that the evaluations from previous 

sections are valid and sufficient to conclude the 

overall robustness of the model. 

Table 2 
The model accuracies under PGD 100 and 1000 

L infinity 

norm size 

4/255 8/255 16/255 

Accuracy 

PGD 100 

57.41% 45.6% 23.71% 

Accuracy 

PGD 1000 

57.33% 45.28% 23.31% 

4.4. Visualization of Adversarial 
Directions 

 
Figure 5: Adversarial noise visualization with model’s logit outputs. The left-hand side shows the 
figures of the original image (a), adversarial noise from the FGSM attack (b), adversarial noise from 
the PGD attack (c), and adversarial noise from our generator (d). The right-hand side shows the pre-
SoftMax output values trending when the original image is perturbated by a random noise (e), the 
FGSM adversarial noise (f), the PGD adversarial noise (g), and the generator adversarial noise(h). The 
labels of the right-hand side plots are shared. 
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In this section, we visualize the perturbation 

generated by the generator from our GANs 

frameworks. We chose the generator with G(∇) 

formulation and “×2” filter numbers (Table 1). 

The perturbations were generated with the 

framework trained after 300 epochs. We chose the 

maximum epochs from our experiments since we 

want to investigate the maximum effect of 

training with the framework. The FGSM and PGD 

noises were generated based on the classifier’s 

(discriminator’s) state after the 300 epochs of 

training. The visualization is shown in Figure 5. 

The target image (a) is the top left image with 

a correct label of “ship”. The noise images under 

the target image are the perturbation vectors 

generated by FGSM (b), PGD (c), and our 

generator (d), respectively. The right-hand side 

plots (e, f, g, h) show the classifier’s logits outputs 

trending regarding the different norm size by 

adding the respective noise vector onto the target 

image. The top-right plot (e) shows the logits 

output trending when the classifier is perturbed by 

a random Gaussian noise vector with zero mean 

and one standard deviation. We do not show the 

Gaussian noise since the plot indicates the 

model’s behavior in standard non-adversarial 

condition and there is no significant information 

within the Gaussian noise vector. Furthermore, 

the negative norm size in the x axis represents the 

opposite perturbation direction by the noise 

vector, which means subtracting the noise vector 

from the target image. 

When the target image is perturbed by random 

noise (e), the logit distribution shows a relative 

symmetry shape whether the noise norm increases 

in either direction. However, with adversarial 

noise perturbation (f, g, h), the logit output 

regarding the correct class label decreases more 

dramatically with increasing norm size in a 

positive direction. We labeled the cross points 

when another class label output value started 

surpassing the correct class label’s output. The 

surpassed point for FGSM is labeled with the blue 

line, and the surpassed point for PGD is labeled 

with the yellow line. The orange line indicates the 

position where the noise norm is zero, which 

means no perturbation is added to the image. As 

expected, the surpassed point of PGD is closer to 

the zero-norm point compared to the FGSM’s 

surpassed point since PGD could find an 

adversarial sample with smaller perturbation with 

its iterative gradient descent. The surpass point for 

the noise of the generator stays closer to the zero-

norm point compared to the FGSM noise and stay 

further compared to the PGD noise. These results 

suggest that the adversarial noise from the 

generator is stronger than the noise from a single-

step adversarial attack but weaker than the noise 

from an iterative adversarial attack. We also 

observed that the noise from the generator is more 

uniform compared to the noisier noise from the 

gradient descent attacks. This more uniform noise 

may relate to the convolution generator’s 

properties and capacities. 

4.5. Discussion 

With the experiments illustrated in this paper, 

we showed that the framework of GANs could be 

used to improve the adversarial robustness of the 

deep learning classifier. The discriminator could 

be trained with increasing robustness against the 

gradient-based adversarial attack algorithms. 

However, the trade-off still presents between 

clean data accuracy and robustness of the model, 

especially with a high dimensional dataset. In the 

current state, we need more experiments to 

analyze the training dynamics of GANs and make 

further improvements. We also found that the 

structure of the generator could affect its 

performance in perturbation generation. This 

finding is different from the previous work [7]. 

Furthermore, using the signed gradient from one-

step backpropagation is the best option using for 

the generator input to approximate the strong 

adversarial perturbation. This formulation helps 

to bridge the gap between the computation 

overhead of the one-step gradient attack algorithm 

and the multi-step attack algorithm during 

adversarial training. 

5. Conclusion and Future Work 

This work intends to verify the possibility of 

GANs contributing to adversarial attack defenses. 

We suggest that the properties of GANs could be 

utilized further for defending against adversarial 

attacks. We might be able to improve the 

formulation of the framework to make it more 

applicable to real-life implementation scenarios. 

There are a lot of hidden properties to be 

discovered from GANs and the phenomenon of 

adversarial samples. We believe the synthetic 

adversarial sample could explain more about the 

properties of deep learning models. In the next 

step, we hope to extend this framework to other 

types of deep learning models, such as attention-

based models, and evaluating how they perform 

under the GANs training. Beside image models, 



GANs can also train deep learning models used in 

other application domains, including text 

recognition models, malware detection models, 

and reinforcement learning models. We are also 

interested in exploring the different application 

domains with GAN robustness training 

architecture to address the problem of adversarial 

samples. 
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