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Abstract
The number of decision-making processes that rely on machine learning models to operate has been increasing in recent
years. Safety of those systems is compromised when models deviate from their expected behavior. One root cause is a shift in
the underlying data distribution, known as concept drift. A direct consequence of concept drift is a rapid drop in model’s
predictive power. Accurate detection of drift is essential as false alarms lead to unnecessary down time and undermine
confidence in the drift detection model. This paper introduces Real-Drift Detector (RDD), a drift detector that is not triggered
by virtual drift. RDD does not need use class labels during the inference phase to operate. Our detector outperformed the
state of the art in an extensive benchmark on a large panel of well-known datasets used in drift detection.
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1. Introduction
More and more online systems rely, at least partly, on
a form of machine learning model to operate. The
widespread integration of Artificial Intelligence based
model has its roots in the constant progress made in the
field, which enables models to solve increasingly com-
plex tasks well suited to real world applications. The
democratisation of Machine Learning (ML) models al-
lows non-experts to use it to automate repetitive tasks
and is simplified by the easy access and processing of
large quantities of data required to train predictive mod-
els. The emergence of cloud computing has also been
accelerating the industrial use of ML models in produc-
tion.

However, ML models can be crippled by a wide range
of problems that raise serious questions regarding their
impact on the safety of systems and their consequence
on society. Some models inadvertently induce bias in
their predictions [1] such as black box models that are
therefore excluded from applications where explanability
is a critical feature such as loan applications. However,
ML models are often poorly adapted to detect out of
distribution samples [2] that are not classified correctly.
Models can then see a drop of performance while in the
inference phase due to a change in the underlying data
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distribution [3]. A shift of distribution is referred as
Concept Drift (CD) and its detection will be the focus of
this paper.

Machine learning models are built under the hypoth-
esis that data seen during the training phase share the
same distribution as unseen future data. Concept drift ap-
pears when the underlying distribution of a data source
changes over time. If the static distribution hypothesis
is violated, historic data cannot be used to predict the
future and predictive models see their performances drop.
Concept Drift can impact every ML domain including
video analysis [4], [5].

In contrast to anomaly detection, where the goal is
to isolate few out of distribution samples, concept drift
will cause a large part of the data to deviate from past
distributions. One way to categorize drifts is with its
impact on a model’s performance. Virtual drift is used
to describe a distribution change that does not impact a
model while real drift does. Let 𝑋 be a set a variables
used to predict the target class vector 𝑦. We distinguish
three root causes of concept drift: it may come from the
change in the class distribution P(𝑋 | 𝑦), the feature
space P(𝑋) or the class priors P(𝑦). Where the change in
distribution is rapid, the drift is said to be abrupt. Drift is
incremental when the distribution shifts slowly over time.
Recurrent drift is defined as a distribution that oscillate
in between two or more concepts. Drift detection differs
from outliers detection [6] as the goal is to identify and
take actions to deal with a global distribution change and
not to remove out of distribution samples.

We present RDD: Real-Drift Detector, a unsupervised
drift detection method based on the supervised parti-
tion of feature space aiming to detect local distribution
changes that impacts models performances. RDD works
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in any number of dimensions. Our detector does not need
labels during inference and outperforms the state of the
art in a thorough experiment. In Section 2, we present
related work and position our paper. The RDD algorithm
is described in Section 3. In Section 4, the experimen-
tal protocol is presented and the results are discussed.
Section 5 concludes this paper.

2. Related Work
Over the last few years, concept drift has become a major
field of research in the machine learning community.
Focus was mostly aimed at models dealing with drift as
well as drift detectors. Recent advances in detecting drift
when true class labels are available led algorithms to
achieve almost perfect detection. Other (more realistic)
contexts still show room for improvement.

To prevent drift from affecting ML models, several
mechanisms have been proposed. Assuming that recent
data share the same distribution as upcoming data, one
way is to continuously update a pool of models. In [7] a
batch of new data is scored by a pool of models, the indi-
vidual model’s contribution are weighted by it’s recent
performances. At each new batch, a model is trained on
it and added to the pool while a long term poor perform-
ing one is removed. This ensures good performances in
the presence of concept drift and a fast adaptation on
recurrent drifts. Methods that work on a dynamic pool
of models have been thoroughly studied [8], [9].

When detecting a drift, the consensus is that an in-
crease of the error rate of a model means the presence of
concept drift. Detection methods based on that hypothe-
sis have been given a lot of attention as this methodology
is able to systematically detect real drift while consis-
tently ignoring virtual drift. The detection methods pre-
sented in [10] and [11] work by monitoring a model’s
error rate. A drop of performance is interpreted as a
presence of drift. Different statistical tests are used to
monitor the error rate and signal drifts.

Both updating a pool of models and monitoring the er-
ror rate perfectly deal with drift. As virtual drift does not
impact accuracy, it is systematically ignored. However,
in order to work, both approaches need access to the
true labels immediately after the inference phase. This
is not realistic for real-world scenarios when true class
labels are almost never available promptly and are some-
times never known. To address this issue, several ways
of dealing with drift in an unsupervised manner have
been studied.

To detect drift without class labels availability,
window-based technique have been studied. The authors
of [12] introduce ADWIN, an adaptive sliding window
algorithm. It works by keeping a reference window con-
taining past instances. The window widens when no

change is detected, while its size decreases rapidly in
the presence of drift. The detection-mechanism works
by repeatedly splitting the window, based on the time
of appearance into two smaller sets. A drift is detected
when the averages of the values of two sets are statis-
tically different. Several other window-based detectors
have been presented since such as [13].

To avoid detecting drift over one-dimension sliding
windows, [14] detects swift or gradual changes in data
values with minimum enclosing balls. A ball is defined
as a centroid and the minimum radius that enables to
include all of the samples in the ball. A drift is detected
when too many values are labelled as outliers, in which
case the centroid is updated.

To circumvent the unavailability of true labels, the au-
thors of [15] trained a model to distinguish past data from
recent data. All timestamp-like aggregates are removed
prior to training the model to prevent trivial identifica-
tion. The ability of the model is assessed using the AUC
metric, using a threshold of .75 in their paper. Using
time to find drift, the authors of [16] include the times-
tamp attribute in the observations and train a model on
past and recent data to predict the target variable. If the
timestamp attribute is an informative feature, the target
variable depends on time and the presence of a drift is
assumed.

The authors of [17] present another way of detecting
drift in an unsupervised manner. A first model (teacher)
is trained on past labelled data, a second model (student)
is trained to mimic the behavior of the teacher model.
During the inference phase the authors monitor the er-
ror rate of the student model and use [12] to trigger an
alarm. In [18], drift detection in an unsupervised im-
age classification context is studied. The authors first
apply a dimension reduction technique before using a
two-sample test to find drift. A number of dimension re-
duction and two-sample tests including (MMD [19] and
KS) are evaluated on an extensive study of different types
of shift applied to images. In [20] the authors incorporate
the target class in the dimension reduction mechanism,
enabling the detector to ignore virtual drift.

The idea behind concept drift detection by statistical
tests is that a distribution change will be a strong indica-
tor of drift [14], [18]. A distribution change will enable
the detection of drift, but won’t discriminate between
real drift and virtual drift. To the best of our knowledge,
few algorithms are able to discriminate between real drift
and virtual drift without access to true labels after detec-
tion. In this paper we introduce RDD a detector that does
not need true class labels to operate during the inference
phase. RDD works in any dimension and successfully
discriminates between real and virtual drift.



3. RDD

3.1. Our detector
The idea behind our model is that a real drift changes
the distribution of regions made by of a class dependant
partitioning while virtual drift does not. We use a deci-
sion tree to partition the feature space into regions of
homogeneous class labels.

Our intuition is that a data distribution change in a leaf
between the training phase and inference phase indicates
a drift. It is our assumption that a real drift is likely to
change in which region the observations are assigned
to. Such misplaced samples are likely to have a different
distribution than that of the training observations. A
distribution change leading to virtual drift is unlikely to
be seen locally as it may affect less the way observations
are distributed in leaves.

In order to better discriminate real drift from virtual
drift, each region is attributed a weight. The weights
represent the ability of a given region to correctly assign
a label to an observation. A region that only contains
a single class of observations will have a large weight.
While a region that cannot well separate samples on
their label will have a small weight. This is done to
reduce the risk of sudden class imbalance to be detected
as a distribution change. Our model signals a drift when
enough regions flag their distribution as changing.

3.2. Mathematical Background
During the initialization step, a decision tree classifier
(ℳ) is fit over the training data. Like most drift detection
algorithms, we assume the training data is sampled from
one single concept. We do not consider the training data
to include past concepts that might offset the detector.
For both the training (𝑇 ) and inference (𝐼) test sets, we
consider the variables to follow a normal distribution.
This hypothesis is required to test for homoscedasticity
in the latter. After discarding all leaves that contain too
few samples or that are not pure, we store, for each leaf,
the training instances that belong to it. Let 𝑇𝑘, 𝐼𝑘 be the
training and inference data within leaf 𝑘 of class 𝑐. For
the test to be significant [21], we remove all leaves in the
decision tree containing less than a number of observa-
tions 𝜈. We set 𝜈 = 20. We have ∀𝑘,min(|𝑇𝑘|, |𝐼𝑘|) ≥ 𝜈
as well as 𝑌𝑇𝑘 = 𝑌 𝐼𝑘 = 𝑐.

By construction, the leaves of a decision tree don’t
hold the same separation power of class labels. The in-
tuition is that leaves containing pure class labels should
be less affected by P(𝑦 | 𝑋) concept change as they are
generally further away from the decision boundary. On
the contrary, impure leaves are more likely to experience
a distribution change due to a P(𝑦) drift or to be sub-
ject to misclassifications that may impact the inference

distribution. During the initialisation step, leaves that
cannot well separate class labels are removed, all leaves
with less than 20% impurity are dropped. During early
experimental runs, we found that setting a low minimum
impurity percentage yields very few leaves with enough
samples to conduct the statistical test. We also found
that setting a high value prevents us from confidently
assigning a class to a leaf. We set the maximum impurity
value at 20% as it offers a good compromise, although
this value could be changed based on the data at hand.
In an effort to rank the remaining leaves, we attribute to
each leaf a weight which corresponds to a leaf’s purity
during training.

Weights somehow capture the separation power of a
leaf. If a given observation is classified at a leaf with
high weight, we may expect that the probability of this
observation to be misclassified is low. On the other hand,
a leaf with a lower weight will be more susceptible to
assign the wrong label to an observation. Our goal by
ranking the leaves based on their predictive power is to
help our detector ignore virtual drift.

The detection step is detailed in Algorithm 1. In line
1-5 test set observations are attributed to 𝐿𝑡𝑒𝑠𝑡 based on
the leaf they are at. In line 6, we go over each leaf that
contains test data; in line 7 we initialize the drift features
DF variable that tracks the number of drifted features. In
line 8, the number of observations at a leaf is checked.
In lines 9 through 13, for all leaves containing enough
test instances, we proceed to do a Levene test of variance
equality on all dimensions between the inference and
training set contained in a leaf. We choose here the Lev-
ene test as it is adequate when the data distribution may
slightly deviate from the normal one. Of course, other
tests could be used, based on the knowledge of the under-
lying data distribution to improve the detector’s perfor-
mances (when the data distribution is strictly normal, the
Barlett’s test should be used; the Brown–Forsythe test
may also be an alternative when the data does not follow
a normal distribution). We did not make any assumptions
on the distribution and independence of variables, it will
be the focus of future work.

In lines 14 through 18, leaves are classified as drifting
if the ratio of features that fail the homoscedasticity test
exceeds the user defined 𝛾 threshold. In line 21, the
algorithm flags a drift if the weighted average of leaf’s
drift-labels exceeds the user defined 𝛽 threshold.

3.3. Hyper-parameter discussion
The first hyper-parameter is 𝛼. Setting a low value for
the 𝛼 parameter reduces the risk to make a type I error,
which, in our case, indicating drift when there is not. The
𝛼 parameter was set to 0.01.

The 𝛾 parameter is the minimum ratio of features to
reject the equal variance hypothesis. A low 𝛾 parameter



Algorithm 1 RDD - Inference
Inputs:
-ℳ : Trained Decision Tree Model
- 𝐿𝑡𝑟𝑎𝑖𝑛 : Dictionary of leaves mapping to the training
instances
- 𝐼 ∈ Rd×m : Test set with d features and m samples
- 𝑊 : Leaves weights
- 𝑑 : Number of variables in dataset
Parameters:
- 𝛼 : Hypothesis rejection risk
- 𝜈 : Minimum number of observation in a leaf
- 𝛾 : Minimum ratio ofℋ0 rejection for a leaf to drift
- 𝛽 : Minimum ratio of leaves to drift to trigger an
alarm.
Variables:
- 𝐿𝑡𝑒𝑠𝑡 : Dictionary of leafs mapping to the test in-
stances in those leafs
- 𝐷𝐿 : Drift status of leaves
- 𝐷𝐹 : Number of features that drift within a leaf

1: for 𝑖 ∈ 𝐼 do
2: ifℳ(𝑖) ∈ 𝐿𝑡𝑟𝑎𝑖𝑛 then
3: 𝐿𝑡𝑒𝑠𝑡[ℳ(𝑖)]← 𝐿𝑡𝑒𝑠𝑡[ℳ(𝑖)] + 𝑖
4: end if
5: end for
6: for 𝑖 ∈ 𝐿𝑡𝑒𝑠𝑡 do
7: 𝐷𝐹 = 0
8: if 𝐿𝑡𝑒𝑠𝑡[𝑖] ≥ 𝜈 then
9: for 𝑗 ∈ [0, 𝑑− 1] do

10: if 𝐻𝛼 : 𝜎𝐿𝑡𝑟𝑎𝑖𝑛[𝑖][𝑗] ̸= 𝜎𝐿𝑡𝑒𝑠𝑡[𝑖][𝑗] then
11: 𝐷𝐹 = 𝐷𝐹 + 1
12: end if
13: end for
14: if 𝐷𝐹

𝑑
≥ 𝛾 then

15: 𝐷𝐿[𝑖] = 1
16: else
17: 𝐷𝐿[𝑖] = 0
18: end if
19: end if
20: end for
21: Return

∑︀
𝑖∈𝐿𝑡𝑒𝑠𝑡

𝑊𝑖 *𝐷𝐿[𝑖] ≥ 𝛽

means leaves will be considered as drifting if few fea-
tures present a shift in variance (i.e. the detector will be
sensible).

The 𝛽 parameter is the minimum ratio of drifted leaves
to signal a drift has taken place.

In order to set relevant 𝛽 and 𝛾 values for our detector,
we conducted a hyper parameter search on three datasets
(airlines, poker and weather). We excluded those datasets
from the experimental study to prevent bias. In Figure 1
we plot the influence of both 𝛽 and 𝛾 on TP, TN and the
H score. The H score is detailed in Section 4.
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Figure 1: Influence of the 𝛽 and 𝛾 parameters on the True
Positive rate, True Negative rate and H score. On the 𝛽 plot,
𝛾 = 0.3 and on the 𝛾 plot, 𝛽 = 0.3. The graph confirms our
intuition that low values tend to flag virtual drift as real drift
while high values cause the detector not to detect any drift.

4. Experiment
In this experiment we assess our method’s ability to de-
tect drift while ignoring virtual drift. We extensively
tested our method against a wide panel of state of the art
detectors on a extensive set of both real and synthetic
datasets. The benchmark used in this section are the stan-
dard ones when testing drift detectors [20], [22], [23].

4.1. Experimental Setup
The usual procedure to test algorithms suited to handle
drift when true class labels are available after inference, is
the test-then-train approach. A model predicts the class
on a batch of samples, then, the true class is revealed and
the model updates itself. The global prediction accuracy
is then used to rank models.

This setup is not suited for models that do not rely on
true labels availability. In most datasets used to bench-
mark drift handling methods, the presence of drift is
only assumed or artificially introduced by sorting the
observations on an attribute. To the best of our knowl-
edge, the exact occurrence of drift is unknown for all
usual datasets. The experimental setup described bel-
low allows us to know the exact drift occurrence and to
evaluate the effect it has on a model’s accuracy.

The goal of the experiment is to assess the performance
of detectors on real drift and virtual drift. Two distinct
perturbations are used to change the dataset: the Step
Drift, where a subset of the features are shuffled and the
Noise Drift, where Gaussian𝒩 (1, 1) noise is added to a
subset of features (Gaussian noise with mean equal to 1 is
used to change the mean of the distribution, not to obfus-
cate the signal). The idea is now to be able to artificially
generate real drift and virtual drift. To create virtual drift,



we add one of the two perturbations on the 25% least im-
portant features as to their predictive power of the class
labels. In doing so, we hope to change the distribution
of several features will not affect a predictive model’s
performances. To create real drift, we modify the 25%
most informative features by adding one of the two per-
turbations. The intuition is that a change of distribution
on the most important features is likely to cause a drop
of performance in a predictive model. To find 25% most
and least important features, we train a Random Forest
Classifier over the training data. We choose this model
as it is a robust, widely used model that achieves good
level of performance on the datasets. For each dataset,
we introduce the 2 perturbations on the 2 sets of features
thus creating 4 distinct drift set.

In order to have stationary non-drifting data before
adding our generated drifts, we first randomly shuffle
the observations. Each dataset is then partitioned into
three: a train set, a validation set and a drift set. 4 distinct
copies of the drift set are independently modified with
the 4 different perturbations described above. In order
to assess if a drift is virtual or real, we fit a Random
Forest Classifier on the train set before reporting it’s
accuracy on the train set, validation set and the 4 different
drift sets. The drop of the model’s accuracy between the
different sets is used to classify drift as virtual or real. If
the difference in accuracies between the validation set
and the training set is lower than that of the validation
set and the drift set, we consider the drift induced to be
real, otherwise, it is considered a virtual drift.

Table 1 briefly describes the datasets used in the ex-
periment. The datasets dimensions range from 11 on
Hyperplane to 500 on Spam. The classification task is
binary on 10 datasets and multi-class on 3. This ensures
that RDD is tested in a variety of scenarios.

In table 2 we report the average accuracies of the Ran-
dom Forest Classifier over the training, validation and
the four different drift set. changing the most important
features generates real drift while changing the least im-
portant features creates virtual drift regardless of the per-
turbation. There are 3 exceptions, when noise is added to
the least important features, real drift is produced on the
Musk dataset. When corrupting the most important fea-
tures, the step perturbation produces virtual drift on the
Hyperplane dataset while the noise perturbation yields
virtual drift on the Waveform dataset.

In an effort to aggregate both the True Positives and
False Negatives into one metric, we will make use of the
metric 1 defined in [20]. Since we conduct our experiment
on a batch mode, we removed the impact of the detection
delay defined as the number of drift samples processed
before signaling a drift. The Drift Accuracy (̂︂𝐷𝐴) is a
binary value that assess the correctness of the detection,
it’s equal to 1 when a virtual drift is ignored or when a

Table 1
Overview of the dataset used in our experiment. All but one
RW dataset are binary classification problems. 2 RW datasets
contain more than 100 features. For the synthetic datasets,
we limit the number of generated observations at 10 000.

Dataset Dimensions Classification

Adult (48842, 66) Binary
Bank (45211, 49) Binary
Cov (110393, 51) Multi-class (7)

Digits08 (1499, 17) Binary
Digits17 (1557, 17) Binary

Elec (45312, 15) Binary
Musk (6598, 167) Binary

Phishing (11055, 47) Binary
Spam (6213, 500) Binary
Wine (6497, 13) Binary

Hyperplane (10000, 11) Binary
LED (10000, 26) Multi-class (10)

Waveform (10000, 41) Multi-class (3)

Table 2
Accuracy of a Random Forest Classifier over the training, vali-
dation and drift set. Adding noise to least informative features
(LN) leads to virtual drift on all datasets. Adding step perturba-
tion to the least informative features (LS) also leads to virtual
drift except for the musk dataset. When those perturbation
are made on the most informative features (MN and MS), it
leads to real drift across all real datasets. We highlight in bold
perturbations that lead to real drift.

Train Val. LN LS MN MS

Adult 1. .85 .85 .85 .28 .59
Bank 1. .94 .92 .94 .52 .52
Cov .99 .85 .84 .84 .49 .46
D08 1. 1. .99 .99 .77 .69
D17 1. .99 1. 1. .54 .80
Elec 1. .89 .87 .87 .57 .62

Musk 1. .98 .94 .97 .51 .56
Phis. .99 .97 .96 .96 .69 .47
Spam 1. .98 .98 .98 .58 .59
Wine 1. 1. 1. 1. .63 .44

Hyp. 1. .87 .87 .85 .71 .87
LED 1. 1. 1. 1. .58 .31
Wav. 1. .85 .85 .85 .72 .41

real drift is detected.

𝐻 = 2 *
̂︂𝐷𝐴 * 𝑇𝑁̂︂𝐷𝐴+ 𝑇𝑁

(1)

We evaluate RDD with 𝛼 = 0.01, 𝛽 = 0.3, 𝛾 = 0.3
against:

• ADWIN [12] with 𝛿 = 0.7

• Discriminative Drift Detector (D3) [15]



Table 3
Least Important Step Drift: The detection results on virtual drift when the least important features are shuffled. The lower the
detection ratio, the better the detectors are. Our model RDD comes second being slightly outperformed by TSDD. ST comes
third with relatively few wrong detections in comparison to the other detectors that wrongfully detect virtual drift.

Adult Bank Cov D08 D17 Elec Musk Phish. Spam Wine Hyp. LED Wav.

RDD 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

ADWIN 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.1 0.1
D3 0.0 0.5 0.0 0.9 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
KS 0.9 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.1

MMD 1.0 1.0 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.2 0.6
ST 0.0 0.4 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.2 0.0

TSDD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

• Kolmogorov-Smirnov (KS) distribution test detec-
tor, we used the implementation of [24].

• Maximum Mean Discrepancy (MMD) [19], we
used the implementation of [24].

• Student-Teacher (ST) [17]
• Task Sensitive Drift Detector (TSDD) [20]

All detectors were used with their default parameter val-
ues unless specified otherwise. For the sake of readability,
we only highlight the best results in Table 7.

4.2. Virtual Drift
In Table 3 we present the detections made on virtual
drift induced by a Step corruption of the least impor-
tant features. On the 7 detectors evaluated, 3 are able to
consistently ignore this type of virtual drift: TSDD, ST
and RDD. TSDD comes first with no detections on real-
world (RW) datasets and almost none on synthetic data.
RDD makes no False Positives (FP) on 7 RW datasets and
all synthetic datasets. On 3 real-word datasets the FP is
very low (0.1). The Student Teacher detector produces
no FP on 8 RW datasets and on 2 synthetic ones, how-
ever on 2 RW datasets the FP rate is high as it is around
.5. ADWIN along with the statistical test-based KS and
MMD fail to ignore virtual drift on all but 1 RW dataset.
D3 does slightly better ignoring virtual drift on 3 RW
datasets. On synthetic data, relatively few FP are made
by those 4 detectors.

Table 4 exhibits detection rate when adding noise to
the least important features. On the Musk dataset, this
type of perturbation produces real drift and therefore,
detections are considered as True Positive (TP). ADWIN
along with D3, KS and MMD which where not specifically
built to handle virtual drift, systematically wrongfully de-
tect drift across all real and synthetic datasets. RDD flags
detects virtual drift on the Digits 08 dataset 4 out of 10
runs. Virtual drift is otherwise ignored by RDD. ST and
TSDD fail to ignore the virtual drift on 2 RW datasets.

4.3. Real Drift
In Table 5 we observe real drift induced by a Step drift on
the most informative features. The Hyperplane exhibits
virtual drift with this corruption and low values should
be regarded as TN. ADWIN, D3, KS and MMD, which all
exhibit poor performance on virtual drift, now achieve
almost perfect detection on RW datasets. However, D3
and ADWIN fail to detect real drift on synthetic data.
Our method systematically detects real drift on 4 RW
datasets and achieve good levels of detection on 3 oth-
ers. Drift is detected on 50% of the runs on the phishing
dataset. The ST model achieves 4 perfect detections on
RW datasets and good level of detection on 3 others. The
TSDD detector yields poor performance detecting only 2
drifts out of all RW datasets. On the 2 synthetic datasets
with real drift, ADWIN, D3 and RDD fail to detect the
drift, while TSDD detects 1. KS, MMD and ST detectors
succeed in their detection.

Noise detection on the most important features results
are shown in Table 6. ADWIN, D3, KS and MMD achieve
perfect detection across both real and synthetic datasets.
RDD detection results exceed that of ST and TSDD with 7
perfect detections on RW datasets. TSDD and ST are tied
with both 5 accurate detections on RW datasets. Only our
detector and TSDD ignore virtual drift on the Waveform
dataset. ST and TSDD outperform RDD with one perfect
detection on the virtual datasets.

4.4. Overall performances
In Table 7, we produce the combined true positive and
true negative results by (1). This table showcases the
overall performance achieved by each detector on each
dataset. Due to the fact that on the Musk, Hyperplane and
the Waveform datasets, drift induction either generates
more virtual or real drift, the TN score will have a varying
impact.

Table 7 allows us to assess the ability of a model to
ignore real drift while detecting real drift. RDD yields the
best H scores on 7 RW datasets and tying the first place



Table 4
Least Important Noise Drift: The detection results on virtual drift when noise is added to the least important features. The
lower the detection ratio, the better the detectors are. Our model RDD comes first with almost no false detections. ST and
TSDD take second and third place with 2 false detections while the other detectors consistently detect virtual drift.

Adult Bank Cov D08 D17 Elec Musk Phish. Spam Wine Hyp. LED Wav.

RDD 0.0 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

ADWIN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
D3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MMD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ST 0.0 1.0 0.2 0.0 0.1 0.0 0.9 0.0 0.7 0.0 0.0 0.0 0.0

TSDD 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.7 1.0 0.0 0.1 0.0

Table 5
Most Important Step Drift: The detection results on real drift when the most important features are shuffled. The highest the
detection ratio, the better the models are. MMD takes first place, followed by KS, ADWIN and D3 closely followed by our
detector RDD and ST. TSDD outputs false negatives in all but 3 datasets.

Adult Bank Cov D08 D17 Elec Musk Phish. Spam Wine Hyp. LED Wav.

RDD 0.9 0.8 0.0 0.9 1.0 1.0 1.0 0.5 0.2 1.0 0.0 0.0 0.0

ADWIN 1.0 1.0 1.0 0.8 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.2 0.2
D3 1.0 1.0 0.0 0.8 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
KS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 0.9

MMD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1.0 1.0
ST 0.7 0.6 1.0 0.1 0.6 0.3 1.0 1.0 1.0 0.0 0.0 0.9 0.8

TSDD 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.7 0.2 0.0 1.0 0.0

on 2 synthetic ones. TSDD takes second place with the
highest score on 1 RW dataset but coming first or tying
first place on all synthetic datasets. ST comes third with
the highest H scores on 2 RW datasets and tying first
place on 1 synthetic dataset. On RW datasets, we see that
ADWIN, D3, KS and MMD have overall low scores due
to their misclassification of virtual drift despite having
detected all real drifts. On synthetic datasets, their score
is better having not made too many misclassification
when a step drift was induced on the least informative
features.

5. Conclusion
In this paper we introduced RDD, a drift detector that
does not need ground truth labels during the inference
phase. We extensively challenged our algorithm against
a number of state of the art drift detectors and over a
large panel of both real and synthetic datasets. We exper-
imentally proved that our method outperforms current
drift detection methods. We showed our detector’s ability
to detect real drift and to ignore virtual drift. As false
alarms are the main reason why drift detectors are not

Table 6
Most Important Noise Drift: The detection results on real drift when noise is added to the most important features. The
highest the detection ratio, the better the models are. ADWIN, D3, KS and MMD achieve perfect detection across all datasets
exhibiting real drift. Our model RDD achieves perfect detection on 7 datasets outperforming TSDD and ST.

Adult Bank Cov D08 D17 Elec Musk Phish. Spam Wine Hyp. LED Wav.

RDD 1.0 0.9 0.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.0 0.5 0.0

ADWIN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
D3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MMD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ST 0.0 1.0 1.0 0.1 0.0 0.8 0.3 1.0 1.0 0.0 0.0 1.0 0.9

TSDD 1.0 1.0 0.0 0.1 0.4 0.0 0.8 0.0 0.6 1.0 0.0 1.0 0.0



Table 7
Harmonic Mean: The results of table 2 through 5 aggregated in one metric. The higher the metric the best the detector is at
both ignoring virtual drift and detecting real drift. We see that our model RDD comes first with the highest score on 7 out of
10 RW datasets and on 2 of the 3 virtual datasets. TSDD comes second and ST comes third, the two models have lower scores
than RDD because of some real drift ignored. The ADWIN, D3, KS and MMD detectors don’t yield high score because of their
inability to ignore virtual drift.

Adult Bank Cov D08 D17 Elec Musk Phish. Spam Wine Hyp. LED Wav.

RDD 0.99 0.96 0.67 0.80 0.92 0.93 0.86 0.93 0.89 0.89 0.86 0.77 0.86

ADWIN 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.71 0.48 0.29
D3 0.60 0.36 0.50 0.09 0.00 0.50 0.00 0.00 0.00 0.00 0.71 0.50 0.29
KS 0.09 0.00 0.60 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.65 0.00 0.36

MMD 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.51 0.19
ST 0.81 0.39 0.92 0.71 0.75 0.87 0.50 1.00 0.73 0.67 0.86 0.91 0.71

TSDD 0.86 0.86 0.67 0.81 0.75 0.67 0.75 0.67 0.65 0.52 0.86 0.92 0.86

widely used in production. We demonstrated the usabil-
ity of our detector for real world applications. We tuned
the hyper-parameters on 3 datasets not used in the ex-
perimental study. We show that they are valid in a wide
range of real-world scenarios and that few effort should
be made when using the models in production. We also
demonstrated the ability of RDD to work in any dimen-
sion, having the best detection accuracy on both datasets
that had over 100 features.

Future work will consist of further modeling the parti-
tion space. Research will also deal on how a drift detector
can be initialized in recurrent concept drift scenarios,
when no stationary dataset can be used to initialize a
detector.
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