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Abstract
Exploration is an essential feature of Reinforcement Learning (RL) algorithms, as they attempt to learn the optimal policy
through trial and error. In safety-constrained environments, safety violations during exploration are a significant challenge
when the training is online. In this context, this paper proposes Phasic Safety-oriented Policy Optimization (PSPO), where the
policy learning is divided into multiple phases with safety updates. This approach utilizes an adaptive safety shield to minimize
repetitive unsafe explorations of the RL agent by action-masking, and at the same time learn an auxiliary policy which provides
safety updates to the main policy. Such periodic updates reduce the number of safety infractions during training, without
compromising rewards as in purely conservative safety shield based approaches. We have demonstrated the effectiveness of
our approach in multiple safety-critical environments. Our experimental results exhibit fewer failures during training while
demonstrating similar or faster convergence than prior methods.
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1. Introduction
In order to learn a policy that maximizes the total ex-
pected reward [1], a Reinforcement Learning (RL) agent
operating in a model free environment needs to perform
adequate exploration of its environment. In safety crit-
ical domains, the training phase poses a challenge if it
is performed in the real environment, as the uninformed
agent may lead itself to unsafe states during the explo-
ration. A growing body of work addresses the safe RL
problem from different directions, including the use of
safety-shields, reward shaping, etc. [2]

The goal of a traditional RL agent is to learn an optimal
policy (𝜋*) for a given starting state distribution (𝜇) that
maximizes the overall expected return, 𝐺𝑡.

𝜋* ← argmax
𝜋∈Π

E𝜋
𝜇[𝐺𝑡]

However, in safety constrained RL setups, the RL agent
tries to learn an optimal policy (𝜋*

𝐶) that maximizes the
overall return (𝐺𝑡) while also satisfying the safety con-
straints (𝐶).

𝜋*
𝐶 ← argmax

𝜋∈Π𝐶

E𝜋
𝜇[𝐺𝑡]

where Π𝐶 is the set of safe policies. It may so happen that
the best policies in Π𝐶 have trajectories that run close to
unsafe states. In an attempt to remain safe, an RL agent
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may avoid safe states in the proximity of unsafe states,
thereby missing out the better policies in Π𝐶 .

Consider a simple volcanic grid-world in Figure 1. The
robot tries to find the shortest path to the treasure in lo-
cation, (a,2), from its initial location, (a,0). An active
volcanic crater is present in location, (a,2), while the loca-
tion, (c,1), is blocked. Consider the following trajectories
of the agent, shown in green and black respectively:

Figure 1: Volcanic Grid map [3]

Path-1: (𝑎, 0)
𝑙𝑒𝑓𝑡−−→ (𝑏, 0)

𝑢𝑝−→ (𝑏, 1)
𝑢𝑝−→ (𝑏, 2)

𝑟𝑖𝑔ℎ𝑡−−−→
(𝑎, 2)

Path-2: (𝑎, 0)
𝑙𝑒𝑓𝑡−−→ (𝑏, 0)

𝑙𝑒𝑓𝑡−−→ (𝑐, 0)
𝑙𝑒𝑓𝑡−−→ (𝑑, 0)

𝑢𝑝−→
(𝑑, 1)

𝑢𝑝−→ (𝑑, 2)
𝑟𝑖𝑔ℎ𝑡−−−→ (𝑐, 2)

𝑟𝑖𝑔ℎ𝑡−−−→ (𝑏, 2)
𝑟𝑖𝑔ℎ𝑡−−−→

(𝑎, 2)

Path-1 is optimal and significantly shorter than Path-2.
During training, if the agent takes the right action from
location, (𝑏, 1), or the up action from location, (𝑎, 0), the
robot will fall in the volcanic cater and terminate that
episode with failure. Experiencing failures from (𝑏, 1)
may result in the policy settling on Path-2 instead of Path-
1. On the other hand, a safety shield that excludes the
right action at (𝑏, 1) will enable the agent to discover the
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optimal path, Path-1, but will not make the policy safety
aware in the absence of the shield.

In the literature, safety has been treated either as a
discrete (safe/unsafe) binary, or as a continuous cost func-
tion. Methods such as Constrained Policy Optimization
(CPO) [4] and Proximal Policy Optimization Lagrangian
(PPO-Lagrangian)[5] are effective in reduction of safety
infractions during online training, provided that safety is
specified as a continuous cost function, that is, the envi-
ronment returns a set of non-negative real valued costs for
all the safety constraints, and a safety violation happens
when the cumulative cost exceeds some defined threshold.
In [6], the authors use a safety critic to guide the RL agent
while learning to avoid unsafe instances. However, the
safety critic must be trained in the pre-training phase with
safe and unsafe states.

In [7], for model-based MDPs (Markov Decision Pro-
cess), the authors propose the use of a safety-shield de-
rived from Linear Temporal Logic (LTL) [8] specifica-
tions to restrict the RL agent (by action shaping) to ex-
plore within a safe region. The model-based assumption
makes this method infeasible for many real-world applica-
tions where the transition function is unknown. Also, this
method suffers from scalability issues due to the product
MDP construction in the shield synthesis phase. Deci-
sion trees may be used as safety shields, as in [9], but this
work assumes the existence of a next state predictor which
limits its generalizability.

In a completely unknown environment, the initial RL
policy as well as the safety shield are oblivious of safety.
As the exploration begins, the safety shield begins to take
shape with every safety infraction, but this knowledge
does not influence the policy learning directly. This pa-
per bridges this gap to accelerate the convergence to a
safe RL policy. In this paper, we propose the Phasic
Safety-oriented Policy Optimization (PSPO) framework
to reduce safety infractions during exploration. PSPO
works on a model-free MDP with continuous space, con-
tinuous/discrete actions, and binary safety assumptions.
The approach uses periodic safety updates using an auxil-
iary policy trained from safety infractions detected by the
safety shield, The main features of each period of PSPO
are as follows (Fig. 2):

1. A safety shield model is learned on-the-fly from
state-to-unsafe action mapping from past explo-
ration. The safety shield is continuously updated
to adapt to newly visited unsafe states. The explo-
ration is based on the current policy, which is not
updated at this phase.

2. The policy network is updated in two separate
phases as follows:

• Policy Training Phase: In this phase, the
policy network is trained only with the ex-
plored state-actions, and the primary ob-

jective is to optimize the policy (𝜋) with
respect to the reward function.

• Safety Optimization Phase: In this phase,
an auxiliary policy (𝜋𝑎𝑢𝑥) is trained with
the explored state-actions along with the
safety shield masked unsafe actions. This
auxiliary policy (𝜋𝑎𝑢𝑥) is then used to in-
duce safe behavior in the main policy (𝜋)
through behavioral cloning.

Since the safety shield prevents repeated failures, the
policy learning does not get pushed to conservative sub-
optimal trajectories. The periodic safety updates from
the auxiliary policy induces safe behavior right from the
inception of training.

We provide experimental results on several Gym Envi-
ronments [10]. Our results demonstrate considerable re-
ductions in safety infractions and high returns in episodic
rewards in all of these environments.

2. Preliminaries
We use Constrained MDP (CMDP) [2] to define our prob-
lem setting and we use the Proximal Policy Optimization
(PPO) [11] method in the back-end.

Constrained MDP (CMDP). As defined in [2] a CMDP
is a tuple of (𝒮,𝒜,𝒫,ℛ, 𝛾, 𝜇, 𝒞), where 𝒮 defines the
state space,𝒜 is the action space,𝒫 : 𝒮×𝒜×𝒮 → [0, 1]
is a transition function/matrix. ℛ refers to the reward func-
tion defined as 𝒮 ×𝒜 → ℛ and 𝛾 ∈ (0, 1) and 𝜇 are the
discount factor and starting state distribution respectively.
Finally, 𝒞 = {(𝑐𝑖 : 𝒮 ≤ 𝜒𝑖 → {0, 1}|𝜒𝑖 ∈ R), 𝑖 ∈ 𝑍}
is a set of safety constraints that the RL agent must fol-
low in order to be safe. 𝑐𝑖 denotes the i-th constraint
function, and 𝜒𝑖 denotes the maximal allowable limit of
non-satisfaction in terms of the expected probability of
failure.

In this paper, we consider the safety as a binary
function {0, 1}. Therefore, 𝑐𝑖 returns SAFE (0) or
UNSAFE (1). If any of the constraint functions return 1
(UNSAFE) for a given state, then the state is treated as
unsafe.

Proximal Policy Optimization (PPO). Proximal Policy
Optimization (PPO) [11] is an advantage-based policy-
gradient reinforcement learning algorithm proposed by
OpenAI. The objective of commonly used policy gradient
(PG) methods have the following form:

𝐿𝑃𝐺(𝜃) = E𝑡

[︀
𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡|𝑠𝑡)𝐴̂𝑡

]︀
Here, 𝐴̂𝑡 denotes the estimated advantage [12] and 𝜋𝜃

is the policy parameterized by 𝜃. On the other hand, the



Figure 2: The diagram represents the overall process flow for one training epoch of the proposed PSPO framework.
At first, in the Data Collection phase, the RL agent actively queries the environment based on the current policy and
stores the State, Action, and Reward in Exploration Buffer under Safety Shield guidance. The Safety Shield also gets
updated to incorporate new unsafe findings. Once the Exploration Buffer is filled, the Policy Training phase starts, and
the Safety Optimization Phase follows it. This process repeats for each training epoch.

main objective in Proximal Policy Optimization (PPO) is
defined as:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = E𝑡

[︀
𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡,

𝑐𝑙𝑖𝑝
(︀
𝑟𝑡(𝜃, 1− 𝜖, 1 + 𝜖)𝐴̂𝑡

)︀]︀
Here, 𝑟𝑡(𝜃) denotes the probability ratio between new
policy and old policy determined as 𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡) . Finally,

PPO restricted the policy update by using the clip method
to directly limit the update range to [1 - 𝜖, 1 + 𝜖], where
𝜖 is a hyper-parameter that decides the clipping interval.
With the above small change in the objective function, the
PPO methods provide better stability and reliability over
the vanilla policy gradient implementation.

3. Ideation
The task of inducing safe behavior into a RL policy re-
quires careful balancing between safety and optimality. In
an unknown model free environment an RL agent with
limited domain knowledge will reach unsafe states during
exploration, but it should ensure that it does not repeat
the same mistakes. Relying solely on penalizing the agent
for safety infractions may push the agent away from opti-
mal paths that are on the border of unsafe regions, which
then results in longer convergence times and sub-optimal
policies. Learning safety shields from failures protects
against future violations, but does not make the policy
safety aware, and the agent continues to rely on the safety
shield.

Our goal is to induce safe behavior by correcting a pol-
icy learned on the basis of reward. The pivot of the whole
approach is a safety shield which gets updated whenever
failures occur. The agent explores with the safety shield
in place, and the trajectories are recorded. During this
exploration, some of its actions may be thwarted by the
safety shield – whenever this happens, the safety shield
notes the exceptions. These exceptions are used to train
an auxiliary policy, which essentially captures the behav-
iors in which we would like the current policy to behave
differently. The auxiliary policy is therefore used periodi-
cally to update the current policy, thereby inducing safe
actions in the relevant states, without affecting the rest
of the policy. This ensures proximality with the optimal
policy chosen by the safety agnostic learning algorithm.

An important benefit of the proposed approach is
that the policy learning and the safety augmentation are
separate phasic components. Therefore the method is
adaptive to changes in either of the components. We can
plug in any learning algorithm for the former, and han-
dle additional safety corners when the agent reaches them.

Problem Statement. Given a CMDP, the objectives of
our proposed framework are as follows: 1) Learning the
conditions that led the RL agent to failures from the past
exploration history and later guide the RL agent through
action masking to avoid the repetitive unsafe explorations.
2) Updating the policy network to incorporate the safety
guidance from the previous step while minimally affecting
the currently learned policy.



4. Phasic Safety-Oriented Policy
Optimization

This section discusses the overall process flow of our pro-
posed Phasic Safety-oriented Policy Optimization (PSPO)
framework. Figure 2 depicts the main components in
this flow, and will be used as a reference in each of the
following three phases:

• Trajectory Collection: This is done through explo-
ration in the presence of the safety shield. Note
that the safety shield is also learned/refined dur-
ing the exploration. This exploration also collects
the cases where the safety shield blocks actions
proposed by the agent based on it’s existing policy.

• Policy Training Phase: In this phase any standard
algorithm may be used to train a policy based
on the trajectories collected by the agent during
exploration.

• Safety Optimization Phase: This involves the
preparation of an auxiliary policy based on the
blocked actions noted during exploration. The
training of the auxiliary policy can work concur-
rently with the policy training. At the end of each
training epoch, the auxiliary policy is used to up-
date the learned policy.

We shall elaborate each of these phases now. Algorithm 1
summarizes the implementation of the proposed approach.

It may be noted that we address the problem in the
online training setting only, with the goal of reducing
safety infractions without distracting the algorithm for
policy learning based on rewards.

4.1. Adaptive Safety Shield Framework
In RL, safety shields (coined by [7]) are used to block un-
safe actions during exploration. Traditional safety shields
deal with MDPs with discrete action space and model-
based assumptions, which does not favor our model-free
environment. Instead, we propose an Adaptive Safety
Shield framework to learn a Safety Shield (SS) with the
explored state-to-actions data collected on-the-fly during
exploration. The explored state-action pairs are labeled
based on the constraint violations in the next state during
exploration.

(𝑠𝑡, 𝑎𝑡) =

{︃
UNSAFE if ∃ i 𝑐𝑖 : 𝑠𝑡+1 → 1

SAFE otherwise

It is possible to bootstrap the initial safety shield based on
prior knowledge on domain safety. It is also possible to
start in the absence of prior knowledge.

In our implementation, the safety shield is a ML
model trained to classify state-action pairs as safe/unsafe

Algorithm 1 Phasic Safe Policy Optimization (PSPO)

1: for epoch = 1, 2, ... do
2: Init empty exploration buffer EB
3: Init empty unsafe buffer UB
4: %Data Collection Phase
5: for t = 1, 2, ..., EB.size do
6: 𝑎𝑠𝑎𝑓𝑒

𝑡 = 𝑎𝑡 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝜋, 𝑠𝑡)
7: for iteration = 1,...,𝑁𝑚𝑎𝑥_𝑠𝑎𝑚𝑝 do
8: if 𝑆𝑆.𝑝𝑟𝑒𝑑𝑖𝑐𝑡([𝑠𝑡, 𝑎𝑡]) ≤ 𝜖 then
9: 𝑎𝑠𝑎𝑓𝑒

𝑡 ← 𝑎𝑡

10: break
11: else
12: UB.append(𝑠𝑡, 𝑎𝑡, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 )
13: 𝑎𝑡 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝜋, 𝑠𝑡)
14: end if
15: end for
16: 𝑠𝑡+1, 𝑟𝑡 ← 𝑒𝑛𝑣.𝑠𝑡𝑒𝑝(𝑎𝑠𝑎𝑓𝑒

𝑡 )
17: if 𝑠𝑡+1 ̸|= 𝜙 then
18: UB.append(𝑠𝑡, 𝑎𝑡, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 )
19: EB.append(𝑠𝑡, 𝑎𝑡, 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 )
20: 𝑆𝑆.𝑚𝑒𝑚𝑜𝑟𝑦.𝑎𝑝𝑝𝑒𝑛𝑑([𝑠𝑡, 𝑎𝑡], 𝑈𝑁𝑆𝐴𝐹𝐸)
21: env.reset(); %Start a new episode
22: else
23: EB.append(𝑠𝑡, 𝑎𝑡, 𝑟𝑡)
24: 𝑆𝑆.𝑚𝑒𝑚𝑜𝑟𝑦.𝑎𝑝𝑝𝑒𝑛𝑑([𝑠𝑡, 𝑎𝑡], 𝑆𝐴𝐹𝐸)
25: end if
26: %Training Safety Shield
27: Update SS after every 𝑁𝑠𝑠_𝑢𝑝𝑑𝑎𝑡𝑒-episodes
28: end for
29: %Actor-Critic Training Phase
30: Perform rollouts on EB {
31: Optimize 𝜃𝜋 wrt Policy Loss (𝐿𝑐𝑙𝑖𝑝 + 𝛽𝑠𝑆[𝜋])
32: Optimize 𝜃𝑉 wrt Value Loss (𝐿𝑣𝑎𝑙𝑢𝑒)
33: }
34: %Auxiliary Policy Training
35: Perform rollouts on (EB+UB) {
36: Optimize 𝜃𝜋𝑎𝑢𝑥 wrt Policy Loss

(𝐿𝑐𝑙𝑖𝑝 + 𝛽𝑠𝑆[𝜋])
37: }
38: %AuxUpdate Phase
39: Perform rollouts on (EB+UB) {
40: Optimize 𝜃𝜋 wrt Policy Distance (𝜋, 𝜋𝑎𝑢𝑥))
41: }
42: end for

(Algo. 1: Line 26-27). With new explorations, the model
is updated with new state-action pairs.

The variable 𝑁𝑠𝑠_𝑢𝑝𝑑𝑎𝑡𝑒 (Algo. 1: Line 27) is a hy-
perparameter that denotes the number of episodes after
which the shield update is performed, that is, it controls
the update frequency.

This safety shield is used to predict the probability
(Algo. 1: Line 8) of reaching an unsafe state for a state-



Table 1
Gym environments with the respective safety criteria and the hyper-parameters

Environment Name Safety Criteria 𝜖 NSS_update Penalty

Cartpole-v0 (-2.4 <Position <2.4) ∧

(-2.0 <Momentum <2.0) ∧ (-0.2 <Angle <0.2)

1.00 100 -10

InvertedPendulam-v0 0.90 200 -10

LunarLander-v2 (-0.2 <PosX <0.2) ∧

((PosY <0.1) → (Angle >-1 ∨ Angle <1))

0.85 50 -100

LunarLanderContinuous-v2 1.00 50 -200

action pair proposed by the RL agent. If the predicted
unsafe probability is less than the defined safety bound,
𝜖, then the action is allowed. Otherwise, the proposed
action is stored in an unsafe buffer (UB) (Algo. 1: Line
12) and the RL agent is asked to sample another action
(Algo. 1: Line 13). This loop (Algo. 1: Line 7-15) contin-
ues until the safety shield finds the sampled action to be
safe, or if the sample count exceeds a defined threshold,
𝑁𝑚𝑎𝑥_𝑠𝑎𝑚𝑝. In the latter case, the exploration continues
with the first action proposed by the RL agent.

4.2. Policy Training Phase
We use the standard Proximal Policy Optimization (PPO)
algorithm for learning the policy for the RL agent (Algo. 1:
Line 29-33). This phase in shown with blue background in
Fig. 2. We consider only binary safety constraints. Hence,
whenever the RL agent hits an unsafe state that violates
the safety constraints, we end the episode. In general, in a
reward shaping environment, an RL agent can repeatedly
visit a previously explored unsafe state. In our case, this
is prevented by the Adaptive Safety Shield.

4.3. Safety Optimization Phase
In this phase, an alternative policy network, called aux-
iliary policy network, is trained with traces from both
the exploration buffer (EB) and the unsafe buffer (UB)
(Algo. 1: Line 34-37). Then the PPO actor network is
updated through behavioral cloning with the auxiliary
policy network for the states in the unsafe buffer. Such
updates may alter the learned policy distribution for the
other states in the PPO actor network. Therefore to reduce
such interference, we also consider the policy distribu-
tions for the states present in the exploration buffer (Algo.
1: Line 38-41). Hence the overall objective of AuxUpdate
is:

𝐿𝜋(𝜃) = 𝐾𝐿_𝑑𝑖𝑣
(︂
𝜋(.|[𝐸𝐵 + 𝑈𝐵]),[︂
𝜋(.|[𝐸𝐵∖𝑈𝐵]) + 𝜋𝑎𝑢𝑥(.|𝑈𝐵)

]︂)︂

Here, the + and / signs are used to indicate list con-
catenation and subtraction operation, respectively. We use
KL-divergence as the distance metric between the distribu-
tions. 𝜋(.|[𝐸𝐵+𝑈𝐵]) returns the action distributions of
the states presented in the exploration buffer (EB) and the
unsafe buffer (UB), 𝜋(.|[𝐸𝐵∖𝑈𝐵]) returns the action dis-
tributions of the states presented in the exploration buffer
(EB) but not the unsafe buffer (UB). Finally, 𝜋𝑎𝑢𝑥(.|𝑈𝐵)
returns the action distributions of the states present in the
unsafe buffer (UB).

5. Experimental Setup
We provide empirical support to the following claims
through experiments conducted on different gym environ-
ments with continuous and discrete action spaces:

• The PSPO approach reduces the number of fail-
ures, and

• The PSPO approach marginally affects the pri-
mary learning objective.

All the experiments were run on a machine with Ubuntu
20.04, Intel i7 processor, and GeForce RTX 2080-Ti
Graphics unit.

We tested our framework against four different gym
environments, two of which are with discrete action
space and the other two with continuous action space. By
default, the gym environments are not safety constrained.
We have defined the custom binary safety constraints for
all the environments following [13]. The name of the
environment with associated safe constraints are given
in Table 1. We consider the safety constraints such that
few are perfectly aligned with the original goal of the
underlying Gym environment, and few aren’t exactly
aligned with the original goal.

Cart Pole Environment: The cart pole environment is
taken from Gym Classic control environments and is an
environment with discrete action space [0, 1]. The aim
is to keep the pole over the cart without falling by taking
actions 0 and 1. We have considered the following set of
safety constraints:



1. The cart Position should remain within -2.4 or
+2.4

2. The cart Momentum should not be lesser than
-2.0 or greater than 2.0

3. The pole Angle should not be greater than 0.2

Among these, the third safety constraint is directly aligned
with the original goal of the cart pole environment,
whereas the remaining two are not exactly aligned with
the original goal.

Inverted Pendulum Environment: This environment is
taken from the Gym MuJoCo environments. This envi-
ronment is similar to the Cart Pole environment, except
the action space of this environment is continuous. Here
the pole on top of the cart is controlled by applying a
force between (-1, +1) to the cart to prevent the pole from
falling over. The safety constraints are identical to those
for Cart Pole environment.

Lunar Lander Environment: The Lunar Lander envi-
ronment is taken from the Box2D environments. We have
applied our framework to both the continuous and discrete
versions of the environment. This environment aims to
land the lunar lander smoothly on the helipad marked with
two flags by controlling the thrust of the rocket engines on
the lander’s left, right, and bottom. For this environment
we consider the following set of safety constraints.

1. The lander should land only on the helipad, or the
X-position (PosX) of the lander must be within
[-0.2,+0.2].

2. The lander tilt Angle should not be beyond -1 or
+1 if the lander Y-position (PosY) is less than 0.1
and the lander is just over the helipad.

Baselines. We have used the standard PPO with neg-
ative reward for constrained violation as Baseline 1
(BASE1), SAC (Soft Actor-Critic) [14] with negative
reward for constrained violation as Baseline 2 (BASE2),
and VPG (Vanilla Policy Gradient) [15] with negative re-
ward for constrained violation as Baseline 3 (BASE3). We
have implemented all baselines on OpenAI’s Spinningup
library[16]. Negative rewards on constraint violations
are provided to all the baselines, and the proposed PSPO
framework. The SAC algorithm does not support discrete
action space; hence, BASE2 is not considered in Cart Pole
and Lunar Lander (Discrete) environments.

There are other approaches for safe exploration in
RL that are available. For example, Constrained Policy
Optimization (CPO) and PPO-Lagrangian. However,
both these methods assume safety as a continuous cost
function that is returned by the environment, like the
reward generated each time the agent applies an action. In
our setup, we have considered safety as a binary function

of a state.

Implementation Details. For the environments, we con-
sidered using Random Forest [17] based on the ensemble
method as Adaptive Safety Shield(SS). The advantages of
using Random Forest for safety predictors are the follow-
ing:

• Explainable. The individual decision trees of Ran-
dom forest are explainable and can easily be inter-
preted and verified by human experts. They can
also be factored into a rule-based system.

• Efficient. In a robust system, failures are rare,
and thereby the number of updates needed for the
safety shield declines rapidly.

• Augmentable. Individual Decision trees can easily
be augmented with known safety constraints [18],
which enables us to include safety constraints pro-
vided by domain experts.

One problem of using a random forest or decision tree
as the Safety Shield, mainly in the case of discrete envi-
ronments, is not considering the action in each decision
branch. If an action from a state is found unsafe, then the
safety shield could predict all the remaining actions as
unsafe, whereas there could be an unexplored action that
is safe. To avoid such issues, we use a simple re-labeling
trick, where we use label (i+1) if the i-th action (starting
index from 0) is unsafe, and we use label 0 if the action
is safe. During prediction, if the (i+1)-th label prediction
probability is greater than the provided safety threshold
(𝜖), then the i-th action is considered unsafe; otherwise,
the action is considered safe.

We use the standard PyTorch implementation of the
PPO algorithm provided in OpenAI’s Spinningup library
as the Policy Learner. The Auxiliary Policy Network is
constructed by replicating the PPO’s Actor network. We
have also done experiments of our PSPO method with
different safety bound (𝜖) values to show the impact of the
safety bound hyperparameter in the PSPO framework.

6. Results and Discussion
In this section we describe the results we have obtained
in comparison to the baselines described in the previous
section. Figure 4 shows Epoch (X-axis) vs Total Number
of Safety Violations (Y-axis) for all four Gym environ-
ments. All the graphs show that the PSPO framework
has significantly fewer safety violations during training
than the BASE1 method. These figures also show that the
average number of safety violations per epoch eventually
tends to zero, as the PSPO graphs are slowly entering
the lag phase. In these figures, we did not consider the
other two baselines due to their large number of safety
violations. Table 2 shows the number of safety violations



Table 2
Contains the number of safety infractions vs. the total number of episodes for different baselines and PSPO framework
for fixed number of training epochs. Episode count varies as number of steps is fixed for all epochs.

Algorithms
Failed / (Total) Episodes

BASE1 (PPO) BASE2 (SAC) BASE3 (VPG) PSPO

CartPole-v1
(100 Epochs)

813 / (1510) - 5011 / (5054) 715 / (1408)

InvertedPendulum-v2
(100 Epochs)

1807 / (2120) 2056 / (2397) 7038 / (7038) 1505 / (1823)

LunarLander-v2
(200 Epochs)

552 / (1108) - 2092 / (3682) 421 / (1144)

LunarLanderContinuous-v2
(200 Epochs)

591 / (1417) 307 / (891) 1107 / (2282) 263 / (1099)

(a) Epochs vs. Cumulative Safety Violation

(b) Epochs vs. Average Episodic Reward

Figure 3: (a)-(b) shows the Epoch vs. Cumulative Safety
Violations and Average Episodic Return for Inverted Pen-
dulum Environment.

or unsafe episodes (both are the same as we terminate an
episode for safety violation) for PSPO along with all three
baseline methods. For all four environments, it is clear
that PSPO has the least number of safety violations. This
supports our first claim, that the PSPO framework helps
to reduce the number of failures.

Figure 5 shows the Epoch (X-axis) vs. Average Return
of the PSPO framework against the baselines for all four
Gym environments. In Fig 5a and Fig 5b, the average
return of PSPO is similar to BASE1 (PPO), and is better
than the other baselines. In Fig 5d average return of PSPO

is better than other baselines. This evidence supports our
second claim.

Figure 3 shows the impact of the safety bound, 𝜖, in
the PSPO framework in terms of total safety violations
and average episodic return. With higher values of this
hyperparameter, 𝜖, the safety shield intervenes/corrects
fewer unsafe actions. In contrast, with the low values for
𝜖, the safety shield unnecessarily corrects a higher number
of safe actions. Hence, the safety bound, 𝜖, controls the
tradeoff between False Safe versus False Unsafe. In this
case, the safety bound, 𝜖 = 0.9 provided the best results,
both for episodic returns and fewer safety violations.

7. Related Work
Several approaches for safe exploration in reinforcement
learning problems have been studied theoretically and
across application domains. The possibilities of safe ex-
ploration using safe baselines/backup policies whenever
a safety violation is detected have been demonstrated
in [19, 20]. On the other hand, in [21], the RL agent
seeks expert advice for unknown/unsafe situations. Re-
ward shaping techniques for safe RL has been studied
in [22, 23, 24], where safety constraints are included in
the reward function.

In [25, 26, 27, 28, 29, 7], prior domain knowledge
is used to ensure safety during exploration. [25, 26]
use a defined safe set of environment states and a safe
backup policy for safe exploration in model-based MDP.
In [27], the authors use a set of user demonstrations and
an oracle to determine whether a state is safe or not.
[28, 29, 7] use action shaping techniques to restrict unsafe
actions. [28, 29] use model checking to verify an action
for safety consequences against a specification before ap-
plying, whereas [7] constructs a reactive system based
safety shield from the product automaton of the safety
constraints, modeled as a temporal logic constraint [30]
and uses the shield to block unsafe actions of the RL



(a) Cart Pole Environment (b) Inverted Pendulum (c) Lunar Lander (Discrete) (d) Lunar Lander (Continuous)

Figure 4: (a)-(d) shows the Epoch vs. Cumulative Safety Violation for different Gym Environments. SAC algorithm
does not support discrete action space; hence, BASE2 is not considered in Cart Pole and Lunar Lander (Discrete)
environments. While BASE3 has very large safety infractions counts, hence not shown in these figures.

(a) Cart Pole Environment (b) Inverted Pendulum (c) Lunar Lander (Discrete) (d) Lunar Lander (Continuous)

Figure 5: (a)-(d) shows the Epoch vs. Average Episodic Reward for different Gym Environments.

agent.
[4, 5, 31] consider safety as a continuous cost function,

and the cumulative cost should be within a specified limit
to be safe. In [6, 32], a safety-critic-based approach is
proposed, where if the safety critic predicts an action as
unsafe, the agent samples a different action. In [32], the
safety critic is learned along with policy, whereas in [6],
the safety critic is learned separately.

Another line of work can be found in [13], where au-
thors propose a method to incorporate the safety in a
learned policy by finding the counterexamples or the fail-
ure states and then modifying the policy for the corre-
sponding states minimally.

8. Conclusion
We have presented a method for safe exploration in RL.
We use an Adaptive Safety Shield to learn the state-to-
unsafe action mapping from the past exploration and pro-
vide guidance to the RL agent to avoid repeating its mis-
takes. We have provided an auxiliary policy based update
method to incorporate the safety guidance provided by
the safety shield into the RL agent while minimally affect-
ing the policy network for other state-actions. We have
also presented various experiments which empirically val-
idate that our method incurs fewer safety incidents while
achieving higher or similar performance.
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