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Abstract
Vulnerability to adversarial attacks is a well-known weakness of Deep Neural Networks. While most of the studies focus on
natural images with standardized benchmarks like ImageNet and CIFAR, little research has considered real-world applications,
in particular in the medical domain.

Our research shows that, contrary to previous claims, the robustness of chest x-ray classification is much harder to
evaluate and leads to very different assessments based on the dataset, the architecture, and robustness metric. We argue
that previous studies did not take into account the peculiarity of medical diagnosis, like the co-occurrence of diseases, the
disagreement of labellers (domain experts), the threat model of the attacks, and the risk implications for each successful
attack.

In this paper, we discuss the methodological foundations, review the pitfalls and best practices, and suggest new method-
ological considerations for evaluating the robustness of chest xray classification models. Our evaluation of three datasets,
seven models, and 18 diseases is the largest evaluation of the robustness of chest X-ray classification models.
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1. Introduction
Chest radiography (CXR) is an affordable, easy-to-use
medical imaging and diagnostic technique. Chest radio-
graphy is the most requested radiological examination.
It is commonly used to diagnose a broad range of lung
diseases and abnormalities, such as Atelectasis, Pneu-
mothorax, and even early lung cancer. The chest film
reading consists of identifying areas of increased density
or areas of decreased density. Areas are identified with
different shades of gray on the grayscale images. Prac-
titioners commonly use one or two views in CXR. The
postero-anterior (PA) view is the front view. Examining
all areas where the lung borders the diaphragm, the heart,
and other mediastinal structures is essential. The lateral
view, called the anteroposterior view (AP), can be used
in addition to refining the diagnosis.

Although disease patterns may seem well defined, cor-
rectly interpreting the CRX films is always a significant
challenge, even for radiologists. Families overlap and
sometimes are concurrent. In addition, imaging process-
ing provides various grades of contrast levels and is not
exempt from noise. Therefore, the examination of one
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CXR film can be misleading and may even cause diagnos-
tic discrepancies between practitioners. Medical errors,
especially diagnostic errors, account for an additional
medical spending of $17 to $29 billion [1]. Garland [2]
reported a 32% retrospective error rate in the interpreta-
tion of abnormal CXR, while the daily error rate averaged
only 3% to 4% when negative studies were included. More
recent studies have shown that misdiagnosis errors in
chest radiographs remain high even with advances in
practice and imaging systems [3].

The challenge of providing a reliable and efficient di-
agnosis has motivated increasing research for automated
diagnosis systems. Although the first attempt for an
automated CXR diagnosis system started in the 1960s
[4], recent techniques using Deep Learning have shown
promising performance [5, 6]. Riverain and Delft imag-
ing systems have already developed many commercial
products [7], and some have even obtained FDA clear-
ance for large-scale commercialization, such as Zebra
Medical Vision.

While these systems provide remarkable figures in
their respective studies, recent research has shown gen-
eralization issues [6, 8, 9]. Some have proposed a few
hypotheses to explain the discrepancies. Errors in label-
ing [10], practitioner biases and disagreements of the
practitioner [3], and more generally, overfitting of mod-
els and lack of generalization between multiple datasets
[11].

A new facet of deep learning generalization has
emerged in recent years. The so-called "adversarial exam-
ples" have exposed the inherent vulnerability of machine
learning models in general and deep learning image clas-
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sification models in particular to small perturbations. In
particular, inputs that have been engineered to cause mis-
classification. The study of the adversarial vulnerability
of image classification models has only recently tackled
medical systems. However, the few studies of chest x-
ray classification robustness [12, 13, 14, 15] have focused
on binary classification (normal VS disease) and drawn
conclusions from one data set and one or two models.

However, we argue that natural image classification
setting and the medical classification setting are very
different and require the evaluation of different threat
models, robustness metrics, and hyperparameters.

To uncover the inconsistencies between the two set-
tings, we provide the first large-scale study of the vul-
nerability of chest radiograph classification to the best
of our knowledge. Furthermore, we introduce two novel
methodological considerations to evaluate robustness
in medical domains: cross-domain generalization and
domain-specific knowledge. We argue that a rigorous
evaluation of the robustness of medical classifiers in gen-
eral and chest x-ray classifiers in particular needs to con-
sider these facets.

In summary, our contributions are as follows.

• We survey the literature on adversarial robustness
in chest x-ray classification and identify the major
pitfalls and limitations.

• We propose a set of principles and recommenda-
tions for how such pitfalls could be mitigated.

• We demonstrate the impact and criticality of the
principles through an empirical study of chest x-
ray classification robustness using three datasets,
seven models, and 18 diseases.

2. Related Work
Adversarial attacks An adversarial attack is the pro-
cess of intentionally introducing perturbations to the
input of a machine learning model to cause incorrect
predictions. A family of adversarial attacks is poisoning
attacks [16] where the inputs targeted are the training set
and occur during the learning step, while evasion attacks
[17] focus on the inference step.

One of the first attacks is the Fast Gradient Sign
Method (FGSM) [18]. It adds a small perturbation 𝜂 to
the input of a neural network, which is defined as:

𝜂 = 𝜖 sign(∇𝑥L𝑖(𝜃, 𝑥, 𝑦𝑖)), (1)

where 𝜃 are the parameters of the network, 𝑥 is the input
data, 𝑦𝑖 is its associated target, L(𝜃, 𝑥, 𝑦𝑖) is the loss
function used, and 𝜖 the strength of the attack. Following
Goodfellow, other attacks were proposed, first by adding
iterations [19], projections and random restart [20], mo-
mentum [21], adaptive steps [22] and constraints [23].

Recent work investigated attacks for finance [24], pri-
vacy [25], and navigation [26], and demonstrated that
real-world attacks require special considerations.

Adversarial attacks for CXR disease classification.
Taghanaki et al. [27] were among the first to evaluate
the robustness of CXR image classification against ad-
versarial examples. They evaluated white box and black
box attacks on two binary neural networks (ResnetV2
and NasNet Large) using the ChestX-ray14 dataset [28].
They showed that both models are vulnerable to gradient-
based attacks (100% success rate of attacks). While their
evaluation pioneered the research on adversarial attacks
in the medical setting, their evaluation focused on binary
classification in a restricted setting.

Finlayson et al. [29] focused on binary image classi-
fication for medical diagnosis. Their study covered the
diagnosis of CXR, fundoscopy, and dermoscopy, and they
also showed that PGD attacks achieved a 100% success
rate on the ChestX-ray14 pneumothorax label using one
model.

Ma et al. [30] had another take on the robustness of
CXR image classification models. They compared the
robustness of binary classification, 3-label, and 4-label
classification. They showed that while PGD had a success
rate of over 99% on all of them, the vulnerability seems to
decrease with the increased number of labels. The three
classifiers were trained on the ChestX-ray14 dataset, each
time with a subset of labels. Our study covers the com-
plete scenario of 18-label classifiers trained on different
datasets (and distributions) and architectures. A previ-
ous study [11] showed essential performance differences
between the different labels that can explain the slight
variation of robustness across the set of labels. Some
labels are already challenging to learn and, similarly, to
attack. Our evaluation, on the contrary, shows that the
variations between different datasets and architectures
are significant and that some models are actually resilient
against adversarial attacks.

3. Pitfalls and principles of chest
x-ray robustness evaluations

3.1. Medical images differ from natural
images

Before we evaluate common practices, it is insightful
to understand why using the experimental protocol of
adversarial attacks on natural image datasets is rarely
relevant in the context of chest X-ray classification.

The first consideration is the nature of the tasks and
labels. In the ImageNet[31] and Cifar[32] classifications,
images are designed to highlight one class (the ground



truth class) more than the others. Meanwhile, chest ra-
diographs are real images in which the same image can
contain multiple diseases of equal importance. Chest
X-ray classification can be seen as a multilabel classifi-
cation problem, and using metrics and losses specific to
this field of machine learning can provide a more faithful
representation of the robustness of the models.

Another consideration is that the labels of the im-
ages and their probabilities are subjective to the radi-
ologists who provided the ground truths. Cohen et al. [3]
have shown that radiologists suffer from availability bias:
They judge the probability of an event by the ease with
which examples come to mind. Additionally, radiologists
also exhibit confirmation bias. They actively search for
data to confirm a specific hypothesis rather than looking
for data that facilitate efficient testing of a competing hy-
pothesis [3]. Furthermore, Cohen et al.[11] have shown
that there is a large discrepancy in the agreement on
the most probable diseases in different data sets (and
thus in the labelers). Testing the robustness of the model
when the actual ground truth is uncertain is an arduous
task. A chest radiograph image that can be considered
adversarial by a physician can be considered legitimate
by another. We can mitigate the risk of consistency by
considering the top-k predicted labels and ensuring that
they match the consensus among the practitioners. This
consideration thus requires new definitions of adversarial
examples in the medical setting.

Additionally, the risk associated with an error has a
different impact depending on the nature of the error.
There are two risks in medical diagnosis: misses, that is,
when the classifier does not detect the correct disease
among the most probable classes and misinterpretations
when the most probable disease leads to an incorrect di-
agnosis. The latter can have a different impact depending
on how similar the predicted labels are to the original
ones. Similarity can take into account the treatment pro-
cess: Confusing two diseases that, in the end, require
similar treatment is less detrimental than confusing two
diseases with different treatments. Similarity can also be
considered following disease taxonomy: Diseases that
belong to the same families/branches can be considered
more similar. The four-pattern approach commonly used
[33, 34] considers four families: Consolidation, Intersti-
tial, Nodules or masses, and Atelectasis. Within each
family, there is a wide range of diseases. Confusing a
disease from one family with one from another can be
detrimental. Some diseases often occur together [5] and
thus can be used to diagnose each other. Misclassifica-
tions that confuse them is less harmful than confusing
two improbable diseases.

3.2. Literature review
While previous studies [35, 36] referenced the major pub-
lications about adversarial robustness in the medical set-
ting, their work was an index of the literature and not
a critical analysis of the protocol or the relevance and
impact of the experimental designs.

Collection protocol. Starting from the two existing
surveys, we collected the publications that have been
peer-reviewed related to CXR classification from 2018.
There are, in total, 16 publications that match this scope.
For each publication, we record seven criteria that, when
not sufficiently evaluated, can lead to overestimated or
even wrong claims. We summarize this literature in Table
1. We detail each of the criteria below.

Datasets. The selection of datasets entails two hazards
that can affect the conclusions. First, the evaluation of
binary classification (9 publications among the 16) leads
to an overestimation of the robustness of the models.
Indeed, attacking a multilabel classifier is much easier
[49] as the decision boundaries are more blended than
single-label classifications. Another risk arises when
drawing conclusions about CXR classification from a
single dataset only. All the publications we identified
restrict their evaluation to the one CXR dataset. We
demonstrate empirically that the conclusions about the
robustness of a model differ significantly from one CXR
dataset to another.

Threat models. The evaluation of the whitebox set-
ting is relevant to understand the internals of the DNN
model or to evaluate the worst-case scenario. However,
in practice, access to the model and dataset of a specific
hospital / physician is unrealistic: only five articles eval-
uated a more realistic setting, with at least the graybox
attack scenario. Our results demonstrate that the conclu-
sions can change when assessing realistic cases where the
attacker only has access to the target dataset (graybox)
or even no knowledge (blackbox).

Architectures. Nine papers among 16 restricted the
robustness evaluation to a single CXR architecture. We
demonstrate that the robustness of architectures can vary
significantly with the threat model and the dataset under
evaluation.

Robust models. This criterion is critical, as demon-
strated by Carlini et al. in multiple publications [50, 51,
52]. Since 2018, solid robustification protocols have been
designed using adversarial training, and multiple reposi-
tories of robust models are available (Robustbench, for
example, [53]). Unfortunately, only two publications



Reference Datasets Threat models Architectures Robust models Attacks Metrics
Finlayson et al. [29] Binary NIH Whitebox, Gray-

box
Resnet50 No PGD, Patch Accuracy, AUC

Ma et al. [30] 4 class NIH Whitebox Resnet50 No FGSM, CW, BIM,
PGD

Accuracy, AUC

Yao et al. [6] Binary Pneumo-
nia

Whitebox Resnet50, VGG-16 No FGSM, B/MIM,
PGD

Accuracy

Tian et al. [37] Binary Pneumo-
nia

Whitebox, Gray-
box

Resnet, DenseNet,
MobileNet

No FGSM, CW, PGD,
B/MIM, Custom

Success Rate

Hirano et al. [38] 3 class COVID Whitebox CovidNet Adversarial Re-
training

FGSM, PGD Accuracy

Pal et al. [39] Binary COVID Whitebox VGG16, Incep-
tionV3

No FGSM Accuracy

Gongye et al. [40] 3 class COVID Whitebox Resnet18 No FGSM, PGD2 Accuracy
Rahman et al. [41] Binary COVID Whitebox, Black-

box API
Resnet50 No FGSM, PGD,

DeepFool, +4
Loss

Taghanaki et al. [13] Binary NIH Whitebox, Gray-
box

Inception, NasNet-
Large

No FGSM, PGD,
DeepFool, + 6

Accuracy, AUC

Anand et al. [42] Binary Pneumo-
nia

Whitebox VGG11 Adversarial Train-
ing

FGSM, PGD AUC

Kovalev et al. [43] Binary Custom Whitebox InceptionV3 No PGD Success rate
Hirano et al. [44] Binary Pneumo-

nia
Whitebox, Gray-
box

ResNet, VGG,
DenseNet

Adversarial Re-
training

FGSM, DeepFool Success rate, con-
fusion matrix

Xue et al. [45] 3 class RSNA Whitebox ResNet18, VGG16 Custom denoiser FGSM, BIM, CW Accuracy
Tripathi et al [46] 3 class COVID Whitebox ResNet18, VGG16 FUIT Adversarial

train
FGSM, BIM, CW,
PGD

Accuracy

Xu et al [47] NIH Whitebox DenseNet-121 Adv training PGD, GAP Success Rate,
AUC, Accuracy

Li et al [48] NIH Whitebox DenseNet-121 Detection FGSM, BIM, PGD N/A

Table 1
Peer-reviewed publications about adversarial robustness in CXR classification from 2018 to 2021

([42, 47] considered strong defenses, and five others used
broken or weak defenses.

Strong attacks. Fourteen publications investigated po-
tentially strong attacks (CW, PGD), and their evaluation
used very few iterations and a limited perturbation bud-
get. Although current good practices are to use robust
and adaptive attacks such as AutoAttack [22], we show
empirically that increasing PGD budgets already leads
to surprising behaviors when comparing datasets and
architectures.

Evaluation attacks. We demonstrate that the success
rate and accuracy of adversarial examples are misleading
because of the nature of CXR classification. For example,
the co-occurrence of pathologies and the risk associated
with each type of error lead to alternative conclusions in
the evaluation. We propose a new RISK metric to take
into account the specificity of CXR classification.

4. Empirical evaluation
In the traditional adversarial attack literature, we evalu-
ate the robustness using the success rate of the attacks,
that is, 1-accuracy of the predictions over adversarial
examples (generally called robust accuracy. The suc-
cess rate and robust accuracy have been used directly
in the previous literature on adversarial CXR examples
[54, 15, 14, 13]. We argue that the specificities of medical

classification in general and CXR image classification
in particular make these metrics irrelevant. First, some
datasets are provided as multilabel datasets (NIH, for in-
stance), and multiple diseases can occur together. Other
datasets are built around the uncertainty of diagnosis
when the domain experts do not provide the same diag-
nosis for a given input. CheXpert dataset, for instance,
has been designed with three labels’ values: positive (1),
uncertain (-1) and negative (0). Finally, [11] have shown
that 2 models trained for the same task on a different
dataset have different degrees of agreement on the most
probable labels and diagnosis. To take into account the
uncertainty and co-occurrences of labels, we propose to
use k-robust accuracy.

Definition 1. Let M a multi-label model with labels
L = {𝑙1, ..., 𝑙𝑀}. M : 𝒳 ⊆ R𝑁 −→ 𝒴 ⊆ R𝑀 . We
have 𝑁 the size of the input features and 𝑀 the number of
labels. For each input example 𝑥, we denote by 𝑦 the corre-
sponding ground truth and we have 𝑦 = (𝑦1, ..., 𝑦𝑖, 𝑦𝑀 )
where 𝑦𝑖 ∈ {0, 1} is the corresponding ground truth for
label 𝑖.

For each 𝑥 ∈ 𝒳 , let 𝑦 the predicted labels 𝑦 = M (𝑥).
Then, we denote by 𝑎𝑐𝑐𝑘,M (𝑥, 𝑦) the k-accuracy of

the input 𝑥 for its top 𝑘 labels, and define it as the cardinal
of the intersection between 𝑥’s top-k ground truth labels
and its top-k predicted labels:

𝑎𝑐𝑐𝑘,M (𝑥, 𝑦) =
|(𝑎𝑟𝑔𝑠𝑜𝑟𝑡𝑘(𝑦)|) ∩ (𝑎𝑟𝑔𝑠𝑜𝑟𝑡𝑘(𝑦)|)

𝑘



where 𝑎𝑟𝑔𝑠𝑜𝑟𝑡𝑘 of a set are the indices of the top k
elements of the set.

For an input 𝑥, 𝑎𝑐𝑐𝑘,M evaluates how much the
most probable predicted labels match the most proba-
ble ground truth labels. This formalism is suitable for
both ordinal labels (to take into account uncertainty) and
multilabels (to take into account label cooccurrence).

Definition 2. We define the k-accuracy of the model
M as the expectation over the input set𝒳 of the k-accuracy
of the input 𝑥 ∈ 𝒳 : 𝑎𝑐𝑐𝑘,M = E𝑥 [𝑎𝑐𝑐𝑘,M (𝑥, 𝑦)]

For 𝑘 = 1, the k-accuracy matches the standard accu-
racy.

4.1. Experimental setup
Datasets. Following the protocol set up by [11] we eval-
uated the robustness of CXR models using four datasets.

• NIH Chest X-ray14 [28], denoted as NIH in the
following. A dataset of 112k images was auto-
matically labeled with the NegBio labeler. This is
the most common dataset used in the literature
of CRX image classification.

• CheXpert [55]. This dataset of 224k chest radio-
graphs has been labeled with a custom automated
labeler for NLP analysis of radiology reports.

• PadChest [56] is a 160k image dataset. The labels
are extracted from radiographic reports manually
annotated by trained physicians for 27% of them.

• A combination of the three is denoted AllD. We
combine the images obtained from the three pre-
vious datasets for this dataset and process them
as proposed in [11].

For each dataset, we evaluated the robustness using
5120 inputs randomly sampled from the test set.

Models. All our models output a vector of 18 logits to
cover the maximum number of labels of our evaluation,
even if the dataset on which the model has been trained
is missing one or a few labels. This allows us to train
and test each model on any other dataset. All our models
have an average AUC > 0.79.

For the dataset specific models, we use pre-trained
models using a DenseNet-121 architecture available in
the TorchXrayvision library [11]. It includes models
trained on NIH, CheXpert (CHEX) and PadChest (PC).
The library also provides pre-trained models on the
MIMIC and RSNA datasets. These are smaller CXR
datasets that share the same labels as the AllD dataset.

We also compare the robustness of models with dif-
ferent architectures trained using the same dataset. We

evaluated the performance of the DensetNet121 architec-
ture and the Resnet512 architecture when trained using
the AllD dataset.

Following similar work [11, 9], we adjust the training
process to the CXR classification task. We account for the
missing labels by training the models using only the loss
from the available labels. CXR classification also suffers
from a large imbalance in label distribution. We alleviate
the imbalance with a frequency-based weight for each
label. The less frequent labels have a higher contribution
to the loss computation. Finally, each label also has a
different optimal binary threshold. Except to evaluate
the multi-label accuracy, we do not threshold the outputs
and use the raw probabilities. For multilabel accuracy,
different thresholds are used for each label as proposed
by Cohen et al.[11].

Attacks. We evaluate the robustness of the models
mainly against the PGD attack [20]. Madry et al. have
shown that PGD is a universal surrogate for first-order
gradient attacks, and robustness against PGD attacks is
a common metric to evaluate the robustness of models
[53]. It is also the one used in previous research on the
robustness of CRX models [12, 14].

We evaluate the two hyperparameters of PGD:
The maximum perturbation size 𝜖 in the range of
{0.5/255, 1/255, 2/255, 4/255, 8/255}, and the num-
ber of attack steps in the range of {1, 5, 10, 25, 50}.

Robustness evaluation metrics. In addition to the
k-robust accuracy, we also evaluate the robustness of the
models using traditional error metrics, to cover metrics
designed specifically for multilabel classification and or-
dinal classification: The mean square error (MSE), cross-
entropy error (BCE), multi-label accuracy (MLACC) [57]
and the Ordinal classification loss (OL) [58].

5. Results and Evaluation

5.1. Cross-domain generalization
To better understand how adversarial attacks impact CXR
classification models, we evaluate the impact of the train-
ing data on the robustness of models, in particular for
transfer attacks, when the source model and the target
models are different. Given a PGD attack of 𝜖 = 1/255
and 25 steps, we evaluated the robust precision k for
𝑘 = 1 and 𝑘 = 3 for our six DensetNet121 models M1,
M2, M3, M4, M5, M6 and M7. The clean images are ran-
domly sampled from the NIH dataset.

Adversarial attacks transferability: Results are
shown in table 2. When restricted to the 1-robust ac-
curacy, the NIH model is the most robust model (15.4%



Topk Target → NIH CHEX PC MIMIC RSNA AllD
Acc Source ↓

k=1

NIH 13.78 1.38 9.66 8.47 7.12 2.25
CHEX 15.66 1.62 9.28 8.00 7.09 2.44

PC 15.72 1.38 8.25 8.28 7.28 2.41
MIMIC 15.81 1.38 9.00 8.16 7.22 2.38
RSNA 15.78 1.31 9.97 8.06 8.09 2.53
AllD 15.72 1.34 9.34 8.09 7.28 4.78

k=3

NIH 21.41 6.09 35.31 27.28 27.22 36.12
CHEX 21.66 6.28 34.88 27.47 26.91 36.28

PC 21.69 6.41 34.94 27.09 26.06 36.78
MIMIC 21.75 6.09 35.06 27.94 27.62 36.22
RSNA 21.59 6.12 35.41 27.00 21.16 36.25
AllD 21.69 6.34 35.38 27.12 27.34 32.12

Table 2
k-robust accuracy on NIH dataset for six Densenet121 models,
each trained on different chest x-ray datasets. The columns
are the target models and the rows are the source models.

robust accuracy on average) and the CHEX model is the
most vulnerable. When we evaluate the 3-robust accu-
racy, the most robust model becomes the AllD model
(35.6% robust accuracy on average). This confirms not
only that different models have a wide range of robust-
ness (NIH is ten times more robust than CHEX), but
previous claims that the PGD attack on the CXR clas-
sification yields a 100% success rate are far from true.
Taking into account the dataset used for model training
can yield a significant difference in robustness.

The significant variability in the performances moving
from top1 to top3 shows that, actually, the models, in
general, remain robust enough, and the correct labels are
still predicted with high probabilities. The only excep-
tion is the CHEX model, which remains very vulnerable.
It suggests that the distribution that has been learned
by this model can be significantly impacted by a small
perturbation.

Additionally, the most robust model in the whitebox
threat model (the diagonal values where the source and
target model are the same) is not the same given the 1-
robust accuracy or the 3-robust accuracy. While the NIH
model preserves the most probable class, the PC model
retains better the correct labels in the top3 predictions.

Robustness over different test datasets: Next, we
explore the impact of the test dataset on the robustness
of models. We evaluate in Table 3 the k-robust accuracy
of each model when the original inputs are sampled from
one of the datasets: D1 for NIH Chest X-ray14, D2 for
the CheXpert dataset, D3 for the PadChest dataset. The
source and target models are the same in this setting.

Our results show that the examples sampled from the
CheXpert dataset are the most vulnerable, except for
the model trained on the NIH dataset. There is also no
relationship between the robustness of the model and
the distribution of inputs. Sampling the inputs for the
adversarial examples from the same distribution (NIH
with D1, CHEX with D2, PC with D3) does not reliably

k-robust acc k=1 k=3
Dataset →

D1 D2 D3 D1 D2 D3
Model ↓

NIH 13.78 34.38 3.31 21.41 43.03 13.88
CHEX 1.62 0.88 1.31 6.28 9.03 19.47

PC 8.25 11.78 12.06 34.94 22.66 53.59
MIMIC 8.16 5.72 17.47 27.94 40.84 49.25
RSNA 8.09 5.38 7.22 21.16 17.00 16.38
ALLD 4.78 5.56 8.62 32.12 19.09 37.69

Table 3
k-robust accuracy on our three datasets for six Densenet121
models, each trained on different chest x-ray datasets. The
source and target models for the attacks are the same. The
columns are the datasets from which the example are sampled,
and the rows are the source/target models.

k-robust acc k=1 k=3
Dataset →

D1 D2 D3 D1 D2 D3
Model ↓

DenseNet121 4.78 5.56 8.62 32.125 19.09 37.69
Resnet50 3.31 2.56 11.44 22.25 30.91 39.31

Table 4
k-robust accuracy on 2 architectures: Resnet50 and
Densenet121. The source and target models for the attacks
are the same. The columns are the datasets from which the ex-
ample are sampled, and the rows are the source/target models.
Greyed cells are best the values across a row, and underlined
cells are the best values across a column.

lead to higher robust accuracy.
When considering the 3-robust accuracy, D3 is the

more robust dataset for four models among the six. When
the train examples and the evaluation example are both
sampled from the PadChest dataset, the 3-robust accuracy
peaks at 53.59%, more than three times the robustness of
the NIH model on the same dataset.

Impact of architecture: We observe in Table 4 that
different architectures are not reliably robust on different
CXR datasets. Although Resnet is more robust on D3,
the DenseNet model has a higher robust accuracy on
D1. It is also noted that across both architectures, the
dataset D3 yields the highest robust accuracy across both
architectures. It is consistent with our previous results
(Table 3) that also showed that the input from D3 is more
robust across different models of the same architecture.

Impact attack budget 𝜖 and 𝑛𝑏𝑠𝑡𝑒𝑝𝑠: For 𝑘 = 3,
the robust precision drops from 34.56% with 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 =
0.5/255 to 13% with 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 4/255. Meanwhile, the
robust accuracy of k for 𝑘 = 1 increases slightly with in-
creased attack budget, from 3.84% to 8.06%. This increase
in robustness is unexpected and can indicate that itera-
tion budgets of 25 steps are not sufficient to effectively
explore such a large search space.

Given a perturbation budget of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.5/255,
the number of steps has a limited impact on the robust



accuracy. We observe that the attack success (and thus
the models’ robustness) plateaus around 30% for all the
multi-step attacks: 5, 10, 25, and 50 steps.

Conclusion: The robustness of CXR image classifiers
varies significantly when considering architectures and
datasets. Contrary to common practice, mixing multi-
ple datasets leads to less robust models.

5.2. Domain Specific knowledge
CXR classification not only raises questions about the
generalization of one’s hypothesis about the robustness
of models, as we showed, but it also requires a higher
understanding of the labels and diseases that we aim to
classify. When dealing with a critical task, such as medi-
cal diagnosis, the risk associated with a prediction error
can increase dramatically when the predicted diseases
are far from the actual truth. We show that targeted ad-
versarial attacks against these risky labels provide a new
view of the robustness of CXR classification models.

To model the prediction risk, we use the co-occurrence
matrix provided by the multi-label dataset NIH. In this
dataset, each radiograph can have 1, 2 or 3 diseases that
have been annotated. This matrix indicates which combi-
nation of diseases are very rare in practice and hence can
hardly be confused. For instance, while Infiltration and
Atelectasis are two labels commonly found in annota-
tions, Infiltration and Pneumothorax are scarce together.

Let M a multi-label model with labels L =
{𝑙1, ..., 𝑙𝑀}. M : 𝒳 ⊆ R𝑁 −→ 𝒴 ⊆ R𝑀 .

For each 𝑥 ∈ 𝒳 , let 𝑦 the predicted labels 𝑦 =
M (𝑥) = (𝑦1, 𝑦𝑖..., 𝑦𝑀 ) where 𝑦𝑖 ∈ R is the predicted
probability of the label 𝑖. Let 𝑦* the most probable label
for 𝑥: 𝑦* = argmax𝑖{𝑦1, 𝑦𝑖..., 𝑦𝑀}. Let 𝐶 the normal-
ized inverse co-occurrence matrix of the label space 𝒴 .
A higher value in 𝐶 means that the labels of the row
and column indices are very unlikely to occur together.
𝐶(𝑖) is the vector of improbable labels associated with
the label 𝑖.

For each input 𝑥 ∈ 𝒳 , we generate an adversarial
𝑥* ∈ 𝒳 example with targeted Projected Gradient De-
scent (PGD) [20] algorithm, targeted on the improbable
label vector of 𝑥. The targeted PGD adds iteratively a
perturbation 𝛿 that opposes the sign of the gradient ∇
with respect to the input x and the target 𝐶(𝑦*). Π is a
clip function that ensures that 𝑥+ 𝛿 respects a 𝑝-𝑛𝑜𝑟𝑚
perturbation budget:

𝑥0 = 𝑥 ; 𝑥𝑡+1 = Π𝑥+𝛿(𝑥
𝑡−𝛼𝑠𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥, 𝐶(𝑦*))))

This optimization can be seen as a weighted multil-
abel classification attack because the target vector is a
real-valued vector, or as an ordinal classification attack
because the order of the values of target logits actually

matter. They reflect the risk caused by the misclassifica-
tion. This risk can be computed as a vectorial product
between the predicted logits of the adversarial example
and the target logits computed with 𝐶 . And we have:
𝑅𝐼𝑆𝐾 = M (𝑥*)× 𝐶(𝑦*).

To account for both views, we use different loss func-
tions: MSE, BCE, OL. We report for each approach the
MSE, BCE, AUC, MLACC, and RISK. We also include the
k-robust accuracy (with 𝑘 = 1, 3) to compare this threat
model with the threat model of 5.1. While MSE, BCE,
AUC, and k-robust accuracy reflect how much error we
introduce compared to the original prediction, MLACC
and RISK reflect how close the predicted output is to the
target output. We bring together the results of all these
evaluations in Table 5.

Impact of the loss function The most robust models
are overall consistent across different loss functions used
in the attack. This confirms that handling risk-based
attacks as an ordinal classification problem are as relevant
as a multi-label problem for the success of the attack.

Impact of the threat model Comparing the k-robust
accuracy of our risk-based threat model with the un-
targeted threat model of our previous results (Table 2)
shows that this risk-based threat model produces more
successful attacks and therefore lower robustness of the
models.

For example, with 𝑘 = 1, the robust precision of the
NIH model against untargeted attacks is 13.78% (Table
2), but it drops to 2.69% for risk-based attacks (Table 5).
Similarly, for k=3, the AllD model has a robust accuracy
of 32.12% against untargeted attacks and only 11.12%
against risk-based attacks.

Risk evaluation of the models According to the RISK
metric, the NIH model is not only the most robust to
adversarial attack, but also the one where the end la-
bels have the lowest probabilities to actually be rare co-
occurring labels of the original label.

Impact of the robustness metric Our results show
that the error metrics fail to highlight one specific model
as being the most robust. According to robust accuracy
and robust AUC, NIH is the most robust model across
different loss functions. Meanwhile, the RSNA model is
the most robust according to the BCE and MSE losses.

We also evaluate the Pearson correlation between the
robustness values of each batch of all combined models.
Except for the correlation between the risk and the 3-
robust accuracy, the p-value is under 10-̂3 . Our results
show that none of the existing metrics (MSE, BCE,...)
is correlated with the RISK metric. This confirms that
existing metrics do not take this dimension into account.



Model → NIH CHEX PC MIMIC RSNA AllD
Loss Metric

MSE

k=1 ↑ 3.07 0.25 0.19 0.25 0 4.19
k=3 ↑ 13.31 3.31 16.13 2.63 0 10.82

AUC ↑ 0.74 0.5 0.78 0.5 0.5 0.42
MSE ↓ 0.07 0.06 0.13 0.09 0.02 0.11
BCE ↓ 0.78 0.77 0.85 0.76 0.74 0.84

MLACC ↓ 0.66 0.58 0.71 0.43 0.45 0.59
RISK ↓ 0.18 0.2 0.28 0.25 0.24 0.23

BCE

k=1 ↑ 2.69 1.19 0.19 0.69 0 3
k=3 ↑ 12.43 8.19 16.5 1.75 0 11.12

AUC ↑ 0.78 0.5 0.81 0.5 0.5 0.52
MSE ↓ 0.07 0.06 0.12 0.1 0.01 0.09
BCE ↓ 0.77 0.76 0.84 0.76 0.74 0.81

MLACC ↓ 0.67 0.59 0.71 0.43 0.45 0.6
RISK ↓ 0.17 0.19 0.27 0.24 0.24 0.26

OL

k=1 ↑ 2.81 0.31 0.63 0.13 0 2.5
k=3 ↑ 14.06 5.31 14.56 1.06 0 9.88

AUC ↑ 0.78 0.5 0.69 0.5 0.5 0.41
MSE ↓ 0.07 0.08 0.12 0.09 0.02 0.11
BCE ↓ 0.78 0.78 0.84 0.76 0.74 0.84

MLACC ↓ 0.66 0.53 0.68 0.42 0.45 0.54
RISK ↓ 0.17 0.2 0.27 0.24 0.24 0.22

Table 5
Robustness of metrics for six Densenet121 models on NIH
dataset, attacked using three loss functions. ↓ and ↑ indicate
that lower (higher respectively) is more robust.

As expected, MSE and BCE are highly correlated with
each other and mildly correlated with the top-3 robust
accuracy. On the contrary, top-1 robust accuracy has
little correlation with the other metrics.

Conclusion: The choice of a CXR classification model
can vary significantly based on the robustness metric
and the threat models we evaluate.

Conclusion
Evaluating the robustness of chest radiograph classifiers
requires extreme caution and consideration when design-
ing the experimental protocol.Our study, in particular,
outlines the following recommendations. State a precise
and realistic threat model for your use case. Use clear
assumptions about the distribution learned by the target
model and how it relates to what your craft model has
learned. Choose the right robustness metric depending
on the task and threat model: Single-label classification,
multilabel classification, and ordinal classification met-
rics reflect different vulnerabilities. Identify the risks and
their impacts, and evaluate the robustness of robust mod-
els using strong baselines and risky attack strategies, e.g.,
with larger attack budgets.

We do not intend this paper to be the definitive answer
or that the items contained above are exhaustive. We
encourage future research to confront their protocol with
actual use cases, and we hope that our work paves the
way to critical thinking about the protocols of adversarial
attack evaluation in the real world.
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