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Abstract

Nowadays, machine learning is performing very well in the field of computer vision and natural language processing. However,
recent research results indicate that machine learning models are extremely vulnerable to various malicious attacks, among
which backdoor attacks are favored by attackers because of their easy deployment and high success rate. In fact, the attacker
only needs to put a small amount of malicious data in the training dataset, so that the model triggers abnormal behavior under
certain circumstances. In this work, we propose a BAB (backdoor against backdoor) algorithm for training a clean model on
poisoned data. The BAB algorithm mainly relies on two characteristics of the backdoors: 1) Multiple backdoors can coexist
well in the model 2) When there are multiple backdoors in the same model, the strongest backdoor can make the weaker
backdoor ineffective. Therefore, we implant a backdoor in the poisoned dataset, and rely on the output performance to refine
a training dataset that contains almost no poisoned data, so as to train a clean model with high accuracy. In the experimental
part, we test five current mainstream backdoor poisoning attacks. Our experimental results reveal that the BAB algorithm has
a remarkable effect on filtering poisoned data: we succeed in obtaining a clean dataset containing less than 0.1% poisoned data,
and train a high-precision model with this dataset. Our code is open source in https://gitee.com/dugu1076/bab-algorithm.git.

1. Introduction

At present, neural networks are gradually applied in vari-
ous fields such as image classification[1, 2, 3] and natural
language processing[4, 5]. Meanwhile, these ubiquitous
deep learning systems indeed induce various security
problems, such as evasion attacks[6, 7, 8], model stealing
attacks[9, 10], membership inference attacks[11], and
backdoor attacks[12, 13], etc. Malicious attackers can
utilize these attacks to steal private information or even
make the system misjudgment in some cases, resulting
in immeasurable losses. In this article, we focus more
on the backdoor poisoning attack. Compared with or-
dinary data poisoning attacks[14, 15, 16], the backdoor
poisoning attack does not affect the accuracy of the orig-
inal task, but adds backdoors to the model that are only
triggered in specific situations. The backdoor poison-
ing conditions are very easy to implement: contaminate
part of the training dataset (such as adding a patch) and
modifying the contaminated data label, a simple back-
door attack is done [17]. The trained model behaves
the same as the normal model when it encounters be-
nign input, but when non-benign input (with triggers)
is provided, the model behaves abnormally. To make
matters worse, due to the deepening of the model depth,
training a high-precision neural network model often
requires a large dataset. Many trainers rely on crawlers
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or third-party purchases to obtain training data, which
gives the attackers many opportunities to carry out the
backdoor poisoning attack. Unfortunately, most of the
existing defense methods are based on anomaly checking
of the trained model and then repairing the anomalous
model [18, 19, 20], or filtering the anomalous output of
the trained model [21], which are not applicable to the
stage when the model has not yet been trained. In order
to reduce the losses caused by such attacks, we wonder:
Is it possible to isolate a completely clean dataset from the
poisoned dataset and employ it to train a clean model?

Intuitively, this is not a very simple task. One reason
is the unexplainability of neural networks. The essence
of the neural network model is the combination of linear
transformation and nonlinear transformation between
matrices, and these single transformations have no practi-
cal and specific meaning, which also makes it impossible
to detect abnormalities directly from the internal param-
eters of the model. In addition, the constant update of the
backdoor poisoning attack renders the means of manual
verification ineffective. Early backdoor attacks[17] have
obvious disadvantages in that the triggers can be sepa-
rated by human eyes. However, with the deepening of
research, SIG[22], Refool[23], CBA[24] and other attacks
have been introduced. The triggers and target labels of
such poisoned data are integrated into the dataset in a
very reasonable way, which makes manual verification
impossible.

In this paper, we propose a backdoor against backdoor
(BAB) algorithm that is able to filter a clean dataset and
train a clean model without any prior knowledge of the
backdoor data distribution in the dataset. We divide the
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task of training a clean model into two stages. The first
stage is the filtering of clean dataset. In this stage, we take
advantage of two inherent characteristics of backdoor
attacks to distinguish clean data from poisoned data. The
second stage is the standard model training process using
the filtered clean dataset. Our main contributions are as
follows:

+ We put forward a new perspective on the coex-
istence of multiple backdoors and exploit the in-
herent characteristics among multiple backdoors
as a basis for filtering poisoned data: multiple
backdoors can coexist well in the model; when
there are two backdoor triggers in one input, the
more aggressive backdoor can make the weaker
one fail;

« We advance the BAB algorithm to enable training
clean models from poisoned data. We discuss the
algorithm in detail and display the parametric
performance in the experimental section;

« We apply the BAB algorithm to two standard
public datasets, CIFAR-10 and GTSRB, and test it
against five mainstream backdoor data poisoning
attacks (three dirty label attacks and two clean
label attacks). The experimental results are ex-
citing and we successfully obtain a clean dataset
with a poisoning rate of less than 0.1%, and obtain
a clean model with high accuracy;

2. Related Work

This section mainly introduces several backdoor attack
methods and defense knowledge that rely on the back-
door poisoning attack.

2.1. Backdoor Poisoning Attack

The backdoor poisoning attack mainly relies on intro-
ducing some malicious data into the training dataset,
which is consistent with the normal model training dur-
ing the model training phase. Existing backdoor attacks
are mainly divided into two categories: 1) dirty label
attacks 2) clean label attacks. The earliest dirty label at-
tacks [17, 25, 24] mainly rely on modifying the label and
adding a trigger, such as a single pixel, a square or a more
complex pattern, but these simple attack methods are of-
ten found by manual inspection. To increase the stealth
of the backdoor attack, the attacker optimizes the trigger
to incorporate it into the clean data in a reasonable form,
such as invisible noise and mixed mode. Unlike dirty
label attacks, clean label attacks aim to optimize labels to
bypass manual verification of labels, that is, to achieve
attack results without modifying labels. Such attacks can
bypass most existing detection schemes due to their weak
aggressiveness.

In order to verify the performance of our BAB algo-
rithm, we select three representative dirty label attacks:
BadNets[17], Blend[25] and CBA[24], and two represen-
tative clean label attacks: SIG[22] and Refool[23] in this

paper.

2.2. Defense

The defense against backdoor attacks mainly consists of
two aspects. 1) Training dataset[26] 2) Model neuron[19,
26, 18].

Training dataset Backdoor defense methods based
on training datasets are mostly detection methods, not
repairing methods. To the best of our knowledge, there
is currently no method to almost completely separate the
poisoned data from the poisoned dataset and use it to
train a clean model. This is mainly due to 1) For the de-
tectors, the amount of poisoned data, triggers and attack
patterns are unknown. 2) The threshold for backdoor
triggering is extremely low. Even if most of the poisoned
data is filtered, the remaining poisoned data may still trig-
ger the backdoor. These issues make defending against
backdoors from training datasets difficult.

Model neuron Most of the existing backdoor defense
methods are based on anomaly detection of model neu-
rons and repair the anomaly model. But this kind of
defense is not practical. On one hand, the backdoor task
and the original task are not completely separated in neu-
rons, which leads to the loss of the original task when
removing the backdoor task. On the other hand, repair-
ing requires the original dataset or a small amount of
clean datasets, which is not realistic in some cases.

In this paper, we put forward the BAB (backdoor
against backdoor) algorithm. Unlike most existing de-
fense methods, our method does not detect and repair
model neurons. Instead, we filter the poisoned data di-
rectly from the data source, and employ the filtered data
to train a clean model. Our algorithm bridges the gap in
the field of backdoor defense from the training dataset.
Moreover, compared with the model neuron-based in-
painting method, our BAB algorithm has less loss for the
original task and only needs the original dataset.

2.3. NAD

NAD([27] is a proven and effective way to remove back-
doors, and it mainly on a small number of clean dataset
and uses model distillation to fine-tune the attention
mechanism of the teacher model, so that the teacher
model no longer pays attention to the backdoor area, so
as to eliminate the backdoor.



3. Problem Statement

3.1. Threat Data

Considering that most of the existing data comes from
crawlers or untrusted third-party, we can not control
over the information of the data. Hence, in this paper,
we set the most favorable conditions for the attackers,
that is, the attackers completely control over the training
dataset and can poison the dataset in any proportion and
in any way. While as the defender, only this batch of
data can be obtained, and the information such as the
poisoning rate and poisoning method is unknown.

3.2. Assumption

In this section, we will take an example to elicit our
hypothesis. Here, we take MNIST as the dataset and
BadNets as the poisoning method. Suppose that the
trainer has a poisoned dataset D, where D suffers two
non-conflicting backdoor poisoning attacks (D = Dejean U
Dpoision_1 U Dpoision_2). The trainer draws a random pro-
portion(such as 50%) of the dataset from D each time
to train a model set M = { My, M1,..., Mn}. Selects
d (d € D) to input M, when it is a clean data sample
(d € Deiean), since training only uses a small amount of
data, the output on model set M should be messy, as
shown in Fig. 1(A). When there is only one backdoor trig-
ger (d € Dyision_1U Dpoision_2), the output of the model set
M should all point to the target activated by the trigger, as
shown in Fig. 1(B). When there are two backdoor triggers
(d € Dpoision_1 N Dpoision_2), the strength of the backdoor
is not constant due to different training data, which also
leads to the situation as shown in Fig. 1(C). The output
of the model set M should be the target activated by the
two triggers.

In view of the above facts, we speculate that if a certain
proportion of known backdoors are put into a batch of
poisoned data sets and randomly select data to train a
batch of models, when backdoor triggers are added to the
data, the models’ judgment on clean data should all point
to the newly added backdoor class, and for poisoned data,
the output class should not only contain the newly added
backdoor pointing target.

However, we must consider the following situations.
If the backdoor generated by the poisoner is very weak,
it may cause that even for the poisoned data, models all
point to newly implanted backdoor classes. This results
in the omission of poisoned data. Therefore, we need to
control the strength of the implanted backdoor, insert
a very weak backdoor into the model, but still can be
successfully activated by the trigger. In this way, we can
make the judgment between clean data and poisoned
data.

4. Method

In this section, we will introduce the BAB algorithm in
detail. Our algorithm is mainly divided into four steps:
data preprocessing, the training of the verification mod-
els, reasoning and division of the dataset, and the training
of the formal model. The specific algorithm is described
as Algorithm 1.

Algorithm 1: BAB algorithm

Initialization: Target{yo,y1,.-.,Yn},
Moyer € {Muer 0, Myer 1, - - ., Myer N}, Trigger 7,
Datay{xo, z1, ...} — Original Data
Dataz{xo, z1, ...} — Partial Data; Carrying
Triggers -y to attack target n + 1
Datas{zo, 1, ...} — All Data; Carrying
Triggers ;
for M in M,., do
for 1..epochs do
M.forward(D3);
loss=LpaBg;
loss.backward();
end

end
for x in Datas do
for M in M,., do
if M(z)! =n + 1 then
| Poisioned Data — remove
else
‘ Continue;
end
end

end
Return Clean Dataset

4.1. Data Preprocessing

Firstly, we need to preprocess the data, as shown in Fig. 2.
We extract a small portion (such as 10%) of the data, add
triggers of arbitrary shape, and modify the model labels
to new classes (preventing the same targets as poisoning
attacks) and shuffle the data to generate a new dataset.
After that, we randomly select IV small parts (such as 50%)
of the dataset as training data. Besides, we need an entire
dataset plus this trigger for inference and partitioning
the data in reasoning and division of the dataset.

4.2. Verification Model Training

Secondly, we need to train a batch of verification mod-
els, as shown in Fig 3. Put the dataset generated in the
previous step into a batch of simple network models for
a small number of iterations. In order to create a back-
door that is as weak as possible but can be successfully



Input Target=0

Input Target=2

=

o

Input Target=5
50 40 0
» 5
— . .
E g 2
o ! ;; %zu 15
3
i 2 3
& & a1
0

¢ 1 2 3 4 5 & 7 8 9
BadNets Target=7 With Input Target=0

BadNets Target=7 With Input Target=2

9 1 2 3 4 5 & 7 &8 9

BadNets Target=7 With Input Target=5

80 o
# 2

(B) % 2 e o
L 5 Z

2w 4w
& &

20 0

a Q

Probability (%)

0 1 2 3 4 5 & T & 9
BadMets Target=(1,7) With Input Target=0

BadNets Target

0 1 2 3 a4 5 & 71 8 %
I 'r' 'lhth Input Tar{at =2 BadNets Target={1,7) With Input Target=5

£ 50 60
50 w© 50
(x] Za 2 Za

© Ry 2 R z
oe oo %39 ;:; é:m

£ in £
&0 & &0
19 1 10

Figure 1: The performance of different categories of data in

verification data

Basic Data

Dataset o, 0-9
=

Narmai
Labem BEERX

O Unknown poisoning

u] Our trigger

Figure 2: Data preprocessing.

activated, we reduce the neuron activation degree gap
as much as possible when inputting poisoned data and
clean data. In addition, We choose one or more layers
of neurons to suppress their activation, and make cer-
tain improvements on the original loss function, just like
Equation 1.
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a batch of models.

I(f(xwm), ym) ensures that the backdoor can be triggered
correctly, and L2 (0, 6,;) minimizes the gap between the
backdoor data and the clean data in the neural network,
so that the backdoor we generate is as weak as possi-
ble. After extensive experiments, we find that fitting
the penultimate layer (the previous layer of the softmax)
works best in the same network layer.

. o U(f),y) Clean
BAB = U(f (@), yms) + @ La(0, 01) Backdoor Inference
1)

where f is the trained model; y and y;. are the original
target and the backdoor attack target, respectively; 6 and
0, are the activation values of clean data and backdoor
data, respectively; « is a hyper-parameter used to coordi-
nate the activation of inhibitory neurons. In Equation 1,

The most important step is the division of poisoned data
and clean data, as shown in Fig. 4. Through simple train-
ing, we get a batch of simple neural network verification
models. Then, we feed the verification data sequentially
into the verification model. When the verification data
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passes all verification models, we consider the data to be
clean; otherwise, the data is illegally poisoned by others.
There will be some accidental injuries due to the accu-
racy of the implanted backdoor, but this is inevitable. In
subsequent experiments, we find that these accidental
injuries are acceptable in small amounts.

4.4. Formal Model Training

After the above steps, a batch of clean data can be ob-
tained, and a clean model can be obtained by training in
a standard way using this clean dataset.

5. Experiment

5.1. Experimental Setup

All experiments are run on a hardware equipped with a
RTX 3070 GPU and an i7 10700K CPU.

Attack Configurations We consider 5 backdoor at-
tacks in our experiments, including three dirty label
attacks: BadNets[17], Blend attack[25] and composite
backdoor attack (CBA)[24], two clean label attacks: nat-
ural reflection (Refool)[23]. and sinusoidal signal attack
(SIG)[22]. We follow the settings suggested by these pa-
pers and the open-sourced code corresponding to their
original papers to configure these attack algorithms.
All attacks are evaluated on two benchmark datasets,
CIFAR-10[28] and GTSRB[29], with a classical model
structures including ResNet-18[2]. For the backdoor poi-
soned data, we train the backdoor model for 100 epochs
using the Adam optimizer and the learning rate is set
to be 0.01. Considering the uneven distribution of the
GTSRB dataset, we set the target label of the SIG and
Refool poisoning attacks to be 1, and the target label of
the rest of the poisoning attacks to be 0. SIG' and Refool”
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both adopt the open source code of the original paper.
We have not exploited any data augmentation techniques
to avoid side effects on attack success rate. In subsequent
experiments, we mainly take the CIFAR-10 dataset as the
test dataset because its data distribution is more uniform.

Defense and Training Details We compare our BAB
with a state-of-the-art defense method: Neural Attention
Distillation (NAD)[27]. For NAD, we follow the configu-
ration specified in original papers.

NAD We take open source code ’ as a base for exten-
sions. We try to keep the parameters consistent with
our experiments, including model architecture, learning
rate, number of iterations, etc. In addition, following the
recommendations of [27], we set the proportion of clean
data owned by NAD to be 5%, the number of iterations
when acquiring the teacher model to be 10. When using
the teacher model to clean the student model, we set the
number of iterations to be 100, low layer 4=500, middle
layer 5=1000, high layer 5=1000.

BAB On the CIFAR-10 dataset, we set N=10, «=0.2,
R=0.5, and use the Adam optimizer to train the verifica-
tion models for 5 epochs, set the learning rate to be 0.01,
the number of iterations of each verification model to be
5, and the target of the model embedded in the verifica-
tion model to be 10. On the GTSRB dataset, we set N=5,
@=0.3, R=0.5, and use the Adam optimizer to train the
verification models for 5 epochs, setting the learning rate
to be 0.01, the number of iterations for each verification
model to be 5, and the model embedded in the verifica-
tion models to set a target of 43. In the training phase of
the formal model, we set the model with a learning rate
0f 0.001 and an iteration number of 100 epochs. We have
not used any data augmentation techniques to avoid side
effects on attack success rate.

Evaluation Metrics We employ two commonly used
performance metrics: Attack Success Rate (ASR), which

*https://github.com/bboylyg/NAD



is the classification accuracy on the backdoor test set,
and Clean Accuracy (CA), which is the classification ac-
curacy on the clean test set. In addition, we calculated
the residual retention rate of clean data (CDR) and the
residual rate of poisoned data(PDR).

5.2. Comparison to Existing Defenses

Table 1 and Table 2 reveal the experimental results of our
proposed BAB on CIFAR-10 and GTSRB. We consider 5
state-of-the-art backdoor attacks and compare BAB to
the current best-defense NAD. As defenders, we have two
goals: maintain clean accuracy and reduce attack success
rate; high attack success rate will lead to the possibility
of illegal usage of the model, and low accuracy will make
the model useless.

As described in Table 1, we can see that on CA we
are on par with the NAD method at CIFAR-10 (77.81% vs
77.60%) and GTSRB (91.22% vs 90.81%). But for ASR, our
elimination rate for backdoors is much better than NAD,
especially on GTSRB dataset (2.54% vs 21.76%). Compare
the CA of the model generated by the BAB algorithm
with the CA of the model generated by the clean data (as
shown in row None and column “No Defense”), we find
about 5% performance loss on CIFAR-10 dataset (77.81%
vs 83.34%) and about 2% performance loss on GTSRB
dataset (91.22% vs 92.92%). We believe that this part of
the performance loss is mainly due to the reduction of
training dataset, part of it comes from the attacker’s poi-
soning, and part of it comes from the accidental injury
of the BAB algorithm. In Table 1, we can see that we lose
about 10% of the clean dataset, and almost completely
remove the poisoned data. This part of the loss, as a limi-
tation of the BAB algorithm, will continue to be studied
in future work.

5.3. Number of Verification Models

Here, we investigate the effect of the number N of verifi-
cation models on filtered clean datasets versus residual
poisoned data on CIFAR-10. Our goal is to keep the clean
dataset as much as possible while filtering the poisoned
data, so that a clean and more accurate model can be
trained in the formal training phase. We run the BAB al-
gorithm on N belonging to [1, 20] and display the amount
of clean data and the amount of residual poisoned data
in Fig. 5. Obviously, it is found that there is a trade-off
between amount of clean data and amount of residual
poisoned data. Specifically, as the number of models N
increases, the clean dataset will be lost along with the
poisoned dataset, we find that the loss of clean data sets
is mainly due to the suppression of neurons in the im-
planted backdoor, since not every implanted backdoor
can reach a 100% attack success rate, this causes some
data to be mistaken for poisoned data and discarded. In

addition, we find that when N>10, the poisoned data has
almost been filtered out, the clean data of Refool and
SIG attacks are gradually lost, while the data is relatively
stable in the other three attacks. We believe that it is be-
cause Refool and SIG are clean label attacks that only mix
the trigger pattern (i.e. superimposed sinusoidal signal or
natural reflection) with the background of the poisoned
image, which makes this type of attack relatively weak,
resulting in mass misjudgments. In fact, the BAB algo-
rithm with the number of models N=10 is sufficient to
withstand these five attacks, even when the backdoor
poisoning rate is extremely high, i.e. 70%, or a variety of
backdoor attacks (see Section. 3).

5.4. Hyper-parameter o

Here, we investigate the effect of hyper-parameter a on
clean data and residual poisoned data, we compare the
different effects of five values on the CIFAR-10 dataset:
0, 0.001, 0.002, 0.0003 and 0.005, the experimental results
are displayed in Fig. 6. We find that repression of neu-
rons is necessary to weaken the ability of our implanted
backdoors. Compared with the filtering efficiency of the
BAB algorithm without suppression (None) and with sup-
pression for poisoning data, the efficiency of suppression
is much higher than that of the BAB algorithm without
suppression. In addition, it is not appropriate to sup-
press the implantation of backdoors too much. Although
this can significantly improve the efficiency of poisoning
data, it can lead to a large amount of clean data loss due
to low attack success rate (ASR). Fortunately, since the
implanted backdoor is controlled by the defender, the
attack success rate (ASR) is visible, so it is desirable to
suppress neuronal activation while maintaining a high
attack success rate (ASR).

5.5. Pressure Test

Here, we test when BAB encounters some extremes. Now
we know that the BAB algorithm can filter the poisoned
data well and train a clean model.

Therefore, the challenge for the BAB algorithm is
whether the BAB algorithm can still filter out a clean
dataset at a small cost and train a clean model when it
encounters a large proportion of poisoning or there are
multiple poisoning attacks. We experiment on 3 attacks,
BadNets, Blend and CBA on CIFAR-10, with poisoning
rates up to 50%/70%, and show the results in Table 3. In
addition, we also test for mixed attacks, and the total
poisoning rate is as high as 50%/70%, and the results are
shown in Table 4. We find that even at 70% poisoning rate,
our BAB algorithm successfully reduces attack success
rate (ASR) from 99.67% to 3.23% for BadNets, 93.18% to
4.89% for CBA, and 100% to 5.15% for Refool, respectively.
For the mixed attacks, BAB also successfully reduces the



Table 1

The attack success rate (ASR%) and the clean accuracy (CA%) of 2 backdoor defense methods against 5 backdoor attacks
including 3 dirty label attacks and 2 clean label attacks. None means the training data is completely clean. The best results are

in bold.
Dataset Types No Defense NAD BAB(ours)
ASR CA ASR CA ASR CA
None 0% 83.34% - - - -
BadNets 97.42% 82.67% 0.30% 78.67% 1.88% 7917%
Blend 100% 65.81% 4.50% 78.02% 0.12% 77.20%
CIFAR-10 CBA 79.01% 83.26% 7.06% 77.96% 2.08% 77.70%
SIG 99.99% 82.12% 0.01% 76.14% 0.01% 77.37%
Refool 99.93%  82.68% 0.07% 77.21% 0% 77.61%
Average 95.27% 79.31% 2.39% 77.60% 0.82% 77.81%
None 0% 92.92% - - - -
BadNets 93.07% 88.25% 3.23% 93.68% 0.90% 92.24%
Blend 96.32% 90.58% 14.68% 89.74% 7.14% 89.31%
GTSRB CBA 89.93%  90.93% 29.95% 91.08% 4.68% 91.80%
SIG 100% 91.24% 12.33% 87.72% 0% 90.92%
Refool 91.64% 85.90% 19.95% 89.76% 0% 91.82%
Average 94.19% 89.97% 21.76% 90.81% 2.54% 91.22%
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Figure 5: Performance of our BAB with different verification model number N € [1, 20] on CIFAR-10 dataset. Left: Number of
clean data (CD); Right: Number of residual poisoned data (PD).

attack success rate (ASR) from more than 90% to less
than 5% with the mixed attack of BadNets and Refool
and the mixed attack of BadNets and CBA. In addition,
we find that in the mixed attacks, the accuracy of the
original task increases after applying the BAB algorithm.
We believe that this is due to the existence of multiple
poisoning attacks in the dataset, which limits the training
accuracy of the model. After the BAB algorithm filters
out poisoned data, this limitation is broken. Overall, our
BAB algorithm has good robustness.

6. Conclusion

In this paper, we propose a novel algorithm to train clean
models on poisoned data. Firstly, we implant our own
backdoor in the detected dataset, and train multiple ver-
ification models, relying on comparing the outputs of
the verification models to divide the clean data from the
poisoned data. Secondly, we train a formal model with
the partitioned clean dataset. We apply our algorithm
to two different datasets, experimenting with five attack
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Right: Number of residual poisioned data (PD).

Table 2

The residual retention rate of clean data (CDR) and the resid-
ual rate of poisoned data (PDR) after BAB against 5 backdoor
attacks including 3 dirty label attacks and 2 clean label at-
tacks.

Dataset BadNets Blend CBA SIG Refool
CDR 91.70% 87.85% 89.33% 90.59% 90.11%
CIFAR-10 PDR 0.28% 0% 0% 0% 0.02%
CDR 82.75% 82.74% 85.74% 90.43% 88.67%

GTSRB PDR 1.40% 1.32% 0% 0% 0%

modalities. The experimental results indicate that our
algorithm is useful and effective. Subsequently, we also
analyze and discuss how to choose the parameters rea-
sonably and the robustness of the algorithm. Overall,
our work provides a feasible direction for training clean
models on poisoned data.
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