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Abstract
Recent studies on backdoor attacks in model training have shown that polluting a small portion of training data is sufficient to
produce incorrect manipulated predictions on poisoned test-time data while maintaining high clean accuracy in downstream
tasks. The stealthiness of backdoor attacks has imposed tremendous defense challenges in today’s machine learning paradigm.
In this paper, we explore the potential of self-training via additional unlabeled data for mitigating backdoor attacks. We begin
by making a pilot study to show that vanilla self-training is not effective in backdoor mitigation. Spurred by that, we propose
to defend the backdoor attacks by leveraging strong but proper data augmentations in the self-training pseudo-labeling stage.
We find that the new self-training regime help in defending against backdoor attacks to a great extent. Its effectiveness is
demonstrated through experiments for different backdoor triggers on CIFAR-10 and a combination of CIFAR-10 with an
additional unlabeled 500K TinyImages dataset. Finally, we explore the direction of combining self-supervised representation
learning with self-training for further improvement in backdoor defense.
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1. Introduction
Deep neural networks (DNNs), key components of deep
learning, have prompted a technological revolution in
artificial intelligence through various applications in com-
puter vision [1, 2, 3] and other realms [4, 5]. Due to the
ever-growing capacity of DNNs, the models are capable
of learning better and more accurately during the train-
ing phase. This can sometimes lead to DNNs being brittle
- (1) Well-crafted imperceptible perturbations on test im-
ages can cause the model to misclassify images during
the inference stage (known as evasion attack) [6]. (2)
Another attack called data poisoning attack [7] can occur
first during training by manipulating the training data by
the introduction of toxic artifacts. These are memorized
by the model and are carried on to the inference stage.
Attack type (2) is the major focus of this work.

Recent DNNs are extremely data-hungry - they are
often trained using data from anonymous or unverified
sources from the internet. This makes it particularly con-
venient for adversaries to manipulate datasets, leading
to various kinds of stealthy data poisoning attacks, thus
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posing a real threat to deep learning security [8]. One of
such data poisoning attacks is the backdoor attack (also
known as Trojan attack) [9, 7], where a fraction of the
training data is corrupted by the addition of a trigger. In
this paper, we focus on defense against such backdoor
attacks.

In many applications of deep learning, there is the
availability of large quantities of unlabeled data - labeling
is often cumbersome due to time and resources. Hence,
semi-supervised learning [10] has been a growing area
of research, which aims to leverage such unlabeled data
to improve the performance of DNNs. Self-training is
one such popular paradigm, which has been proven to
perform really well in large data settings [11]. In this
context, we aim to address the following question:

(Q) How does self-training relate to robustness against
backdoor attacks ?

Self-training has been recently shown to have some
capability of using diverse feature priors during train-
ing [12] and help alleviate spurious correlations under
certain sets of assumptions [13]. This inspires our study
towards understanding if this paradigm may be helpful
in backdoor defense.

To the best of our knowledge, the most relevant work
to ours is [14]. In [14], self-supervised learning and sym-
metric cross entropy loss [15] is used to separate the data
into probable clean and poisoned samples. Then semi-
supervised learning (MixUp [16]) is performed with the
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filtered clean samples as labeled data and the rest as un-
labeled data (by removing their labels). However, this
method is not able to answer our question (Q). Different
from [14], we do not aim to filter out clean samples using
heuristic detection method. Though we use self-training
as a semi-supervised learning algorithm for mitigating
backdoor, we aim to get insights on how self-training as
a sole learning paradigm can help in backdoor mitigation.
We summarise our contributions as follows:

• We show that self-training can mitigate backdoor
using additional clean unlabeled data

• We propose that self-training combined carefully
with data augmentation has the capacity to de-
fend against backdoor to a certain extent, even
when the unlabeled data is poisoned.

• Stronger defense is possible if stochastic data aug-
mentation schemes (like in SimCLR [17]) are em-
ployed with self-training

2. Related Works

2.1. Backdoor Attacks
Backdoor attack is one of the emerging fields of research
in data poisoning while training neural networks. We
focus on two types of trigger-driven backdoor attacks -
poisoned label attacks and clean label backdoor attacks.

The poisoned label attacks constitute of poisoning the
training dataset by injecting a trigger in a small portion
of the dataset and mislabeling them to a target class. This
was fundamentally demonstrated in BadNets [18] which
used a rectangular patch and stamped it on an area of an
image. Subsequently, more sophisticated triggers have
been developed [19, 20, 21, 22].

Another type of backdoor attack constitutes the clean
label backdoor attack [23, 24]. The images belonging to
the target class are adversarially perturbed away from
their true class and then injected with the trigger. Train-
ing with such images establishes the correlation between
the trigger and the target class. This type of attack is
more stealthy because the labels of the target class are
consistent with the ground truth labels.

In this paper, we consider both types - the basic poi-
soned label and the clean label backdoor attack for our
experiments.

2.2. Backdoor Defense
Due to the emerging threat of backdoor attacks, several
kinds of defenses have been proposed. These roughly
belong to the following categories : (1) Input preprocess-
ing [25, 26, 27, 28]: This kind of defense introduces a

preprocessing module with the intent of damaging the
trigger pattern before passing it into the DNN. (2) De-
tection based defense [29, 30, 31, 32, 33]: The aim here
is to detect the presence of possible malicious samples
or backdoored models. Then the method either denies
the use of such suspicious object or filters the suspicious
input samples for re-training. (3) Erasure based or model
reconstruction based defense [34, 35, 36, 37]: This type
of defense aims to erase the effect of triggers from an
already backdoored model such that it performs well in
both clean samples and in the presence of triggers. (4)
Trigger synthesis [38, 39, 40, 41]: Here the trigger is po-
tentially detected and synthesized in the first step and
then the effect of such a trigger is suppressed. (5) Poison
suppression defense [42, 43]: This kind of defense tries to
suppress the effectiveness of hidden triggers in the input
samples during training, thus preventing the model from
learning any correlation with the trigger.

In this paper, we aim to suppress the poison using data
augmentation and erase its effect from a trained poisoned
model by self-training. Thus, our work falls within the
scope of poison suppression and erasure-based defense.

2.3. Self-training
Self-training is a form of semi-supervised learning [10]
which attempts to leverage unlabeled data to improve
classification performance in the limited data regime.
Different types of semi-supervised learning paradigms
have been explored such as consistency training [44, 45,
46, 47] and pseudo-labeling [48, 49, 11].

In self-training, a good teacher model is initially
trained using the labeled data. This model is used to
generate pseudolabels for the unlabeled data which are
then used to train a student model. This same process is
repeated iteratively.

The main rationale behind this method is that a trained
teacher model would provide better predictions on unla-
beled data than pure chance. Because of the uncertainty
of the correctness of predicted pseudolabels, a confidence-
based example selection scheme [50] is often employed.
Here, a fraction of pseudolabels for which the teacher
model assigns the highest probability is used to train the
student model. This is repeated with increasing fractions
of unlabeled data till completion.

In recent studies, self-training has been shown to have
some capacity to incorporate diverse feature priors in
learning [12]. Thus, self-training may be able to use
more robust features in the data and not rely on the
backdoor trigger, if designed properly. Moreover, under
certain assumptions, it was shown that self-training could
avoid spurious correlations [13]. Thus, in this paper, we
study the usefulness of self-training in mitigating stealthy
backdoor attacks.



Table 1
Performance of a VGG-16 model trained with self-training
under different settings. The poison ratio of labeled portion
of CIFAR-10 is 0.1. The model was pre-trained on poisoned
labeled portion with (SA: 81.45 % ASR: 100 %)

Pseudo-labeling 𝛾(𝒟𝑈 ) SA ASR

𝒟𝑈 Clean 80.06 % 0.81 %
𝒟𝑈 0.1 72.22 % 100 %

𝒟𝐿
⋃︀

𝒟𝑈 Clean 81.25 % 99.98 %
𝒟𝐿

⋃︀
𝒟𝑈 0.1 76.45 % 99.98%

3. Preliminaries and Setup
Backdoor Attacks. We briefly describe the general
steps to a backdoor attack. We consider a clean dataset
𝒟 = {(xi, 𝑦𝑖)}𝑁𝑖=1 where xi is an image and 𝑦𝑖 is
the corresponding label. Based on a poisoning ratio 𝛾,
the clean dataset is divided into 𝒟𝑚 and 𝒟𝑛 such that
𝛾 = |𝒟𝑚|

|𝒟| and 𝒟 = 𝒟𝑚

⋃︀
𝒟𝑛. 𝒟𝑚 is modified with an

attacker defined poisoned image generator 𝒢 such that
𝒟𝑏 = {(x′, 𝑦𝑡) |x′ = 𝒢(x), (x, 𝑦) ∈ 𝒟𝑚}. For example,
one of the ways of poisoning images is to stamp a small
checkerboard pattern (called trigger) at a fixed location
of the image and change the labels 𝑦 to a target label 𝑦𝑡.
Finally, the poisoned dataset 𝒟𝑝 = 𝒟𝑏

⋃︀
𝒟𝑛 is sent to

the users who may train a DNN on this dataset leading to
the creation of a model vulnerable to backdoor attacks.
Threat Model. In this paper, we consider that the train-
ing dataset is maliciously poisoned using backdoor trig-
gers. However, the user has no prior knowledge on such
train-time data poisoning. The user can obtain such a
dataset, for example, by scraping images from the inter-
net. The goal of the user is to develop a training scheme to
train models that are not vulnerable to backdoor attacks
even at the presence of poisoned data samples.
Problem Setup. Different kinds of defenses against back-
door attacks have been proposed. However, defenses
based on self-training with blind data poisoning infor-
mation are still less explored. In this paper, we ask: How
is self-training with additional unlabeled data useful in
backdoor defense when the defender has no knowledge of
backdoor attack and no access to clean samples?

Formally, let 𝒟𝐿 be the labeled dataset and 𝒟𝑈 be
the unlabeled dataset which the user has at their dis-
posal to train a model. We assume the worst case,
where𝒟𝐿 is always poisoned with poison ratio 𝛾(𝒟𝐿).
The unlabeled data can be clean and in the worst case,
heavily poisoned. The poison ratio of the unlabeled data
is denoted as 𝛾(𝒟𝑈 ). However, the user has no attack
knowledge about any data. The model is trained using
self-training with only 𝒟𝐿 and 𝒟𝑈 . The performance of
the trained model is measured in terms of standard ac-
curacy (SA), which is the benign accuracy of the model

on clean samples and attack success rate (ASR), which
is the adversarial performance of the model on samples
stamped with the train-time backdoor trigger. ASR is
given by the fraction of the poisoned test samples from
the non-target classes which have been predicted as the
backdoor target class.

4. Backdoor Defense Via
Self-Training With Data
Augmentation

In this section, we describe our pilot study and the resul-
tant proposed approach for defending against backdoor
attacks using self-training.

4.1. Self-training meets Backdoor: a pilot
study

In what follows, we present an experiment that motivates
our further investigation in this direction.

We consider a small part of the CIFAR-10 dataset [51]
as labeled data𝒟𝐿 and the rest as unlabeled data𝒟𝑈 . We
pretrain a model on 𝒟𝐿 and perform self-training with
this trained model using𝒟𝐿 and the rest of the unlabeled
data 𝒟𝑈 . Detailed experimental settings are described
in Section 5.1. We consider the self-training algorithm
described in [12], which selects samples in each iteration
based on their confidence levels.

In Table 1, we report the performance of the model
when it is self-trained with additional unlabeled data with
varying poison ratio. The pseudo-labeling in self-training
can be performed on the unlabeled data only (𝒟𝑈 ) or on
all of the data (𝒟𝐿

⋃︀
𝒟𝑈 ). We eliminate any supervisory

loss from our self-training schemes because including
such a loss helps in successful backdoor creation, due to
the presence of backdoor triggers and malicious targets.
The key insights that we get from this are as follows:

• Additional clean unlabeled data may be able to
erase the backdoor effects from a poisoned model
[Table 1 row 1, ASR = 0.81%]

• However, naive pseudo-labeling of poisoned data
can nullify this effect. [Table 1 row 2-4, ASR
around 100% ]

This presents the opportunity for designing a more care-
ful self-training scheme to prevent backdoor attacks in
our problem setting.

4.2. Alleviating Backdoor Via Data
Augmentation

Spurred by the previous finding that naive pseudo-
labeling in self-training cannot mitigate backdoor, we
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Figure 1: BoxPlot for SA and ASR over different backdoor attacks with different data augmentations. Augmentations are
abbreviated as follows: GNoise: Adding Gaussian Noise with performance averaged over normal distribution of variance 0.2,
0.5, 0.7 and 1.0, RCS’x’: Random Cropping ’x’ part of the image and resizing, HFlip: Horizontal Flip, VFlip: Vertical Flip, Rot:
Random Rotation, GrSc: Grayscale, YOCO [53] : You Only Cut Once with performance averaged over horizontal cut and
vertical cut, GBlur_’x’_’y’: Gaussian Blur with kernel size x and standard deviation y of the Gaussian distribution, CJ: Color
Jitter, No Aug: No Augmentation, ’+’ denotes combining augmentations.

explore the landscape of data augmentations as “fea-
ture manipulation” mechanism to alleviate the effect of
backdoor trigger. Data augmentations not only help in
augmenting the dataset with additional data, but they
also make it harder for the model to overfit to “easy to
learn but bad” features [52]. This effect is especially pro-
nounced in non-linear models like neural networks. We
can think of the backdoor trigger as the “easy to learn but
bad” feature that has a strong correlation with the target
label, and hence we try to leverage the potential of data
augmentations in this case. In this context, [43] showed
that extremely strong data augmentation techniques like
MixUp [16] can mitigate backdoor attacks in a supervised
training scheme. In this paper, we explore the effect of
data augmentations in self-training.

We consider a wide variety of data augmentations to
understand their effect in the presence of a backdoor trig-
ger. VGG-16 models are trained on the labeled part of
CIFAR-10 with three different types of backdoor attacks.
For data augmentation, we consider rotation at different
angles, adding Gaussian noise with varying variances
of normal distribution, horizontal and vertical flipping,
random crop and resize (with and without flip), grayscale
conversion, color jitter, Gaussian blur, and CutOut [54].
We also combine suitable augmentations with YOCO [53]
to improve the diversity of augmentations. For augmenta-

tions involving stochasticity like RCS, color jitter, CutOut,
Gaussiam blur and Gaussian noise, we average the re-
sults of 6 independent runs. For color jitter, we randomly
choose brightness, contrast, saturation between 0.4-0.8
and hue between 0.1-0.2.

We perform the aforementioned augmentations sep-
arately on a fully poisoned test data and observe the
performance of these models as shown by the box plot in
Figure 1. Details of the attack and training settings are
included in Section 5.1. From Figure 1, we find that there
are large variances in ASR reduction across augmenta-
tions which signifies that there is no single augmentation
that can combat backdoors. However, we observe that
the augmentation of random cropping of 0.5 part of the
image combined with vertical flipping (RCS0.5+VFlip)
reduces ASR considerably. We consider this particular
augmentation for our future experiments.

4.3. Self-training with data
augmentations

The pseudo-labeling scheme in self-training enables us
to decouple any malicious targets from the training im-
ages. However, because of the strong correlation between
the backdoor trigger and the given target label, pseudo-
labeling would most likely predict the target label in the



Algorithm 1 Self-training with Data Augmentation

Params: Number of iterations N. Fraction added per
iteration k.
Input: Labeled data 𝒟𝐿 = {(𝑥𝑙, 𝑦𝑙)} with 𝒞 classes,
Unlabeled data 𝒟𝑈 = {(𝑥𝑢, 𝑦𝑢)}, model trained on
𝒟𝐿.
Data Augmentation: 𝒯
for iteration n ∈ 1, ..., 𝑁 do

forward-pass 𝒯 (𝑥𝑙) through model to create
pseudo-labels 𝑦*

𝑙

forward-pass 𝑥𝑢 through model to create pseudo-
labels 𝑦*

𝑢

𝒟𝑈𝐿 = {(𝑥𝑙, 𝑦
*
𝑙 )

⋃︀
(𝑥𝑢, 𝑦

*
𝑢)}

𝒟𝑛 = [];
for each class c do

Select the 𝑘𝑛|𝒟𝑈𝐿|
𝒞 most confident examples

from 𝒟𝑈𝐿 predicted by the model as class c
Add those examples to 𝒟𝑛 with class c;

end for
Re-train (warm start) the model on 𝒟𝑛 until con-

vergence;
end for
Train a standard model from scratch on 𝒟𝑁

presence of the backdoor trigger. This could be one of
the possible reasons of the high ASR in Table 1.

To take advantage of this decoupling phenomenon in
self-training, we propose pseudo-labeling on training
images with strong data augmentation. As mentioned
before, we choose “RCS0.5+VFlip” as data augmentation.
The proposed algorithm is given in Algorithm 1.
Rationale. The main rationale behind this algorithm is
that pseudo-labeling a transformed backdoored image
would reduce the chances of the model predicting the
malicious target label, as exhibited in Figure 1. However,
we propose to only pseudo-label a part of the total data
(in our case, we choose that to be the 𝒟𝐿), to prevent a
large reduction in standard accuracy.
Description. In the algorithm, we commence self-
training by taking a model pre-trained on the labeled
data as the teacher model. At the start of each iteration,
the teacher model predicts the pseudolabels of data aug-
mented labeled data 𝒯 (𝑥𝑙) and unlabeled data 𝑥𝑢. For
each predicted class 𝑐, a fraction of the most confident
examples are chosen to retrain a student model. In our
experiments, for each iteration, the same teacher model
is used as the student model for training, and then the
trained student model is treated as the teacher model in
the next iteration. The fraction of the data chosen to train
the model in each iteration is proportional to the itera-
tion number. Thus, this process continues till the whole
pseudolabeled data𝒟𝑈𝐿 (Algorithm 1) is exhausted. It is

important to note that we do not include any supervisory
loss in our training which is usually done in standard
self-training.

4.4. Self-Training via self-supervised
representation learning

In this section, we explore a stronger backdoor mitigation
strategy using self-supervised representation learning
with self-training.

We aim to use the exemplar-based self-supervised al-
gorithm SimCLR [17]. SimCLR is an instance discrimina-
tion based self-supervised method using contrastive loss,
with instances created using stochastic data augmenta-
tion. This contrastive learning framework learns a neural
network-based encoder that outputs a representation em-
bedding of the input data. The use of stochastic data
augmentation in SimCLR creates a similar opportunity
for alleviating backdoor using data augmentation and
combining it with self-training. In this context, [14] high-

Algorithm 2 Self-training with SimCLR

Params: Number of iterations N. Fraction added per
iteration k.
Input: Labeled data 𝒟𝐿 = {(𝑥𝑙, 𝑦𝑙)} with 𝒞 classes,
Unlabeled data 𝒟𝑈 = {(𝑥𝑢, 𝑦𝑢)}, model trained on
𝒟𝐿.
Train SimCLR representation encoder network 𝑓(·)
with 𝒟𝐿

⋃︀
𝒟𝑈

Representation embedding ℎ = 𝑓(𝒟𝐿)

𝒞 clusters← K-Means clustering of normalized ℎ

𝑦𝑐 ← Cluster Pseudolabels through Majority Voting
for iteration n ∈ 1, ..., 𝑁 do

if 𝑛 == 1 : then
Predict pseudolabels 𝑦*

𝑢𝑙 for (𝑥𝑙

⋃︀
𝑥𝑢) using

𝑦𝑐
else

forward-pass (𝑥𝑙

⋃︀
𝑥𝑢) through model to cre-

ate pseudo-labels 𝑦*
𝑢𝑙

end if
𝒟𝑈𝐿 = {(𝑥𝑙

⋃︀
𝑥𝑢, 𝑦

*
𝑢𝑙)}

𝒟𝑛 = [];
for each class c do

Select the 𝑘𝑛|𝒟𝑈𝐿|
𝒞 most confident examples

from 𝒟𝑈𝐿 predicted by the model as class c
Add those examples to 𝒟𝑛 with class c;

end for
Re-train (warm start) the model on 𝒟𝑛 until con-

vergence;
end for
Train a standard model from scratch on 𝒟𝑁



lighted the difference in representation space learned by
SimCLR and that learned by a supervised algorithm from
poisoned data, which may help in backdoor mitigation.
We describe our proposed method in Algorithm 2.

We initially train a SimCLR representation encoder
network 𝑓(·) as in [17] using the complete dataset. This
trained representation encoder is used to find the repre-
sentations embeddings ℎ of the labeled data. We cluster
these embeddings into 10 (number of classes) clusters
using K-Means clustering [55]. Since, for each of these
clusters, we are aware of the ground truth labels, we
pseudo-label the data in each cluster through majority
voting.

For self-training, pseudolabeling in the first iteration
is done using the previously attained clusters. For any
given sample 𝑥, we can simply find the representation
vector ℎ𝑥 = 𝑓(𝑥) and predict its corresponding cluster
by the minimum Euclidean distance between the cluster
centers and ℎ𝑥. The rest of the self-training proceeds as
described in Section 4.3.

5. Experiments

5.1. Implementation details
Datasets and networks. We consider VGG-16 model
[56] for training using CIFAR-10. We treat 20% of the
dataset as labeled data and consider the rest to be unla-
beled.

Additionally, we also perform a set of experiments
using the complete CIFAR-10 dataset as the labeled data.
For the unlabeled counterpart, we consider 80 Million
Tiny Images (80M-TI) dataset [57]. CIFAR-10 is a subset
of this dataset - however, many images in this dataset
do not belong to any of the classes of CIFAR-10. For
this purpose, an unlabeled dataset of 500K images were
constructed and made publicly available in [58]. Thus
we use CIFAR-10 + 500K unlabeled data as our dataset
and perform experiments with ResNet-18 [59].

Backdoor attacks and configurations. We consider
two main types of backdoor attacks for our experiments
which are as follows: (a) BadNet Backdoor Attack and (b)
Clean Label Backdoor Attack. For these attacks, we use a
trigger of size 5× 5, which is stamped at a fixed position
in the images (lower right corner). The BadNet trigger
can be a gray-scale patch or a RGB like [60] trigger and
the target label is always taken as 1.

For the Clean Label Backdoor attack, images from the
target class are perturbed by an adversarial perturbation
so that the learned representations are distorted away
from the true class. The adversarial perturbation was
performed using a 10 step-PGD attack on a clean trained
ResNet-18 model with the maximum perturbation 𝜖 =

8/255 and attack learning rate 𝛼 = 2/255. The images
are then stamped with a BadNet like grayscale trigger.

The data poisoning ratio in the labeled dataset is set to
be usually 10 % for the BadNet attack and 5 % (50 % from
the target class) for the Clean Label attack for successful
poisoning. The poison ratios for the unlabeled dataset
is given in Table 2. While using the 500K TinyImages
dataset as unlabeled data, we reduce the poisoning ratio
to prevent the absolute number of poisoned samples
from being too high.

Training and evaluation. For both pretraining and
self-training, we train our models with random cropping
of padding=4, random horizontal flips and random
rotation of 2 degrees. We use a SGD optimizer with a
momentum of 0.9 and a weight decay ratio of 1× 10−4.

Pretraining. We train the models on the labeled dataset
for 200 epochs with a batch size of 128. For CIFAR-10,
the initial learning rate is 0.01 which is decayed by 0.5 at
epoch 100. For CIFAR-10 + 500K TinyImages, the initial
learning rate is 0.1 which is decayed by 0.1 at epoch 90
and 180.

Self-training. We perform self-training for 𝑁 = 4 itera-
tions and in each iteration, fraction of data added = 0.3.
In each iteration, using the pseudolabeled dataset. In
each such iteration, we train the models for 150 and 110
epochs for CIFAR-10 and CIFAR-10 + 500K TinyImages
respectively. For CIFAR-10, the initial learning rate is 0.01
which is decayed by 0.5 at epoch 100, while for CIFAR-10
+ 500K TinyImages, the initial learning rate is 0.1 which
is decayed by 0.1 at epoch 50 and 100.

Finally, to end self-training, the model is trained
from scratch using 𝒟𝑛 (Algorithm 1, Algorithm 2). For
CIFAR-10, this is done for 300 epochs using SGD with
an initial learning rate of 0.01 which is decayed by 0.5
at 100 and 200 epochs. The corresponding training
using CIFAR-10 + 500K TinyImages is performed for 250
epochs with a learning rate of 0.1 which is decayed by
0.1 at epoch 90 and 180.

SimCLR training. For SimCLR, we use ResNet-18 as the
base-encoder network and a 2-layer MLP projection head
that produces a 128-dimensional representation space.
We use the NT-Xent loss [17, 61] (with a temperature
parameter of 0.5) for training SimCLR using SGD with a
0.6 learning rate, a momentum of 0.9 and a weight decay
ratio of 1× 10−6. This is trained for 1000 epochs with
a batch size of 512 with standard data augmentations as
used in [17].



Table 2
Performance using self-training with data augmentation (Algorithm 1) under different settings. Semi-supervised Baseline:
Self-training without data augmentation. In baseline, supervisory loss is not included for fair comparison of ASR. Poison Ratio
of Clean Label Attack is the ratio of poisoned samples in the target class.

Dataset Backdoor Attack 𝛾(𝒟𝑈 )
Pretrained Model Semi-supervised Baseline Proposed Method

SA ASR SA ASR SA ASR

CIFAR-10

BadNet Gray-Scale
0.1

81.65 % 100 % 75.32 % 100 % 70.45 % 75.02 %
BadNet RGB 81.45 % 100 % 76.45% 99.98 % 70.42 % 50.90 %

BadNet Gray-Scale
0.01

81.65 % 100 % 80.85 % 100 % 73.37 % 2.40 %
BadNet RGB 81.45 % 100 % 80.48 % 100 % 71.49 % 4.98 %

Clean-Label Attack 0.25 82.45 % 99.63 % 81.40 % 98.57 % 73.39 % 44.90 %

CIFAR-10 + 500K
TinyImages

BadNet Gray-Scale
0.01

94.32 % 100 % 89.09 % 99.98 % 84.81 % 14.41 %
BadNet RGB 94.70 % 100 % 90.19 % 100 % 84.19 % 14.33 %

Clean-Label Attack 0.05 93.78 % 99.07 % 89.43 % 91.19 % 83.67 % 20.61 %

Table 3
Performance of Algorithm 2. Attack used: BadNet Gray-Scale.
Dataset: CIFAR-10

Pretrained Model Proposed Method

SA ASR SA ASR

81.65 % 100 % 71.95 % 0.92 %

5.2. Experimental results
5.2.1. Self-training with data augmentation

We present the performance of Algorithm 1 in Table 2.
The performance is measured in terms of standard ac-
curacy (SA) and attack success rate (ASR) over different
backdoor attacks.

As mentioned in Section 4.3, we start self-training with
a pre-trained model trained on the labeled portion of the
data. We present the performance of the pre-trained
model for comparison. Moreover, a semi-supervised
baseline is included. The semi-supervised baseline con-
stitutes of Algorithm 1 without data augmentations i.e.
self-training is performed only through pseudo-labeling
the labeled and unlabeled data without augmentations.
No supervisory loss is included in the baseline, because
that would help in backdoor attack and not provide a rea-
sonable baseline for ASR. We observe that our algorithm
is successful in combating backdoor using self-training
(Table 2: ASR of Proposed Method).

In our experiments, we use the aforementioned strong
augmentation of random cropping of 0.5 part of the im-
age combined with vertical flipping. From Figure 1, we
found that the SA reduces to about 20% when such aug-
mentation is applied. However, we observe from our
experiments that in our algorithm, the drop in SA is sig-
nificantly less with considerable ASR reduction i.e. SA

may be gained from the unlabeled data.

5.2.2. Self-training with SimCLR

Table 3 presents the performance of the proposed Al-
gorithm 2 involving self-training with self-supervised
representation learning, SimCLR. We test the effective-
ness of this algorithm using BadNet GrayScale as the
backdoor attack (poison ratio 0.1) on CIFAR-10. As we
can see, this method is successful in improving the de-
fense against backdoor, but it comes with a trade-off with
the standard accuracy. Although only preliminary results
are presented, this shows the potential of self-training
integrated with SimCLR in backdoor defense.

6. Conclusion
In this paper, we take a step towards understanding the
potential of self-training as a learning paradigm for back-
door mitigation without any available clean data and
without any prior knowledge of train-time poisoning.
We propose the use of strong data augmentations on
part of the available data before pseudo-labeling in self-
training and also explore SimCLR as a stochastic data aug-
mentation framework in this context. We demonstrate
the potential of our method across different triggers and
datasets.

Our self-training scheme, while successful in reducing
backdoor, also leads to drop in standard accuracy. We
attribute this to mainly the usage of strong data augmen-
tation which leads to severe SA loss (Figure 1). However,
self-training is capable of recovering SA, while preserv-
ing the benefit of backdoor suppression from data aug-
mentation. This points to the potential development of
trigger-agnostic sophisticated augmentation techniques
that can leverage the self-training framework to reduce



ASR while maintaining SA. We hope that this work helps
to motivate a deeper understanding of self-training to-
wards its potential of backdoor mitigation, thus leading
to more secure deep learning algorithms.
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