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Abstract
Since the rise of Deep Learning methods in the automotive field, multiple initiatives have been collecting datasets in order
to train neural networks on different levels of autonomous driving. This requires collecting relevant data and precisely
annotating objects, which should represent uniformly distributed features for each specific use case. In this paper, we analyze
several large-scale autonomous driving datasets with 2D and 3D annotations in regard to their statistics of appearance and
their suitability for training robust object detection neural networks. We discovered that despite spending huge effort on
driving hundreds of hours in different regions of the world, merely any focus is spent on analyzing the quality of the collected
data, from an operational domain perspective. The analysis of safety-relevant aspects of autonomous driving functions, in
particular trajectory planning with relation to time-to-collision feature, showed that most datasets lack annotated objects at
further distances and that the distributions of bounding boxes and object positions are unbalanced. We therefore propose a
set of rules which help find objects or scenes with inconsistent annotation styles. Lastly, we questioned the relevance of mean
Average Precision (mAP) without relation to the object size or distance.
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1. Introduction and Motivation
The shift from classical programming paradigms to Ma-
chine Learning-driven approaches (ML) is significant.
Humans are nowadays often relying on decisions and
recommendations made by Artificial Neural Networks
(ANNs), however most of the applications are harmless.
This is not the case of Advanced Driver-Assistance Sys-
tems (ADAS), where wrong decisions can lead to severe
injuries [1]. The development of an ML-driven applica-
tion within this field follows strict processes [2, 3], from
acquiring data necessary for training to deploying and
evaluating the models. These processes comply with
functional safety standards [4, 5] but do not propose spe-
cific measures, nor concrete thresholds which the system
should pass before being publicly released. Moreover, it
is generally not feasible to collect the full variation of
information in a stochastic environment such as public
roads. This is why it is important to look deeper into the
possibilities of diagnosing and analyzing unbalanced or
missing information within large-scale datasets related
to the operation domain, i.e. a data-centric approach [6].

A data-centric approach lays the focus on ensuring
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that the data clearly conveys what the AI must learn. In
the case of higher levels of ADAS [7], the vehicle can
control the movement in longitudinal and lateral direc-
tions, while relying predominantly on cameras, radars,
and nowadays more frequently on LIDAR systems. One
example of an ADAS function is the Adaptive Cruise
Control (ACC). The task of ACC is to drive within the
lane at a certain speed and keep a safe distance from
any potential obstacle. The Time-To-Collision (TTC) for
each object is calculated for the purpose of keeping a
safe distance. If the TTC value decreases below a de-
fined threshold, a braking or evasive maneuver will be
initiated. Based on linear kinematic equations, where dis-
tance is equal to speed over time, the greater the speed
difference between the subject-automated vehicle (ego
vehicle) and the object in front of it, the shorter the TTC
will be, hence the ACC needs to plan in advance. As a
consequence, on highways, the ACC must incorporate
objects at a further distance (on camera images objects
will appear smaller) into the trajectory planning [8]. On
the contrary, in cities, where the maximum speed is lim-
ited to 50km/h, the average area of an encountered object
will be larger.

Motivated by these physical dependencies, we took a
deeper look at the annotated objects and analyzed their
statistical appearance. The examination was done in
regard to the functionality of ACC, in state-of-the-art
(SOTA) large-scale automotive datasets. Our contribu-
tions are as follows:
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• We define a minimum safe distance 𝑠𝑚𝑖𝑛 =
𝑓(𝑣, 𝑎𝑚𝑎𝑥) for a variety of scenarios (ego speed 𝑣 and
weather dependent deceleration 𝑎𝑚𝑎𝑥). We calculate
the safe distance based on German legislation, but the
process can easily be adapted to any other legislation.

• We analyze the distribution of objects’ bounding boxes’
(BB) relative sizes, distances to ego vehicle, and posi-
tions in the datasets.

• We define a set of standardizable sanity checkers which
help verify the quality of the collected data and mark
ambiguously labeled data.

• We highlight the concrete missing information which
is not part of the datasets and diagnose the cause.

• We propose an automotive mean Average Precision
(amAP) metric, which is now related to the distance to
the object, or relative BB size.

2. Datasets and Related Work

2.1. Automotive Datasets
As mentioned in Section 1, the prerequisite for the cor-
rect functionality of the ACC is information about ob-
ject classes, sizes (used in case of overtaking or evasive
maneuver), and distances of the objects to the ego ve-
hicle. Several common automotive datasets are there-
fore not suitable for such a task, despite some of them
providing LIDAR data, namely BDD100K [9] (no LIDAR
data), CityScapes [10] (no bounding box annotations),
Perl [11] (no 3D annotations) or Apollo Scape [12] (no
images, only LIDAR). The other group of datasets con-
tains images and LIDAR point clouds including the 2D
as well as the 3D annotations. It is for this reason that
we decided to take the following large-scale automotive
datasets into account: KITTI [13], Audi Autonomous
Driving Dataset (A2D2) [14], Lyft Level 5 dataset [15],
nuScenes dataset [16], Waymo Open Dataset [17] and
the ONCE dataset [18].

Each dataset contains a various number of labeled
objects like small vehicles (vehicle, ego vehicle, SUV, mo-
torcycle, etc.), large vehicles (truck, bus, tram), pedestri-
ans, and cyclists. Especially KITTI and nuScenes show
high-class imbalance for some classes due to fine-grained
classes. Furthermore, the selected datasets contain la-
beled camera images with 2D and 3D bounding boxes and
the corresponding LIDAR point cloud information which
provides distance information for each object. However,
the size of the datasets, in terms of the number of labeled
frames and captured ambient conditions, varies. For in-
stance, A2D2 provides a dataset of 2D labeled images, but
only a small part contains 3D bounding boxes. KITTI,
nuScenes, LyftLevel5 and Waymo reflect only urban

areas whereas A2D2 and ONCE also contain highways,
country roads, tunnels etc. On top of that, the sensor
setups vary as well, e.g. different camera resolutions. For
the KITTI dataset, the authors used a LIDAR sensor and
two stereo cameras (left and right), whereas for Waymo
five LIDARs (restricted to 75m) and five cameras were
used. nuScenes used six cameras and one LIDAR sensor
as well as five radars, ONCE uses one LIDAR and seven
cameras, and A2D2 five LIDARs and six cameras. How-
ever, for the ACC, only the front cameras are taken into
account, resulting in a smaller amount of usable images.

The KITTI dataset is the smallest in terms of scenes
and the least diverse, containing only sunny and cloudy
daytime scenes. For a short period of time, the Waymo
and nuScenes datasets provided the largest variety and
amount of data and annotations; they are among the most
widely-used autonomous driving datasets. Although the
ONCE dataset recently set a new benchmark for the
amount of driving hours and frames, Waymo contains
the highest amount of 3D bounding boxes because ONCE
focuses on self-supervised learning without labels. Ta-
ble 1 gives an overview of important general information
per dataset.

2.2. Dataset Analysis
The authors of the above-mentioned datasets compared
their works based on the common aspects of the datasets
as shown in Table 1. General properties like the number
of driving hours are often used to compare datasets and to
state an improvement. Moreover, the number of scenes,
images, or annotations is often used to determine the
quality of the datasets.

For instance, the authors of the ONCE [18] and
A2D2 [14] dataset focus on the number of annotations,
the amount of driving hours, the adverse weather condi-
tions, the time (day/night) and different locations (urban,
highway, country roads) as well as countries/cities where
the data was captured. However, specific requirements
of driver assistance systems were not considered while
creating or evaluating any of those datasets. The intent
was rather to generate general datasets for a wide range
of supervised and unsupervised learning tasks as well as
driving functions.

The authors of A2D2, as well as nuScenes, focused
on statistics relevant to the ACC and other assistance
systems. Their work provides information about the
distribution of the object distances for different classes
as well as the absolute number of objects within the
dataset. Additionally, the authors of nuScenes analyzed
the distributions of the velocities of common objects like
vehicles and bikes as well as bounding box dimensions.

The KITTI benchmark [13] is based on the perfor-
mance analysis of neural networks on the size of BBs
in pixels as a proxy for the distance of the ego vehicle



Table 1
Comparison of analyzed datasets. Cells with "-" indicate not mentioned in the original paper.

Dataset Scenes # images
# 3D

Bounding Boxes
Ambient
conditions

# classes
Year of
release

ONCE [18] 1M 7M 417k
urban, highways,

country roads;
day/night; various weather

5 2021

nuScenes [16] 1k 1.4M 1.4M 23 2020

A2D2 [14] - - -
urban, highways,

country roads;
day; various weather

14 2020

LyftLevel5 [15] 366 323k 1.3M urban; day; various weather 9 2019

Waymo [17] 1150 1M 12M
urban; day/night;
various weather

4 2019

KITTI [13] 22 15k 200k urban; day; sunny, cloudy 8 2012

to the object. Their work in general follows the COCO
evaluation methodology [19], but no physical distance in-
formation is used. The authors of nuScenes andWaymo
did set a baseline for various detection tasks, yet without
considering the distances to the different objects explic-
itly. The analysis closest to ours is done by the authors
of the ONCE dataset. They analyzed the collected data
regarding distance-wise mean Average Precision perfor-
mance for 3D object detection using only point clouds.
However, their distance thresholds were selected rather
intuitively, whereas we specifically derive the distance
from the domain safety requirements. Additionally, we
analyze the spatial distribution of objects within the im-
ages as well as the bounding box/object size compared
to the image size.

3. Background
Since the majority of related works only analyze datasets
from a general ML perspective, omitting the point of
data-centric paradigm, we decided to verify the SOTA au-
tomotive datasets in regard to a trajectory planning task.
One part of our motivation is that forecasting the trajec-
tory planning is conditioned by ego’s vehicle velocity,
which in case of higher value takes the further-distance
objects into account. In order to be able to evaluate the
sufficiency and quality of annotated objects within the
datasets, we’ve chosen the Time-To-Collision as an in-
stance to calculate the minimal safe distance from the
ego vehicle.

For the sake of simplicity, we do not consider any
obstacle heading from the opposite direction (on the col-
lision course), since we are working with static images
and thus don’t have the information about the relative
motion of the objects. As described in [20]: "The TTC
value at instant 𝑡 is defined as the time for two objects
to collide if they continue at their present velocity and

on the same path". Let’s define the first object to be an
obstacle (anything else than the ego vehicle) and the
second object to be the ego vehicle. We consider the ve-
locity of an obstacle to be equal to 0km/h (representing
the stand-still object and therefore the worst-case sce-
nario), and the ego vehicle’s deceleration to be 7 𝑚/𝑠2

(can variate within a range from 7 𝑚/𝑠2 till 10 𝑚/𝑠2 on
dry roads [21],[22]). Vehicle deceleration can be seen as
a function of adhesion between the tires and the road,
which depends on the material used in the tires, material
of the road, temperature, weather conditions, mounted
braking system, and the mass of the vehicle.

Based on the definition of TTC, let us consider three
driving scenarios:

• highway (recommended speed 130𝑘𝑚/ℎ ≈ 36𝑚/𝑠)

• country road (maximum speed 100𝑘𝑚/ℎ ≈ 28𝑚/𝑠)

• city (maximum speed 50𝑘𝑚/ℎ ≈ 14𝑚/𝑠)

We now compute the minimal safe distance which
needs to be ensured in order to brake in time (with-
out initiating any evasive maneuver), for the following
case: ego vehicle is driving on the highway, the pos-
sible deceleration is equal to 7𝑚/𝑠2 and reaction de-
lay is 0.0𝑠. Based on the kinematic equations of a lin-
early decelerating object, the distance which the object
will travel is a function of time 𝑠 = 𝑠0 + 𝑣0𝑡 − 1

2
𝑎𝑡2,

where time 𝑡 is a function of deceleration 𝑡 = 𝑣0−𝑣
𝑎

.
With a linear deceleration of 7𝑚/𝑠2, the vehicle, moving
within the legal limits, will reach its standstill state in
time 𝑡 = 𝑣0−𝑣

𝑎
= 36−0

7
= 5.14𝑠. Within this time

frame, the ego vehicle will travel a distance of 𝑠 =
0+36 ·5.14− 1

2
·7 ·5.142 = 185.04−92.46 = 92.58𝑚.

For completeness, the braking distance under the same
weather conditions on country roads is 55.11𝑚 and in
the city 14𝑚 as can be seen in Table 2. As mentioned
earlier, this process can be generalized and repeated for



Table 2
All scenarios with calculated minimum safe distances.

Scenario
Max. allow

speed
[km/h]

Time to
stand still

[s]

Min. safe
distance 𝑑𝑠

[m]
highway 130 5.14 92.58
country
road

100 4.00 55.11

city 50 2.00 14

any ambient conditions, type of vehicle, and speed limi-
tations.

It is noticeable that the highway’s maximum foresight
boundary will be in reality limited by the physical prop-
erties of the camera or the maximum speed difference
between the ego vehicle and the object. But most impor-
tantly, objects within those safe ranges must be part of
a dataset (training and testing), otherwise, the system
will deal with an epistemic uncertainty [23]. In order
to be able to investigate the statistics of objects’ appear-
ances, we need a dataset that provides information about
the object’s distance. As mentioned in Section 2, some
datasets such as Perl and BKK100, etc. are not suitable for
this task. Consequently, we have chosen the following
large-scale automotive datasets: KITTI, Waymo open
Dataset, A2D2 from Audi, nuScenes, LyftLevel5 and
ONCE, which contain 3D annotations and distances to
the objects.

In regard to the functionality of trajectory planning, we
focused on the following in-dataset object characteristics:

• distribution of a BB’s relative size: in order to verify
that a variety of objects’ sizes is captured within the
dataset,

• distribution of the distance between obstacles and the
ego vehicle (with relation to minimum safe distances):
in order to verify that objects in further distances are
incorporated within the dataset,

• relation between BB’s relative size and object distance
from ego vehicle: to discover abnormality within the
dependency,

• heatmap of an object’s appearance density: to visualize
the potential asymmetrical appearance of an object
with relation to the ego vehicle,

• an optical flow between consecutive images; in order
to identify a series of static images, which can lead to
class imbalanced dataset.

As originally presented in [19] and further explored
in [18], it seems to be reasonable to observe the mean
Average Precision with relation to a specific object’s size.
Since the original authors clustered the object groups

rather generally (small, middle, big), we propose to have
clearly specified operational domain dependencies and
incorporate the minimum safe distances as thresholds.
Furthermore, the relation of AP to the objects’ relative
BB sizes or distance highlights detailed discrepancies
between the model’s performance trained on the same
dataset. We therefore incorporate the minimal safe dis-
tance 𝑑𝑠 of each scenario as a threshold for the creation
of test subsets 𝒜 ⊂ ℬ ⊂ 𝒞 from original test dataset
𝒟. For instance 𝒜 contains objects only in distance
> 𝑑𝑠(ℎ𝑖𝑔ℎ𝑤𝑎𝑦). For each subset the average precision
can be calculated, representing a concrete value for a
specific operational domain e.g. driving in the city. Equa-
tion 1 represents a different perspective on the average
precision metric, which we call automotive mean AP.

𝑎𝑢𝑡𝑜𝑚𝑜𝑡𝑖𝑣𝑒 𝑚𝐴𝑃 =
1

𝑛𝑐

𝑐∑︁
𝑖=1

𝐴𝑃𝑛𝑖 , (1)

where 𝑛𝑐 is a number of domain specific test-subsets.

4. Analysis of datasets
In this chapter we analyze all datasets from Table 1 for
the characteristics mentioned in Section 3. In order to
evaluate the model’s generalization ability, the collected
data has to be divided into two parts, namely training
and validation. The training part is used for extracting
the relevant features and finding a reasonable combina-
tion in order to build a high-level feature representation,
whereas the validation part is used to evaluate the loss
after each training cycle (epoch). The training loop usu-
ally ends when the loss, on a validation set, stagnates for
several epochs [24]. Logic demands that both the training
and validation parts should have uniformly distributed
objects densities and their properties (e.g.size, distance).
We therefore decided to evaluate the correlation between
the theoretical uniform distribution and observed one by
calculating the Wasserstein distance [25].

4.1. Analysis of outliers
There is no reason to assume that all data are flawlessly
annotated since the task is usually done by several peo-
ple, which increases the uncertainty of an inconsistent
annotation style. We therefore designed plausibility
check functions which allow us to indicate the poten-
tially wrong annotated data and analyze them later on.

• 𝑓1 : 𝑟𝑒𝑡𝑢𝑟𝑛 (0.0 ≥ 𝑟𝑒𝑙.𝑏𝑏.𝑠𝑖𝑧𝑒 > 1.0)

• 𝑓2 : 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑒−
𝑑𝑖𝑠𝑡
𝑑

+𝑙𝑜𝑛𝑔.𝑐𝑎𝑚.𝑜𝑓𝑓 )

• 𝑓3 : 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐(𝑏𝑏𝑖, 𝑏𝑏𝑗) > 𝑡ℎ𝑟𝑜𝑣𝑒𝑟𝑙𝑎𝑝)

• 𝑓4 : 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑜𝑝𝑡.𝑓𝑙𝑜𝑤(𝑖𝑚𝑔𝑖−1, 𝑖𝑚𝑔𝑖) > 𝑡ℎ𝑟𝑠𝑡𝑎𝑡𝑖𝑐)



The function 𝑓1 returns a bounding box whose rela-
tive size is out of the range (0.0, 1.0]. The outliers of
otherwise exponentially decayed objects’ size with re-
spect to the distance to the ego are marked by function
𝑓2. This function covers the quadratic dependency of the
BB area and the mapping of the captured object within
the real world to the pixel coordinates. The parameter
𝑙𝑜𝑛𝑔.𝑐𝑎𝑚.𝑜𝑓𝑓 and the denominator 𝑑 were found with
the least squares optimization from the analyzed data
and therefore are unique for each dataset and each class.
The function 𝑓3 highlights objects whose bounding boxes
significantly overlap. The threshold of the relative inter-
section area can be defined by 𝑡ℎ𝑟𝑜𝑣𝑒𝑟𝑙𝑎𝑝.

Examples of the outcomes for functions 𝑓1 − 𝑓3 are
given in Figure 1. We further found that most of the
datasets contain sequences of "stop and go" in a traffic
jam, or idling at crossroads. These situations result in
the recording of many similar images without objects or
surrounding variation. Therefore we added 𝑓4, which
calculates a dense optical flow [26] from previous and
actual images in the sequence and returns a positive flag
in case the magnitude sinks bellow empirically defined
threshold as seen in Figure 2. The higher the value of the
magnitude, the more objects were moving from frame
to frame. With this method, we could even identify if
the data were recorded repeatedly in the same place [27]
(when recorded in one session), but we only used it to
discover static scenarios.

(a)
(b)

(c) (d)

Figure 1: Examples of outliers (potentially wrongly annotated
data) within the analysed datasets. Images (a, b) capture
overlapping BBs, whereas images (c, d) contain objects where
the relative BB size doesn’t correlate with the object distance.
We further encourage to analyse such a subset of filtered
images and adapt the parameters of the outliers function
𝑓1 − 𝑓4 to make them suitable to the target domain.
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Figure 2: As visible on the figure, 2.3% of the nuScenes dataset
are "stop and go" scenarios, where the magnitude of the dense
optical flow drops below a static scene threshold. The thresh-
old was recalculated for each dataset based on the image
resolution.

4.2. Overall results
Exemplary results of the analysis of the objects’ distances
distribution as well as the relation between the relative
BB size and object distance can be seen in Figures 3 and 4.
Moreover, we show an example of object appearance
variation (heatmap) of class Vehicle in the A2D2’s dataset
in Figure 5.
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Figure 3: The information from subset (0.0 to 14.0) meters will
be used in scenarios where a vehicle is driving less than 50km/h
(idling on a crossroads, for instance). However, the A2D2
dataset doesn’t contain any objects with the minimal safe
distance necessary for highway driving (92.58m and more).

5. Concluding Remarks
To summarize, most of the SOTA autonomous driving
datasets are generated with a focus on a large amount of
scenes/driving hours/frames while considering different
weather, location, and daylight conditions. However, as
we discovered, none of the datasets contains a sufficient
amount of information for safe autonomous driving on
the highway (described in Section 3). Every analyzed
dataset was lacking high-distance annotated objects, as
can be seen in Table 3. Such a gap can be explained by the
physical limitations of the camera (too low resolution),



Table 3
Comparison of the analysed datasets highlighting the best results in regard to the training of an object detector used for
trajectory planning.

Research Questions Class ONCE nuScenes A2D2 LyftLevel5 Waymo KITTI
Which dataset contains
the most distant objects
(driving ≥ 130𝑘𝑚/ℎ)?

Ped.
Veh.

0
0

6
2464

0
4

55
1574

0
0

0
0

Which datasets has the most
uniform distribution according
to the Wasserstein distance?

Ped.
Veh.

0.86
0.74

0.82
0.57

0.80
0.81

0.60
0.50

0.65
0.53

0.89
0.70

Which datasets has the least
outliers based on our sanity
check filters (f1 - f3)?

All 212 4742 563 146 6935 288

Which dataset contains the
least static images according
to optical flow f4?

All 358 786 157 59 895 77
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Figure 4: The black curve indicates the outliers’ decision
boundary of otherwise exponentially-decayed objects size
with respect to the distance to the ego. Outliers can indicate
rotated, or wrongly annotated (with unnecessary big margin)
objects.
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Figure 5: The number in the top left corner of each quadrant
indicates the number of objects’ appearances in the respective
area. Contrary to the expected symmetrical heatmap, the
vehicle appears with different quantities and sizes on both
sides of the ego. The distribution is obviously unbalanced in
the vertical and horizontal directions containing the majority
of the objects in the lower half of the image. Such a statistical
information can be used in post-processing by plausibility
check of objects appearance.

the annotation style (objects under a certain pixel area
were excluded from the annotation process), and the
ambient conditions in which the dataset was recorded. In
addition, a system trained on such a dataset would have
to deal with epistemic uncertainty and look for additional
sources of information (namely LIDAR).

Furthermore, all datasets contain predominantly small-
sized objects (the highest MEAN value of the relative BB
size of the class Person was 0.091 in the case of the KITTI
dataset). For comparison, the same can be stated for the
well-known COCO dataset [19], where the class Person
has a MEAN relative BB size equal to 0.089. By generating
heatmaps, we discovered that 99.8% of the objects appear
only in the two lower quadrants of the image. Such
information can lead to a significant downsizing of the
field of view and the thereof acceleration of the detectors’
inference time. The majority of overlapping BBs, with
potentially wrong annotation styles, were extracted from
a sequence of streams on crossroads. Such a static data
sequence (9.55% in case of nuScenes dataset) contains
a lot of similar features (the majority of surrounding
objects are not moving) and could be removed from the
dataset.

Finally, we defined and evaluated a reasonable set
of rules, described in Section 4.1, which automatically
proves the quality of the collected data from a domain-
related perspective. We encourage the community to use
our "domain-centric" approach in order to create a dataset
under concrete functional constraints and train detectors
on it. Our code and additional results are published on
GitLab and can be publicly accessed. 1

This work deepened our vision of a domain-centric ML
approach in the automotive industry. To conclude, we
outline some research directions which we are currently
investigating: (a) Analysis of automotive mAP based on

1https://gitlab.com/arrk-fi/ObjectDetectionCriticality/-/tree/
dependency_branch.

https://gitlab.com/arrk-fi/ObjectDetectionCriticality/-/tree/dependency_branch
https://gitlab.com/arrk-fi/ObjectDetectionCriticality/-/tree/dependency_branch
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Figure 6: Left: We picked a Small Vehicle class where a various BB relative size density can be seen. It is visible that the
majority of large objects has very small relative BB size. Right: We show the distance to object distributions of class pedestrian
for each dataset, where 𝑛𝑠𝑎𝑚𝑝 is number of samples and 𝑤𝑑𝑖𝑠𝑡 is Wasserstein Distance between Uniform distribution 𝒰 and
the dataset distance to object distributions. The lower the value, the closer the two distributions are.

the relative BB size or distance to object with SOTA ob-
ject detectors. (b) Object detector performance analysis
on cleaned data (without outliers). (c) Dataset creation
with respect to our domain-centric approach. (d) Com-
bination of datasets in order to achieve a more uniform
data distribution. (e) Data augmentation to compensate
weak aspects in the datasets.
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