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Abstract

A number of challenges are associated with the use of machine learning technologies in safety-related applications. These
include the difficulty of specifying adequately safe behaviour in complex environments (specification uncertainty), ensuring a
predictably safe behaviour under all operating conditions (technical uncertainty) and arguing that the safety goals of the
system have been met with sufficient confidence (assurance uncertainty). An assurance argument is therefore required
that demonstrates that the effects of these uncertainties do not lead to an unacceptable level of risk during operation. A
reinforcement learning model will predict an action in whatever state it is in - even in previously unseen states for which a
valid (safe) outcome cannot be determined due to lack of training. Uncertainty estimation is a well understood approach
in machine learning to identify states with a high probability of an invalid action due a lack of training experience, thus
addressing technical uncertainty. However, the impact of alternative possible predictions which may be equally valid (and
represent a safe state) in estimating uncertainty in reinforcement learning is not so clear and to our knowledge, not so well
documented in current literature. In this paper we build on work where we investigated uncertainty estimation on simplified
scenarios in a gridworld environment. Using model ensemble-based uncertainty estimation we proposed an algorithm based
on action count variance to deal with discrete action spaces whilst considering in-distribution action variance calculation
to handle the overlap with alternative predictions. The method indicates potentially unsafe states when the agent is near
out-of-distribution elements and can distinguish it from overlapping alternative, but equally valid predictions. Here, we
present these results within the context of a safety assurance framework and highlight the activities and evidences required
to build a convincing safety argument. We show that our previous approach is able to act as an external observer and can
fulfil the requirements of an assurance argumentation for systems based on machine learning with ontological uncertainty.
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1. Introduction

The application of Machine Learning (ML) to safety-
critical cyber-physical systems such as industrial robots
and automated vehicles has the potential for greatly in-
creasing the level of automation in complex environ-
ments. However, the use of ML is met with many practi-
cal challenges, in particular regarding resource, timing
and performance constraints. The most dominant obsta-
cle to the deployment of such systems is the difficulty in
demonstrating the absence of unreasonable risk of unsafe
actions due to erroneous outputs of the ML model. These
errors are caused by a combination of insufficiencies due
by epistemic uncertainty in the model and the occurrence
of inputs and states that uncover these insufficiencies,
themselves subject to aleatoric uncertainty. [1] argued
that a causal understanding of insufficiencies can be used
to reduce uncertainties in the performance of ML in an
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iterative manner. Based on a specification of safety ac-
ceptance criteria, a measurement of the error rate of the
ML function is used to evaluate the impact and potential
causes of ML insufficiencies. This analysis is used to de-
rive design-time and operation-time measures to reduce
residual safety risk (Figure 1). Design-time measures re-
duce the occurrence of insufficiencies in the model, e.g.
by restricting the scope of the operating environment,
optimizing the ML technique and architecture or redefin-
ing training conditions. Operation-time measures reduce
the impact of residual insufficiencies in the model, e.g.
through plausibility analysis or heterogeneously redun-
dant calculations of the target function.

Reinforcement learning (RL) is well suited to systems
operating in complex environments with high demands
on flexibility such as in route planing or motion control
of mobile robots. As an RL agent will predict an action in
whatever state it finds itself, the application can benefit
from an awareness of the certainty and confidence in
its own decisions. This includes situations that fall both
within as well as outside of the distribution of previously
seen training data. This paper focuses on uncertainty
estimation as an operation-time measure to detect states
which could lead to errors in the ML model. Specifically,
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Figure 1: Safety Assurance Framework for machine learning
systems (adapted from [1])

we evaluate the detection of out-of-distribution (OOD)
inputs to address the impact of distributional shift.

Distributional shift in data science is widely under-
stood as the distributional difference between training
and test data (respectively data used during the infer-
ence or deployment phase) [2][3][4][5]. Distributional
shift can have different causes, such as natural perturba-
tions to the data-set due to aleatoric uncertainty as well
as evolving conditions in the environment. In machine
learning, a shift in the probability distribution over state-
action pairs often leads to degraded performance in the
inference phase, leading the agent to propose wrong or
sub-optimal actions. When the testing distribution differs
from the training distribution, machine learning systems
may not only demonstrate poor performance, but also
have false confidence in the validity of their actions.

To overcome this limitation, safe reinforcement learn-
ing (safe RL) solutions must be capable of detecting and
handling the uncertainty in the decision-making process.
For instance, uncertainty estimation can detect a lack of
generalization due to insufficient training and unseen
states during training (OOD, epistemic uncertainty) as
well as uncertainty resulting from randomness in the
environment (aleatoric uncertainty). For epistemic un-
certainty, a set of alternatively trained agents (ensemble)
can be used. In states with high uncertainty due to a
lack of training, the different agents will likely predict
different actions, due to a lack of substance of the predic-
tion. This variance can be utilized to indicate uncertainty.
However, there may be states with various, equally valid
actions that would also result in a variance in the outputs
of the ensemble. Therefore, it is necessary to differentiate
between the two effects.

2. Related work

Recent work has addressed OOD detection in the clas-
sical image classification domain as well as some work
in the RL domain. [6] define novelty detection as the

classification of test data that differ in some respect from
data available during training. A model with insufficient
training data is less able to generalize based on unseen
test data even if this data does not contain “novel” con-
cepts. Similarly, [2] characterize OOD as test data, which
are from a different distribution as the training data and
describe OOD detection as a threshold-based process.
The closer the data are to the training data distribution
the more likely it is that this is caused by a lack of train-
ing data only. OOD data further away from the training
data distribution are more likely to represent conceptual
or semantic differences, such as samples which are com-
pletely outside of the given classifications. Deep neural
networks (DNNs) tend to be overconfident in predictions
on unseen data and can give unpredictable results for
far-from-distribution test data [3].

Prior work focused on OOD as a concept of samples
that fall outside the defined set of classes. If samples
are from outside this set, correct classifications for these
samples, by definition, cannot be learned, even with un-
limited training. To address this issue, it is common to
specify a separate OOD class to train the model on [6].
Similarly, [7] and [8] define OOD samples as examples
for classes different from those in the in-distribution (ID)
dataset. [4] describe ID as a distribution trained by a clas-
sifier and OOD as sufficiently different from it. Also, [9]
follow the approach of considering a strong difference
between training and test data to be OOD. They describe
ID data as conceptually similar to training data and OOD
data as differing strongly from training data. [10] go as
far as to define OOD by the distributional gap in between
classified ID data sets. They propose to maximize the
discrepancy between the decision boundaries of e.g. two
classifiers to push OOD samples outside. They also follow
the concept of near and far from the distribution.

Furthermore, it is important to understand the differ-
ence of epistemic and aleatoric uncertainty for uncer-
tainty estimation as a proxy for OOD detectors. Epis-
temic uncertainty arises out of a lack of sufficient data to
exactly infer the underlying system [11]. It can indicate
samples that reside far away as well as close to the data
distribution [5]. In contrast, aleatoric uncertainty arises
from stochastic environments and must be accounted for
in risk-sensitive applications [12], [13]. Aleatoric uncer-
tainty cannot be solved just by more training. The impact
of aleatoric uncertainty is therefore a significant factor in
arguing the safety of RL-based safety-critical applications.
In [14] the authors propose ensemble quantile networks
(EQN) based on the work of [15] where they combine im-
plicit quantile networks (IQN) for aleatoric uncertainty
detection and utilize random prior functions (RPF) [16]
as an ensemble based method for epistemic uncertainty
estimation. As epistemic uncertainty originates from
model insufficiencies, a model ensemble will output a
distribution over different estimates in an uncertain state



(distribution over outputs). Aleatoric uncertainty arises
from the randomness in the environment and causes a
distribution over returns from the environment to the
models input (distribution over returns/inputs). How-
ever, in this paper we focus on the detection of epistemic
uncertainty, as we focus on distributional shift and OOD
detection.

[17] investigate a distributional RL algorithm D3PG,
which models the uncertainty in the form of a return
distribution in which the expected value is the Q-value.
Different actions might be used when the distribution
is bimodal or multimodal depending on the application
scenario. [18] present an uncertainty-aware model-based
learning algorithm that estimates the probability of col-
lision together with a statistical estimate of uncertainty.
The predictive model is based on bootstrapped neural
networks using dropout. In regions of high uncertainty,
their risk-averse cost function causes the robot to revert
to a cautious low-speed strategy. In [19] the authors pro-
pose an action-advising framework where the agent asks
for advice when its epistemic uncertainty is high for a
certain state to accelerate reinforcement learning. They
add as a last layer multiple heads estimating separately
expected values for each action, as done in Bootstrapped
deep Q-learning (DQN). As the learning algorithm up-
dates the network, their predictions get closer to the real
function, and one close to the others. [11] use uncer-
tainty based OOD, using Q-value uncertainty in DQN
Algorithm. They compare MC-Dropout, Bootstrapped
and Bootstrapped with prior functions. They also address
the problem of overlapping alternative (equally valid) pre-
dictions of the model agent. Unfortunately, they do not
dig into detail, when it comes to the uncertainty estima-
tion in those cases but rather calculate an overall estimate
for the epoch.

[20] estimate uncertainty for RL based on ensembles
with randomized prior functions (RPF). They are based
on [16] and propose a criterion function. They choose
safe actions in unknown situations far from the training
distribution. In [14] they also utilize an ensemble of DQN
agents to estimate Q-value uncertainty to switch back
to a fallback policy in uncertain situations given a cer-
tain threshold. An ensemble is trained on bootstrapped
data, which provides a distribution over the estimated
Q-values to provide a Bayesian estimation of the epis-
temic uncertainty. The epistemic uncertainty estimate
is then be used to choose less risky actions in unknown
situations. However, they don’t take into account a poten-
tial overlapping uncertainty due to possible alternative
actions.

One of the key questions to be answered from a safety
assurance perspective is how does the OOD detection
as an operation-time measure really help to prevent haz-
ardous conditions? This requires OOD detection to be
able to detect novel data that relates to an increase of

risk, and to do so with sufficient accuracy and timeliness
so that the system can be brought into a safe state before
the risk becomes unacceptable.

The interaction between the development of ML spe-
cific methods for optimizing performance and safety as-
surance was not observed in much previous work. In [21]
the authors describe a collaborative and iterative process
where ML method developers are supported by safety
engineers to ensure the method contributes to the over-
all system safety assurance argument. This includes the
systematic argumentation of the effectiveness of design
and operation-time measures, an evaluation of the per-
formance of the ML function against quantitative safety
acceptance criteria and an analysis of the causes of insuf-
ficiencies in the model in order to derive more effective
design and operation-time methods. Nevertheless, un-
certainties in the assurance of the safety of ML functions
will remain.

The closed-box nature of ML algorithms and the con-
sequent reliance on observational evidence coupled with
the inherent epistemic uncertainty of the models (com-
pared to traditional software) whilst operating within an
environment with high aleatoric uncertainty lead to a
lack of confidence in our statements about the safety of
the resulting system (assurance uncertainty). [1] refers
to this challenge as the need to infer certain safety claims
based on incomplete observations and defines a set of
conditions to formalise this statement. This requires the
use of rigorous argumentation to justify why an accept-
able level of safety can be asserted despite the inherent
limitations in the available evidence. In [22], based on
[23], Baconian probability is proposed as a concept for
estimating confidence in assurance arguments [24] based
on how many possible assurance deficits (known as “de-
featers”) of an argument can be eliminated. Confidence
claim patterns were introduced which aim to identify all
possible defeaters and demonstrate that they are either
unlikely or not of significance. In section 4 we return
to the challenge of arguing the safety contribution of an
uncertainty estimation-based OOD detector by highlight-
ing some of the possible defeaters to the safety argument
can be identified and addressed as part of an iterative
process.

3. Ensemble uncertainty
estimation based on action
count variance and delta to ID

In [25] we proposed uncertainty estimation with action

count variance (ACV) and delta to ID (IDD). In the next
section we will give a slightly reduced repetition.



3.1. Background
3.1.1. Reinforcement learning and MDP

In RL, the goal is to find the best policy for an agent that
makes sequential decisions while interacting with an en-
vironment modeled as a Markov decision process (MDP).
An MDP is defined as a tuple M := (S, A, R, P, uo),
composed by the set of states S, the set of actions .4, the
reward function R : S x A x 8 — R, the transition
probability function P : § X A x S — [0, 1], and the
starting state distribution pi. The transition probability
function P(s¢y1|s¢, a+) models the system dynamics by
mapping the probability of transitioning from a previous
state s; to the state s;1 when taking the action a.

The reward function represents the return as sum of
the discounted reward with v* being the discount factor
at time steps k, given by

Ry = Z'Vth+k~ (1)
k=0

In the MDP framework, at each timestep, the agent
observes the current state, takes an action, transitions to
the next state drawn from the distribution, and receives a
reward. The action-value function, also known as the Q-
value function, where Q™ represents the expected return
when following a policy 7 (which basically maps states
into actions), as shown below.

Q7 (s,a) = E[R¢|st = s,ar = a, 7. (2)

Q-learning, in which a policy is learned using Q-
values, is a popular model-free method. Deep Q-networks
(DQONSs) extend Q-learning with the usage of neural net-
works as function approximators. To do so, the temporal-
difference error ¢; can be derived from the Q-value func-
tion using the Bellman operator, resulting in the equation
below.

¢ = ¢ +ymax@Q (st41,0;07) — Q (st,a1;0), (3)

where 6~ and 0 are the DQN parameters from the target
and the prediction network as defined in [26], respec-
tively.

3.1.2. Distributional shift and OOD

Distributional shift and OOD are two concepts that are
closely related, but it is important to distinguish distri-
butions that are closer or further away from the training
distribution. It is expected that an RL agent would be
able to perform well in scenarios that are slightly differ-
ent from those used in training, as it should be able to
generalize. However, when the situation is too dissimilar
(perhaps at a semantic level) the agent might have its

ability to make proper decisions severely affected. Epis-
temic uncertainty can be used as a proxy for detecting
distributional shifts and is usually associated with a lack
of sufficient data to better infer the underlying system.

Defining distributional shift within the RL domain is
not trivial [27]. In this paper we assume that distribu-
tional shift can be characterized by changes in the system
dynamics. More specifically, the shift of the distribution
over the state transitions given state action pairs between
training and test in MDPs, as shown below:

Pirain[se + 1|s¢, at] # Prest[st + 1|st, ae].  (4)

Additionally, when considering partially observable
MDPs (POMDPs) where the system’s state cannot be
assessed but rather an observation o; is available to the
agent, the shift of the distribution over observations given
states has to be taken into account:

Pirain [Ot ‘St] 7é Ptest[ot ‘St]~ (5)

3.1.3. Ensemble-based uncertainty estimation

We focus on ensemble-based epistemic uncertainty esti-
mation to detect distributional shift and OOD data during
test time respectively during the inference or deployment
phase. An ensemble of trained agents on a subset of the
available data will estimate with low variance in well
trained states. When the ensemble members face too
few trained states, the estimates vary naturally across
the members and give a distribution over the estimated
Q-values. The variance of the estimated Q-values can be
used to quantify the epistemic uncertainty of a decision.

An ensemble on bootstrapped data over DQNs pro-
vides a distribution over the estimated Q-values to pro-
vide a Bayesian estimation of the epistemic uncertainty.
The Q-values will converge to the real values in situations
the agent sufficiently learned. In untrained situations, the
Q-value estimates will still diverge and the variance will
therefore give an estimate of the epistemic uncertainty.

Random prior functions can be used to introduce di-
versity in an ensemble of agents trained on bootstrapped
data [16]. The expected return is then given by

Qr(s,a) = f(s,a;0k) + Bp(s,a;0),  (6)

where Qy, is the Q-function of the k™ ensemble member,
6 are the parameters of the prior function and f3 is a factor
to weight the impact of the prior function.

The variance of the Q-values of the ensemble estimates
can be used to derive an uncertainty estimation threshold
to invoke a backup policy [20] [14] that ensures a safe
state. With the variance V ary [Qx (s, a)] < o? the policy



with threshold can be calculated by

arg maxg, if Vary[Qr(s,a)] < o2,
7o (s) = Ex[Qk(s,a)]
Thackup(S) otherwise.

™

3.2. Action count variance uncertainty
estimation

The Q-value is a continuous variable where high vari-
ance in the predictions means high uncertainty of the
ensemble. However, when given encapsulated agents or
when the Q-values are not accessible due to other rea-
sons, it is possible to take the deviation over the proposed
actions of the ensemble members, to indicate uncertainty.
In cases where the action space is continuous, the vari-
ance can be directly calculated as action variance like
with the Q-values. However, with discrete action spaces,
this will lead to false results, as the actions themselves
are orthogonal and a mean action can not be calculated.
Therefore, in cases where the action space is discrete, we
proposed in [25] to calculate an action count on each
action over the ensemble given a certain state and then
calculate the variance of that action count (ACV - action
count variance). When the ACV is low, there is a balance
in the proposed different actions over the ensemble and
the uncertainty is therefore high. In contrast, when the
action count variance is high, there is a concentration of
one or more actions in the ensemble and the uncertainty
is low. The higher the ACV gets, the lower the uncer-
tainty. A backup policy can then be chosen based on the
ACV calculation as given in equation 8.

arg maxq if Vari[ACk(s, a)]
7o (8) = Ex[Qk(s,a)] > Varinreshold,
Tbackup (3) otherwise.

®

3.3. Delta to ID uncertainty estimation

One problem with uncertainty estimation within rein-
forcement learning is that often multiple decisions are
equally valid in a given state. These can be called alter-
native possible actions - or more generally alternative
predictions. When an agent is in a state with alternative
possible actions, the ensemble may already deviate in its
prediction, although it might be trained sufficiently in
this state. This means, alternative possible actions will
pose high uncertainty and might falsely flag an OOD
instance. Traditional methods fail to distinguish these
two cases and, therefore, in [25] an alternative solution

was proposed. This method, called Delta to ID (IDD),
consists in comparing the given (and potentially OOD)
situation to its nearest ID counterpart to differentiate
high uncertainty resulting from these "ambiguous” states
from distributional shifts. To get a comparison, it was pro-
posed to subtract the ID uncertainty (represented by the
ACV) from the given OOD uncertainty and use the result
as a cleaned (delta) version of the ACV for uncertainty in-
dication. Because of the (1-x) characteristic of the ACV to
the uncertainty, we actually subtract (Constmaezvar —
ACVoop)—(Constmazvar—ACVrp) which inverses
the ACV characteristic to match the uncertainty’s and
results for the subtraction in:

Vargeta[AC(s,a)] = Varip[AC(s, a)]

—Varoop[AC(s,a)]. (9)

There can be different approaches to get a nearest ID
from a given OOD scenario. To simplify here, we stick
to an OOD scenario with one dedicated OOD obstacle.
The OOD obstacle in the given OOD scenario will then
be exchanged with a corresponding ID obstacle. The
observation function Obs() changes as given in equation
10.

ObSID,, carest with obstacte (POSOOD psracre)

= IDobstacle .

(10)

A high delta of the ACV will indicate high uncertainty
and a low delta low uncertainty in both cases, respec-
tively. To decide on an uncertain situation in a given state,
we proposed to use a threshold to mask out insignificant
variance-delta to ID. This threshold can be used in fu-
ture work to switch to a backup policy as operation-time
measure for safety assurance methods e.g. in an iterative
causal model like proposed in [1] and we will come back
to in section 4.

4. Safety assurance

4.1. Background

The use of ML for highly automated safety-critical appli-
cations leads to a number of safety assurance challenges.
These challenges are related to the complexity and un-
predictability of the operating environment (aleatoric
uncertainty), as well as the complexity of the technical
system and task itself. A complex system can be defined
as system that exhibits behaviours that are emergent prop-
erties of the interactions between the parts of the system,
where the behaviours would not be predicted based on
knowledge of the parts and their interactions alone. This
definition is closely related to the general concept of un-
certainty, defined as any deviation from the unachievable



ideal of completely deterministic knowledge of the relevant
system [28].

For safety-critical autonomous systems, uncertainty
manifests itself in various forms not restricted to the nar-
row definitions used in ML. Specification uncertainty is
the uncertainty in the appropriateness and completeness
of safety acceptance criteria and the definition of accept-
ably safe behavior in all situations that can reasonably
be anticipated to occur within the target environment.
Incomplete, or otherwise insufficient training data can
be seen as a consequence of specification uncertainty.
Technical uncertainty stems from a lack of predictability
in the performance of the technical components of a sys-
tem. An example of which is the unpredictable reaction
of the system to previously unseen events, or differences
in the system behavior despite similar input conditions
(epistemic uncertainty in the trained model). Assurance
uncertainty relates to lack of confidence in claims regard-
ing safety properties of the ML system. This can include
a insufficient integrity of evidence supporting the assur-
ance arguments as well as the chain of reasoning itself.
Safety assurance for ML-based systems must therefore
minimise these uncertainties and thus maximise the con-
fidence that the system fulfils its safety expectations. The
approaches described in [1, 21] and summarised in Figure
1 are designed to iteratively minimise these uncertainties
and thereby safety risk as part of a continuous assurance
process based on an understanding of the environment,
insufficiencies in the ML system and potential deficits
in the safety assurance argumentation. To support this
approach an assurance argument is proposed to support
a systematic evaluation that well defined safety claims
are supported by evidence and that all assumptions are
explicitly stated and validated.

Complexity and unpredictability of the operational
domain and of the system itself lead to semantic gaps,
which indicate discrepancies between the intended and
specified functionality, also known as specification in-
sufficiencies. In safety-critical systems this can lead to
hazardous systemic failures. From our consideration,
specification uncertainty is also a problem in RL, for ex-
ample when inappropriate reward functions are used.
This might manifest itself in a manner that appears to be
epistemic uncertainty, the root cause is however subtly
different to, for example, a lack of training data.

To better understand the characteristics and impact
of uncertainty, one can differentiate between statistical,
scenario and ontological uncertainty. Statistical uncer-
tainty can be expressed in quantitative statistical terms,
such as confidence intervals expressed over probability
distributions. Scenario uncertainty can only be described
using qualitative scenarios, which are potentially mul-
tiple plausible states of the system and its environment.
Ontological uncertainty [29] defines a lack of awareness
that the knowledge about the system itself is incomplete

- this requires an external perspective to resolve. On-
tological uncertainty is a specific cause of specification
insufficiencies, which in turn will lead to epistemic un-
certainty in the trained model. In this paper, we describe
an operation-time measure to mitigate the effects of this
uncertainty by introducing an observer external to the
ML component to detect the conditions where previously
unseen inputs might impact the safety requirements.

4.2. Safety assurance argumentation
using ensemble-based uncertainty
estimation and IDD

In this section we discuss the impact of the Ensemble-
based uncertainty estimation from the following perspec-
tives. First we discuss the role of the uncertainty es-
timation as an operation-time measure for mitigating
the impact of residual errors in the ML component and
how this supports a safety assurance argument for the
function. Second we examine issues of uncertainty in
the assurance argument itself and how confidence in the
argument can be increased.

Figure 2 shows a simplified and incomplete excerpt (in-
spired by [30]) of a safety assurance argument described
using the Goal Structuring Notation (GSN) [31][32] for
the claim that the residual risk of the system colliding
with obstacles is sufficiently low. GSN is a graphical
notation that represents the elements of an assurance
argument and the relationships between them. It shows
how goals (claims) can be broken into sub-goals until
they can be supported by direct references to evidence.
It documents argumentation strategies as well as the
context information, including assumptions and justifi-
cations. The assurance strategy illustrated here is based
on an identification of potential causes of insufficiencies
in the function and measures for reducing their impact
during development and operation.

Uncertainty estimation is one of a number of comple-
mentary measures used to form a broad argument for
safety. However, as mentioned above, the complexity of
the system can undermine the confidence in the argu-
ment. [23] describes confidence in assurance arguments
in terms of trust in assertions related to the evidence,
context (including assumptions) and inference (or struc-
ture of the argument itself). For each of these aspects a
number of defeaters could potentially be identified that
undermine the argument [22]. For the example argu-
mentation in Figure 2 these can include an incomplete
definition of operating environment or incorrect assump-
tions regarding the performance of the perception com-
ponents (asserted context), as well as the validity of test
results demonstrating the generalisation performance
of the trained function due to the difficulty in covering
previously unknown corner cases (asserted evidence).
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Figure 2: Partial GSN description of the assurance argumenta-
tion for of the gridworld agent with IDD uncertainty estimator

Furthermore, the assertion that all possible causes of in-
sufficiencies have been addressed could also be incorrect
(asserted inference).

As proposed in [1], it is advantageous to iterate
through the assurance process when dealing with onto-
logical uncertainties - and we can show in the following,
that this also is beneficial even with our simplified case
study. The addition of the uncertainty estimator was the
initial step to mitigate against the residual uncertainties
in the assurance argument with the extension of the IDD
a further step to increase confidence in the effectiveness
of the uncertainty estimation itself.

5. Experimental results

In [25] we presented the results from more extended
experiments. Here, we summarise the results and conduct
additional experiments to argue the safety assurance.
Setup and Training: We trained complete agents in
parallel with a randomly placed set of 10 obstacles singly
placed in a gridworld of 10x10 positions and training
runs of 1 million steps each agent. For testing we set up
different scenarios with previously seen obstacles as ID
and added a single dedicated obstacle not seen during
training as an OOD condition. For the paper we focused
on an ID scenario with a line of known obstacles in the

middle of the grid and the goal at the end of the line.

For the visualization of the uncertainty estimation we
calculated heatmaps over the grid showing each resulting
uncertainty estimation for each position of the agent in
the grid given the overall scenario.

Uncertainty heatmaps: For the depicted results, the
uncertainty calculation based on the action count vari-
ance of the ensemble members is used. Figure 3 is the
base scenario with the known ID obstacle line in blue
and the goal in green. As we use variance in the action
count, a higher brighter colour means more concentra-
tion on fewer actions (and therefore more certainty) and
darker colour means a less concentration in the actions
or more equally distributed action (and therefore higher
uncertainty). As one can see in the base scenario - due
to possible alternative action predictions there are some
“uncertainties” along the diagonals to the goal, as these
coordinates have equal probabilities vertically and hori-
zontally to approach the goal, since the action space only
allows for up/down and left/right movement and cannot
realize a diagonal path directly. This shows the limits of
the uncertainty metric here as well - the actions along the
diagonal are no more or less dangerous but they are mon-
itoring a high “uncertainty”. This consideration applies
e.g. also for the point on the left of the obstacle line, as
the probabilities for up and down are equally distributed.
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Figure 3: Obstacle line ID scenario as heatmap over agent
positions

Figure 4a shows the predictions with one unknown
obstacle inserted in the middle direct on top of the line
shown in purple. There is increased uncertainty, espe-
cially in the area surrounding the unknown obstacle.
Nevertheless, the uncertainty indication is superposed
by the already given "uncertainty” of the possible alter-
native predictions from the base ID scenario. In contrast,
figure 4b shows the predictions with a known obstacle
inserted in the middle direct on top of the line shown in
blue, instead of the OOD obstacle. Now, the uncertainty
indication is much closer to the base ID scenario.

Our approach proposed to subtract the base variance
from the OOD variance and therefore try to eliminate
the base variance resulting from the possible alternative
predictions. In Figure 5 the results are depicted for the
delta to ID with the known obstacle without and with
threshold (5a and 5b). It seems to feasibly indicate a
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(a) OOD obstacle in the middle (b) ID obstacle in the middle

Figure 4: ID obstacle line with OOD obstacle in the middle

given OOD hotspot considering a dedicated threshold,
although the indication is not totally sharp.
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(a) Delta to ID known obstacle (b) Delta to ID known obstacle
with threshold

Figure 5: Delta OOD to ID with obstacle in the middle

In the given scenario, the OOD hotspot lies directly
in an area of low uncertainty (the yellow area on top
of the blue line). In order to validate that the approach
generalizes to different scenarios, we also ran setups
where the hotspot lies in an area of previously known
uncertainty from possible alternative predictions - such
as in the upper middle section (see Figure 6).
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(a) OOD obstacle at the top (b) ID obstacle at the top

Figure 6: ID obstacle line with OOD obstacle at the top

Figure 7 shows the resulting indication for the delta to
ID with known obstacle in 7a and 7b.

False-Positive and False-Negative rates: In order to
argue the safety assurance, we set up an additional exper-
iment and measure the probability of an agent without
an observer to hit the unknown obstacle and compared
this to the probability of an agent with only baseline un-
certainty estimation (UE-BL) and the probabilities with
the IDD uncertainty estimator as external observers. The

(a) Delta to ID known obstacle (b) Delta to ID known obstacle
threshold

Figure 7: Delta OOD to ID with obstacle at the top

agent without an observer will get no uncertainty es-
timation (UE) indications which is equivalent to false-
negatives (FN). For the two with external observers we
assume the agent will follow an alternative route and not
hit the unknown obstacle when the uncertainty estimator
indicates uncertainty above a given threshold.

We iterate over all possible positions of the unknown
obstacle and all possible positions of the agent without
introducing randomness in the setup, to focus on the
demonstration of the effects here. We calculate the mean
probabilities for false-positive (FP) indications (which
slow the agent down) and the false-negatives (FN) (which
result in hazards). As varying hyper-parameters we use
different ACV-thresholds for IDD and UE-BL, a variable
sized bounding box around the OOD position wherein
each indication is TP (true-positive), for FN the percent-
age threshold of consent of the ensemble to hit in the
next state, absolute amount for the delta to ID vs. a cut-
off under zero, and for IDD a substitution with a known
obstacle vs. an empty space. The approaches are com-
pared in table 1 where the hyper-parameters are tuned
for equal FP probabilities to achieve directly compara-
ble FN probabilities, and as a ROC (Receiver Operating
Characteristic) curve in figure 8.

| w/oUE | UE-BL | UE-IDD
mean P(FN) 41.61e-3 3.86e-3 2.45e-3
(false-negative)
mean P(FP) - | 11.49e-2 | 11.22e-2

(false-positive)

Table 1
Impact of the uncertainty estimators on the overall false-
negative and false-positive probabilities

IDD significantly reduces FNs compared to the agent
with the baseline uncertainty estimator (about factor 1.75)
and the agent without UE (about factor 20). This comes
with the cost of an increasing FP rate for the UE agents,
whereas the agent without UE naturally has no FPs.

When mapping the experimental results to the safety
assurance argumentation from Section 4.2 and the itera-
tive causal analysis model, it becomes clear that the safety
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Figure 8: ROC curve for UE-BL (red) and IDD (blue)

claim may not be met without an uncertainty estimator
and would then be improved within the 1* iteration when
introducing the UE-BL. The results show a significant
improvement for the FN, but assuming an even higher
safety claim of e.g. FN less then 3%, a 2" iteration iden-
tified additional measures to further reduce the FN. The
2" jteration with IDD as an additional measure then
reached the required claim. When then looking at the
high remaining FP and a potential additional claim in
respect to that, a 3 iteration could address this aspect.
However, this will be the target of future work.

Finally, whether all possible scenarios have been con-
sidered and whether the safety assurance achieved is
sufficient as rigorous evidence for certification purposes
needs further investigation on more realistic applications
in future work.

6. Conclusion

This paper investigated the safety assurance argumenta-
tion for an ensemble based epistemic uncertainty estima-
tion on gridworld scenarios with discrete action spaces
and overlapping alternative predictions.

We build on previous work with discrete actions spaces
and variance calculation based on action count variance
(ACV) and a delta to ID (IDD) approach to deal with
overlapping alternative predictions, where we showed
that action count variance with IDD is able to indicate
uncertain states based on a threshold calculation with
high probability. As utilizing a backup policy based on
that indication can be a feasible solution, we established
a safety assurance argumentation in this paper. With the
definition of the assurance case and an iterative assur-
ance approach, we demonstrated that the IDD-enhanced
uncertainty estimator can be utilized as an operation-
time measure as external observer to indicate ontological

uncertainty.

Future work will address to reduce the FP rate of the
observer, investigate methods to determine a sufficient
near ID scenario for a given OOD scenario and extend
the approach to more general and realistic environments
and applications. Further, it will focus on rigorous argu-
mentation and elaboration of the experimental results
for the safety assurance and on strategies to react upon
the uncertainty estimation during operation to reduce
situational risk.
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