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Abstract
As automated systems increasingly incorporate deep neural networks (DNNs) to perform safety-critical tasks, confidence
representation and uncertainty estimation in DNN predictions have become useful and essential to represent DNN ignorance.
Predictive uncertainty has often been used to identify samples that can lead to wrong predictions with high confidence, i.e.,
Out-of-Distribution (OoD) detection. However, predictive uncertainty estimation at the output of a DNN might fail for OoD
detection in computer vision tasks such as semantic segmentation due to the lack of information about semantic structures
and contexts. We propose using the DNN uncertainty from intermediate latent representations to overcome this problem.
Our experiments show promising results in OoD detection for the semantic segmentation task.
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1. Introduction
In the last decade, Deep Neural Networks (DNNs) have
witnessed great advances in real-world applications like
Autonomous Vehicles (AVs) to perform complex tasks
such as object detection and tracking or vehicle control.
Despite the progress introduced by DNNs in the previous
decade, they still have significant safety shortcomings
due to their complexity, opacity and lack of interpretabil-
ity. Moreover, it is well-known that DNN models behave
unpredictably under dataset shift [1]. Deep Learning
(DL) models have training and data bias that directly im-
pact model predictions and performance. This impedes
ensuring the reliability of the DNN models, which is a
precondition for safety-critical systems to ensure compli-
ance with industry safety standards to avoid jeopardizing
human lives [2].

As highly automated systems (e.g., autonomous vehi-
cles or autonomous mobile robots) increasingly rely on
DNNs to perform safety-critical tasks, different methods
have been proposed to represent confidence in the DNN
predictions. One way to represent DNN confidence is to
capture the uncertainty associated with a prediction for a
given input sample. Capturing information about “what
the model does not know” is not only useful but essential
in safety-critical tasks.

Bayesian Neural Networks (BNNs) and existing
Bayesian approximate inference methods (Deep Ensem-
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bles, Monte-Carlo Dropout, etc.) offer a principled ap-
proach to model and quantify uncertainties in DNNs.
However, quantifying uncertainty is challenging since
we do not have access to ground-truth uncertainty esti-
mates, i.e., we do not have a clear definition of what a
good uncertainty estimate is. Moreover, computer vision
tasks can add an extra level of complexity since tasks
such as semantic segmentation require a pixel-level un-
derstanding of an image. In this case, a Bayesian Deep
Learning model for semantic segmentation will classify
each pixel in the input image and generate an uncertainty
estimate for each classified pixel.

In semantic segmentation, uncertainty estimation has
been used for Out-of-Distribution (OoD) detection under
the assumption that samples that are far away from the
training distribution (anomalous or OoD samples) pro-
vide higher predictive uncertainty than samples that are
observed in the training data [3]. Approaches that use
BNNs are able to capture aleatoric and epistemic uncer-
tainties in the form of uncertainty maps (Figure 1-top) but
still fail to detect anomalies accurately. BNN methods for
semantic segmentation are prone to yield false-positive
predictions, as well as miss-matches between anomaly
instances and uncertain areas caused by the lack of in-
formation on semantic structures and contexts [4, 5], as
presented in Figure 1-middle.

Recently, embedding density estimation methods have
been proposed to estimate the connection to uncertain-
ties from Bayesian methods [6, 3]. In this direction,
methods that leverage metrics or statistics from the non-
parametric embedding space density have been proposed
recently [7, 8], in contrast to a distance-based method that
often assumes a parametric embedding density [9, 10, 11].

The present work combines the benefits from Bayesian
methods for uncertainty estimation with methods for la-
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Figure 1: Semantic segmentation uncertainty estimation com-
parison for in-distribution and out-of-distribution data

tent representation density estimation in the OoD detec-
tion task. We propose to capture the entropy of interme-
diate (latent) representations and estimate the entropy
densities for In-Distribution (InD) and OoD samples (see
Figure 1-bottom). Once entropy densities are estimated,
we use them to classify new input samples as InD or OoD,
i.e., we build a data-driven monitoring function data that
utilizes the input sample entropy for the OoD detection
task.

2. Semantic Segmentation with
Probabilistic U-Net Architecture

Probabilistic U-Net [12], is a DNN architecture for seman-
tic segmentation that combines the U-Net architecture
[13] with the conditional variational autoencoder (CVAE)
framework [14]. The goal of Probabilistic U-Net is to han-
dle input image ambiguities by leveraging the stochastic
nature of the CVAE latent space. Figure 2 shows the
Probabilistic U-Net architecture.

During training, depicted in Figure 2a, Probabilistic
U-Net finds a useful embedding of the segmentation vari-
ants in the latent space by introducing a Posterior Net.
This network learns to recognize a segmentation variant
and to map it into a noisy position in the latent space
(𝜇𝑝𝑜𝑠𝑡, 𝜎

2
𝑝𝑜𝑠𝑡). In addition, KL divergence is used to pe-

nalize differences between the distributions at the output
of prior and posterior nets. The idea here is to bring both
distributions as close as possible so that the Prior Net dis-
tribution covers the spaces of all presented segmentation
variants.

In general, the central component of this architecture
is its latent space. Each value from the latent space en-
codes a segmentation variant. During inference, the Prior

Net encodes each input image 𝑥𝑖 and estimates the prob-
ability of these segmentation variants (𝜇𝑝𝑟𝑖𝑜𝑟, 𝜎

2
𝑝𝑟𝑖𝑜𝑟).

To predict a set of segmentation outputs, a set of samples
are drawn from the Prior Net probability distribution.
Interestingly, we can draw a connection from this ap-
proach to other related work that aims to model complex
aleatoric uncertainty (ambiguity, multi-modality) by han-
dling stochastic input variables [15, 16, 17].

3. Methods

3.1. Capturing Uncertainty from
Intermediate Latent Representations

Despite the benefits introduced by injecting random sam-
ples from the latent space into U-Net, aleatoric uncer-
tainty alone is not enough. For the Out-of-Distribution
detection task, epistemic uncertainty is needed [18, 19].
Although the Prior Net encoder 𝑞𝑝𝑟𝑖𝑜𝑟 employs Bayesian
inference to obtain latent vectors z, it does not capture
epistemic uncertainty since the encoder lacks a distribu-
tion over parameters 𝜑. To overcome this problem, we
took inspiration from Daxberger and Hernández-Lobato
[20], Jesson et al. [21], and propose to capture uncer-
tainty in the Probabilistic U-Net Prior Net encoder us-
ing 𝑀 Monte Carlo Dropout (MCD) samples [22], i.e.,
𝑞𝑝𝑟𝑖𝑜𝑟(𝑧 | 𝑥, 𝜑𝑚).

𝑞Φ(z | x,𝒟𝑝) =

∫︁
𝜑

𝑞(z | x, 𝜑)𝑝(𝜑 | 𝒟𝑝)𝑑𝜑 (1)

In eq. 1, we adapt the Prior Net encoder to capture the
posterior 𝑞(z | x,𝒟) using a setΦ = {𝜑𝑚}𝑀𝑚 of encoder
parameters samples 𝜑𝑚 ∼ 𝑝(𝜑 | 𝒟𝑝) that are obtained
applying MCD at test-time. During execution time, we
forward-pass an input image 𝑥𝑖 multiple times into the
𝑞𝑝𝑟𝑖𝑜𝑟 net. Each time we forward-pass the input image,
we will generate a new dropout mask that in consequence
will make a new (𝜇𝑝𝑟𝑖𝑜𝑟, 𝜎

2
𝑝𝑟𝑖𝑜𝑟) prediction. From each

predicted (𝜇𝑝𝑟𝑖𝑜𝑟, 𝜎
2
𝑝𝑟𝑖𝑜𝑟) for the same image we sample

a new latent vector z, as presented in Figure 3.
MCD has been applied extensively for simple epistemic

uncertainty estimation. However, dropout was found to
be ineffective on convolutional neural networks (CNNs).
Standard dropout is ineffective in removing semantic
information from CNN feature maps because nearby acti-
vations contain closely related information. On the other
hand, dropping continuous regions in 2D feature maps
can help remove semantic information and enforce re-
maining units to learn features for the assigned task [23].
This effect is also desired for capturing uncertainties, oth-
erwise, we could get overconfident uncertainty estimates
in the presence of samples that contain anomalies. To
overcome the standard dropout limitation, we followed



Figure 2: Probabilistic U-Net [12], with Bayesian Prior Net for Semantic Segmentation: a. During training b. During inference
with the monitoring function ℳ𝑂𝑂𝐷 at the output of the Prior Net.

Figure 3: Prior Net latent vector z predictions with Monte
Carlo DropBlock2D. The latent space at the output of the Prior
Net is presented in 2D for illustration purposes.

the approach from Deepshikha et al. [24], and used Drop-
Block2D to capture uncertainty from the Probabilistic
U-Net. We applied MC DropBlock2D in the last feature
map from the Prior Net, as shown in Figure 2 and Figure 3
(in red).

The average surprise or uncertainty of a random vari-
able 𝑧 is defined by its probability distribution 𝑝(𝑧), and
it is called the entropy of 𝑧, i.e., H(𝑧). For continuous
random variables, we use the differential entropy, as pre-
sented in Eq. 2,

H(𝑧) =

∫︁
𝑧

𝑝(𝑧) log
1

𝑝(𝑧)
𝑑𝑧 (2)

To quantify uncertainty from Prior Net MCD samples,
we used standard entropy estimators [25] on 32 Monte
Carlo samples (32 image forward passes through Prior
Net with MC DropBlock2D turned on). In Eq. 3, the
entropy ĤΦ(𝑧 | 𝑥) measures the average surprise of
observing latent vector 𝑧 at the output of Prior Net, given
an input image 𝑥.

H(𝑧 | 𝑥) =
∫︁
𝑧

𝑝(𝑧 | 𝑥) log 1

𝑝(𝑧 | 𝑥)𝑑𝑧 (3)

3.2. Bayesian Generative Classifier for
OoD Detection

For OoD detection, we assume that we have access to
a dataset of normal (InD) and anomaly (OoD) samples
𝑌 = {normal, anomaly}, with which we can train a
Bayesian generative classifier (Not so naive Bayes Classi-
fier) using the empirical density of a metric or statistic
𝑇 from latent representations z, i.e., 𝑇 (z). To this end,
we follow Morningstar et al. [7] approach and use a Ker-
nel Density Estimation (KDE) method to obtain the 𝑇 (z)
densities. Since we aim at leveraging the uncertainty
from intermediate latent representations, the 𝑇 statistic
is the entropy at the output of the Prior Net (described in
the previous section) with which we build the monitoring
function ℳ𝑂𝑂𝐷 , as presented in Figure 2b.

For each label set, we fit a KDE to obtain a generative
model of the data, i.e., use KDE to compute the likelihood
𝑝(𝑇 (z) | 𝑦). Then, we compute the class label prior
probability 𝑝(𝑌 ), i.e., compute the marginal categorical
distribution by counting frequencies (from the number
of samples of each class in the complete training set). For
an unknown latent vector, we can compute the posterior
probability of each class 𝑝(𝑦 | 𝑇 (z)), using Baye’s rule
in Eq. 4. For the OoD task, we use Eq. 5

𝑝(𝑦 | 𝑇 (z)) = 𝑃 (𝑇 (z) | 𝑦)𝑝(𝑦)
𝑝(𝑇 (z))

(4)

𝑝(𝑦 | 𝑇 (z)) = 𝑝(𝑇 (z) | 𝑦)𝑝(𝑦)∑︀
𝑦∈𝑌 𝑝(𝑇 (z) | 𝑦)𝑝(𝑦) (5)

For a more details description of the approach for
Bayesian generative classification we refer the reader
to the works from VanderPlas [26] and Postels et al. [3].



Figure 4: Dataset for training the OoD monitoring function

4. Early Experiments and Results
Dataset Building. For training the DNN model for
semantic segmentation we used the Valeo Woodscape
dataset 1 [27] with the semantic segmentation labels.
For training the monitoring function (i.e., Bayesian gen-
erative classifier), our first choice was to use Soiling
Woodscape sub-dataset. However, after inspecting the
dataset, we noticed that samples were taken in small se-
quences. To improve dataset diversity and implement our
approach, we decided to create a new smaller sub-dataset
by taking just one or two samples from the sampling
sequences for each anomaly in soiling Woodscape. We
called this new dataset OoD Woodscape, and it combines
samples from the Woodscape training set (normal class)
and samples from the Soiling Woodscape validation set
(anomaly class). The ooD-Woodscape training set has
280 samples, 140 samples for each class; the validation
set has 120 samples total, 60 samples for each class. The
dataset-building procedure is depicted in Figure 4.
Experiments. We quantify the entropy from inter-

mediate latent vectors. Using the entropy values, we
estimate the entropy density for each sub-dataset, i.e.,
samples from normal and anomaly sub-datasets. First,
we quantify the entropy assuming a multivariate Gaus-
sian distribution �̂�𝜑(z | 𝑥), as presented in Figure 5
top-right. Next, we compute the entropy estimation for
each variable in the latent vector �̂�𝜑(𝑧𝑖 | 𝑥), as shown in
Figure 5-bottom. Finally, for comparison, we also use the
Mahalanobis distance which is a multivariate measure of
the distance between a point and distribution. In this last
case, we built the reference distribution taking intermedi-
ate representations zi for each input image 𝑥𝑖, from the
Woodscape validation set (see Figure 5 top-left). Then,
we measure the distance to this reference distribution
using 𝑑𝑀 =

√︁
(z* − 𝜇zval)

𝑇Σ−1
zval(z

* − 𝜇zval), for a
new input image x* and its predicted latent vector z*.

For entropy, in both cases, we observe that the densi-
ties for InD and OoD samples are different. In the first
case, the estimated latent vector density shows clear mul-
timodality for OoD samples, with peaks in entropy inter-

1https://woodscape.valeo.com/download

Figure 5: Illustration of empirical densities with KDE: Ma-
halanobis distance 𝑑𝑀 (top-left), the multivariate Gaussian
entropy �̂�𝜑(z | 𝑥) (top-right), and the entropy from latent
each vector variable �̂�𝜑(𝑧𝑖 | 𝑥).

vals that denote under-confident (uncertainty high) and
overconfident (uncertainty very low) predictions. In the
latter case, the entropy from latent vector variables, we
observe that some variables exhibit multimodal density
predictions for OoD samples and density peaks in differ-
ent entropy value intervals from those obtained with InD
samples. Finally, the 𝑑𝑀 density shows slight peaks or
modes for OoD samples, however, densities for InD and
OoD have a high degree of overlap.
Metrics. To evaluate our monitoring function, we

used the validation set from OoD-Woodscape (the dataset
we designed and built). We report the results using the
following metrics, as suggested by Ferreira et al. [28] and
Blum et al. [6]. In this regard, we report the Matthews
correlation coefficient (MCC), the F1-score, the area un-
der the Receiver Operating Characteristic (AUROC), and
the False-Positive Rate at 90% True Positive Rate (FPR90)
values. Table 1 summarizes the results used for each
statistic or feature employed in our classifier (monitoring
function), and Figure 6, shows the ROC curve.

Results & Discussion. We present the results of our
monitoring function (classifier) in Table 1 and in Figure 6.
In the results, we can see that the latent vector entropy-
based methods outperform the Mahalanobis distance-
based 𝑑𝑀 method in almost all the performance metrics.
We believe that the reason behind the poor performance
of the 𝑑𝑀 method is the strong assumption on the embed-
ding space being class conditional Gaussian we building
the reference distributions to compute the distance. On
the hand, we can see that latent vector variable entropy
has the best results. The reason behind the performance
is that the classifier benefits from getting more expressive
(entropy) information at the latent variable level.

https://woodscape.valeo.com/download


Method MCC F1 AUROC FPR90

𝑑𝑀 0.473 0.763 0.769 0.5
�̂�𝜑(z | 𝑥) 0.572 0.797 0.855 0.4
�̂�𝜑(𝑧𝑖 | 𝑥) 0.685 0.849 0.946 0.16

Table 1
Evaluation of OoD detection methods using DNN latent rep-
resentations

Figure 6: OoD detector ROC Curve analysis

5. Conclusion
In this work, we presented a method to use the uncer-
tainty from intermediate latent representations for Out-
of-distribution detection in a semantic segmentation task.
Our early results show that using the entropy from latent
features can be useful in building data-driven monitoring
functions. In future work, we aim to explore the impact
of the structure in the latent space by relaxing the Gaus-
sian assumption [29] and its effect on the metrics and
statistics used for the OoD detection task. Moreover, it is
important to analyze the applicability of our approach in
other semantic segmentation architectures that do not
present generative blocks of neural networks.
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