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Abstract

In spite of machine learning’s rapid growth, its engineering support is scattered in many forms, and tends to favor certain

engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-

grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete

scenarios (model design, debugging, and maintenance) to articulate capabilities’ broad applications across various different

dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs.

Through preliminary experiments, we show the potential of capabilities for reflecting model generalizability, which can

provide guidance for the ML engineering process. We discuss challenges and opportunities for the integration of capabilities

into ML engineering.
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1. Introduction
Despite the rapid evolution of machine learning models,

most effort has been on prototyping models — developing

models under idealized settings (e.g., with static datasets,

following the i.i.d. assumption, assuming equal impor-

tance of all mistakes). These models tend to suffer in the

wild where the ideal assumptions do not hold, leading

to safety issues, fairness issues, and project failures [1].

For example, a pedestrian detection model trained on

images taken on sunny days would not correctly respond

to natural weather changes [2] and may have never seen

a wheelchair user in training or test data. Oversimplifi-

cation has real consequences. If we had only tested the

aforementioned pedestrian detector on similar, sunny

test examples, and used our overly optimistic evaluation

to support deployment decisions, then an automated ve-

hicle with the detector would be likely to cause accidents.

To actually integrate models into production, substan-

tial additional engineering effort is required by interdis-

ciplinary teams [3]: Not only do we need to make care-

ful decisions at the model level (e.g., develop evaluation

metrics that reflect human expectations on models [4]),

but we also need to connect the model with the broader

system design (e.g., the model functionalities should be

well-specified in a requirements engineering process [5],

similar to how we design user interfaces).

The importance of these efforts, commonly referred to

as ML engineering [6], has been well-recognized, but the

actual implementation tends to be scattered. For example,
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academic research on ML engineering tends to focus on

the narrow space of model testing and debugging for data

scientists [e.g., 7, 8], whereas industrial efforts are mostly

limited to supporting pipeline automation and model

deployment (“MLOps”) [9]. More importantly, because

these efforts are isolated, it is unclear how insights from

one stage can be transferred to benefit the entire ML

engineering process (e.g., how error analysis results help

update model design decisions). In other words, there is

still a lack of synergy among existing efforts for better

ML engineering practices.

In this work, we envision a unified framework for

ML engineering. In particular, we center our framework

around capabilities [4]. A capability is a form of fine-

grained specification for ML model behavior. It helps de-

fine concrete model behaviors in various scenarios which

are finer-grained and more holistic than standard evalua-

tion metrics. In our pedestrian detector example, different

capabilities can be used to express safety requirements

from different aspects, e.g., recognizing pedestrians in

wheelchairs, being robust to extreme weather, or being

fair to people from different age groups [2].

Similar to other ML engineering efforts, the term capa-

bility emerged specifically from (and is mostly used in)

model testing and debugging [4, 8]. However, its natural

link with expected model behaviors makes it ideal for ML
model specification which, akin to software specification,

(1) builds the root for the entire ML engineering cycle,

going from model design all the way to deployment and

maintenance, and (2) serves as the boundary object [10]

for different stakeholders to negotiate their (sometimes

conflicting) expectations of models. Moreover, capabili-

ties have the potential to reflect multiple essential factors

in ML engineering, e.g., distribution shift [11], robust-
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Table 1
Example capabilities for pedestrian detection models. Capabilities commonly express what a human would expect from ML
models (common knowledge, robustness, human-style reasoning) and can reflect different model qualities (generalizability,
robustness, fairness). We also illustrate possible instantiation strategies to produce concrete examples from capabilities.

Capability Instantiation Origin/Theory

Recognize pedestrians
in wheelchairs

Curate images w/ pedestrians
in wheelchairs

Knowledge of important outliers

Robust to extreme weather Transform sunny images to rainy Robustness to anticipated distribution shift

Detect pedestrians of all ages Slice test data by pedestrian age Reasoning about concept variations

ness [12], fairness [13] (see Tab. 1). However, capabilities

have yet to fulfill their potential due to several challenges,

e.g., it is not clear how to (1) best identify capabilities,

(2) instantiate abstract capabilities, and (3) operationalize

capabilities to maximize their utility.

We take the first step towards presenting the vision of

a capability-based framework that both unites existing ef-

forts and sheds light on future opportunities. Specifically,

we illustrate the broad applicability of the framework

from both the technical perspective and the practical

perspective, by (1) summarizing how existing ML engi-

neering concepts can be expressed with capabilities, and

(2) describing four usage scenarios with unique character-

istics (model debugging, collaboration, external quality

assurance, and model maintenance). We also conduct an

exploratory study to demonstrate the feasibility of our

vision. We conclude the paper by discussing challenges

and opportunities for capabilities’ integration into ML

engineering that emerge from our preliminary results.

2. Capabilities
Capability definition: ML “specification.” A capa-

bility can roughly be defined as a fine-grained specifica-

tion of behaviors expected of an ML model. The key idea

is to go beyond just considering the overall accuracy of

a model but analyzing to what degree the model exhibits

specific kinds of expected behaviors. The term capability

was popularized by work on testing specific behaviors

of ML models [4], but similar concepts can be found in

other work on model testing (e.g., stress tests [14]) and

in various work exploring nuances of model misbehav-

ior and shortcut learning (e.g., underspecifications [15]).

Previous work [e.g., 4, 8] has shown that capabilities

can expose many systematic problems in state-of-the-art

models, are useful for interactive testing and debugging,

and can guide data augmentation to train better models.

Capabilities share similarities with traditional software
specifications (and functional requirements) in that both

prescribe how software should behave in specific scenar-

ios. These prescriptions are general concepts or descrip-

tions but can be concretized into a list of input-output

examples (i.e., test cases) for assessing models in the engi-

neering process. We refer to the process of deriving test

data from capabilities as instantiation. Capabilities can

be instantiated in many different ways, including slicing

existing data [7], transformation of existing data [16],

generating data from templates [4], and targeted cura-

tion of new data (possibly with crowdsourcing) [17] –

see examples in Tab. 1. Different instantiation strategies

have different costs and benefits, and it is often necessary

to make trade-offs between them.

However, capabilities also differ from traditional spec-

ifications in fundamental ways: Traditional software is

built using a deductive reasoning process. Their specifica-

tions are usually hard rules the software must satisfy –

a single input-output pair that violates the specification

will be considered a bug. In contrast, machine learning

uses inductive reasoning, where models are derived from

observations and are expected to make occasional mis-

takes [18]. As such, instead of declaring a model as buggy

for a single mistake related to a capability, we measure to
what degree the model has certain capabilities with a fail-
ure rate. In this sense, capability can be viewed as a soft

lower bound specification, and we use failure rates to look

for issues where a model systematically underperforms

with regard to a capability.

Capabilities as a unifying framework. There are

many existing efforts to support ML engineering, but they

are often scattered and unconnected. Evaluating models

on specific qualities like robustness, fairness, and gener-

alizability is extensively discussed [e.g., 19, 13, 20], but

they often focus exclusively on a narrow set of capabili-

ties (e.g., robust to word replacement [21], data shift [11],

and spurious correlations [22]). Different strategies for

model evaluation and data augmentation, from slicing [7],

counterfactuals [17, 23, 24], templates [4], to perturba-

tions [16] are widely explored, but there are very little

efforts on combining them, evaluating their relative costs

and effectiveness, and often such efforts are limited to

individual qualities (e.g., robustness [12]). Recent work

has shown interest in model debugging [8, 25] and error

analysis [7], but they often use different terminologies
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Table 2
Example usage scenarios for capabilities. These scenarios
cover different ML engineering stages and stakeholders, show-
ing capabilities are beneficial across dimensions.

Scenario Stages Stakeholders

Model Debugging Development Data Scientists

Collaboration Requirements,
Evaluation

Software Engineers,
Data Scientists

External QA Evaluation External Evaluators,
Regulators

Model Maintenance Deployment Data Scientists,
End Users

despite the similar underlying ideas.

We argue that a capability is a generic abstraction that

can unify existing efforts. For example, different model

evaluation strategies can be seen as ways to instantiate

capabilities; different model qualities can be viewed as (a

series of) capabilities that might matter in specific sce-

narios; a model’s reliance on spurious correlations can be

interpreted as a lack of specific capabilities (e.g., ignoring

backgrounds for object detection [26]). Furthermore, as

we will argue, capabilities can go beyond existing liter-

ature to benefit engineering stages (e.g., requirements

engineering) and stakeholders (e.g., external evaluators

or software engineers) that are currently under-explored.

3. Capabilities for Better ML
Engineering

ML engineering effort happens at different development

stages, with different stakeholders in the loop, and tar-

gets different model qualities. We argue that capabilities

can help unify ML engineering efforts and lead to more

systematic practice because they can play important roles

in all these diverse dimensions.

Below, we describe four concrete ML engineering sce-

narios (summarized in Tab. 2), which cover different di-

mensions and highlight challenges and opportunities.

3.1. Illustrative Scenarios
Scenario 1: Model Debugging. Alice is a data scien-

tist responsible for a chatbot used in her company. She is

now debugging the conversational model that performs

poorly on some inputs. She tries to understand what is

going wrong with these model mistakes. For each mis-

take, she speculates the potential issue behind it (e.g.,

input sentence contains numerical reasoning that the

current model does not handle well) and updates the

model accordingly. However, she finds the entire process

ad-hoc and does not always produce a better model.

Capabilities can systematize this process and help Al-

ice generalize from individual mistakes to systematic

problems. Instead of chasing mistakes, Alice now identi-
fies common capabilities from model mistakes. Then she

assesses the importance of different capabilities, instanti-
ates the prioritized ones, and uses the instantiated tests

for both training and evaluation. Alice now evaluates

the new model not only on some general test data, but

also on the test suites of different capabilities. She finds

that the new model handles numerical reasoning better

but is slightly worse on a different test suite that requires

complex co-reference resolution. She decides that this is

acceptable and releases the model.

Scenario 2: Collaboration. Bob is a software engi-

neer working in a government department, dealing with

classified information. The department has a contract

with an external data science team on a vision model for

satellite images, which is expected to be robust to vari-

ous attacks and stable across various environments. Due

to strict data security policies, the external data science

team relies on public datasets instead of actual produc-

tion data. Bob struggles to communicate requirements

and report useful feedback when the delivered model

does not work in production.

Capabilities can serve as a communication interface

between different stakeholders. Bob would be able to

clearly describe the failures in ways the data science team

can understand, if he abstracts concrete private data, and

identifies sharable capabilities from them. Or even better,

he can instantiate capabilities with public data points,

such that the data science team can develop the next

version of the model with a clear goal of improvement

in mind in terms of capability failure rates.

Scenario 3: External Quality Assurance. Carolyn

works for a quality assurance team that previously fo-

cused on testing traditional software components. Car-

olyn is now responsible for independently evaluating

models delivered by external contractors — this time a

model for fraud detection. Trained in traditional software

testing, Carolyn finds it challenging to move forward

without concrete specifications at hand, and is unsure

what to do beyond standard accuracy evaluations.

Capabilities provide a more holistic view of how mod-

els perform in different scenarios. Carolyn reuses known

capabilities for fraud detection, which her team devel-

oped for assessments on previous models, and evaluates

the model on instantiated test suites from these capabili-

ties, diving into specific capabilities of the model rather

than providing just a single broad accuracy measure. She

also looks at production data and past mistakes, and uses

them to identify new capabilities. Her final report com-
municates how the model performs on different capability
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test suites and highlights the model’s major weaknesses.

Scenario 4: Model Maintenance. Dan is a data scien-

tist for a social media platform. They are responsible for

a model that detects toxicity from user posts. The model

performs well on previously curated data, but its perfor-

mance degrades over time because of evolving trends in

user posts. Dan tries to update the model periodically to

cope with data shift. However, they find that the model

is still frequently suboptimal to unknown future shifts

even when trained with more recent data.

Capabilities can be used to track how data evolves

through time and characterize data shift. Dan now main-

tains a list of high-quality capability test suites as re-

gression tests. They regularly review new data to iden-
tify whether the model needs additional capabilities, or

whether the reliance on existing capabilities changes

over time. This way, Dan gets to track the capability shift

trajectory, anticipate (to some extent) what future shift

might look like, and can instantiate suitable capabilities

tests beforehand. With capabilities, Dan now builds and

selects models that are more robust to data shift.

Discussion. We described four different scenarios of

using capabilities for better ML engineering, illustrating

their broad applicability. As a recap,

• Capabilities can be used at different stages of ML engi-

neering. On the one hand, they provide specifications
for ML models, which is fundamental to (collabora-

tive) model design, development, and testing. On the

other hand, they also provide valuable abstractions for

concrete data points, serve as a form of data specifica-

tion, and allow for characterizing (possibly changing)

deployment environments. Notably, this potential for

data documentation/specification further enlarges ca-

pabilities’ impact on various stages that concern data,

e.g., data collection, dataset evaluation, etc.

• Different stakeholders can utilize capabilities.

Though data scientists, external evaluators, etc. in our

scenarios have different priorities in mind, they are

able to converge on the capability framing — whether

to use capabilities to exploit their hypotheses on model

mistakes, to communicate the characteristics of a non-

shareable deployment environment, or to utilize prior

training practices. Notably, as in the communication

case, such convergence enables knowledge sharing or

even negotiation between stakeholders, as everyone

can speak the same “language.”

• Capabilities can relate to different qualities of ML

models, ranging from accuracy (e.g., in debugging),

robustness (e.g., in collaboration), fairness, to gener-

alizability (e.g., in maintenance). This enables multi-

faceted evaluation without more consistent metric

designs, which is valuable especially when multiple

Table 3
Capabilities and their instantitation keywords for sentiment
analysis, selected based on existing work [27]. We slice the
validation data on keywords to instantiate these capabilities,
and the % column represents the ratio of validation data that
is included in the slice.

Capability % Keywords

negation 51.6 not, n’t
negation (v2) 18.7 no, never, neither, nobody, none, nor, nothing

shifter 4.5 refuse, reject, deny, doubt, abandon, miss,
question, abort, stop

modality 3.6 would have, could have, should have
comparative 16.6 better, worse, than

mixed 36.4 but, however, though, although, despite, even
if, rather than, except that

reducer 14.1 kind of, all that, less, a little, somewhat, still
amplifier 48.8 really, very, super, so, incredibly, extremely, at

all, whatsoever, much

model qualities have to be balanced.

Despite the promising future, these scenarios share

common challenges, from identifying, assessing, commu-

nicating, to instantiating capabilities. Yet different sce-

narios focus on different aspects and might have different

requirements for the same challenge. For example, all sce-

narios require identifying capabilities, but the ways they

are identified or expressed vary; a shared language would

be required for collaboration, but if different stakehold-

ers describe the same capabilities in different ways, or

have different instantiation ideas, then additional incon-

sistency arises and has to be mitigated. We will discuss

these practical barriers in the next section.

3.2. Exploratory Experiment
To explore the practicality of our envisioned capabil-

ity framework, we conducted an experiment to explore

whether capabilities are reflective of model generaliz-

ability. We focus on generalizability first because it is

a primary design goal for any ML model, and a model

quality essential for various use scenarios (e.g., the afore-

mentioned model maintenance and collaboration).

Experiment setup. We define “reflective” as the sta-

tistical correlation between model performance on cer-

tain capability tests, and their performance on out-of-

distribution data points.
1

Specifically, in the experiment, we repeatedly fine-

tuned BERT with different random seeds on the Amazon-

wilds dataset [20], and obtained 100 sentiment analysis

models with similar source domain accuracy (Amazon

1
Experiment details can be found in an online appendix (https://

github.com/malusamayo/Capabilities-Experiment-Details) and are

not essential for the main vision outlined in this paper.
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tion compared to other baselines.
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Figure 2: Predictive power improvement correlates with dis-
tribution distance. The further the distribution is, the better
capabilities could help predict generalization. We hypothesize
that this is because if a target distribution is too close to the
source distribution, there is little room left for improvement.

product reviews on Home-and-kitchen) but different

target domain accuracy on 10 domains (e.g., Movie-and-

tv reviews). We also selected eight capabilities for sen-

timent analysis from an existing study [27], and instan-

tiated them into test suites through data slicing, as in

Tab. 3. For each target domain, we fit a linear model

to find correlations between the models’ target domain

accuracy (dependent variable), and the models’ source

domain accuracy, as well as their capability testing re-

sults (independent variables). We looked at adjusted 𝑅2

to see whether the model has a better fit when these test

results are part of the independent variable, compared to

otherwise (i.e., whether these extra variables help predict

out-of-distribution accuracy).

Results. Model performance on capability tests is a
strong signal for model’s generalizbability. We can confirm

results from prior capability-testing experiments: Even

fairly generic capabilities are somewhat helpful in pre-

dicting how well models generalize to out-of-distribution

data. In Fig. 1, on 50% of the target domains (5/10), having

capability tests adds a significant signal on models’ gener-

alizability to the target domain (i.e., significantly higher

adjusted 𝑅2
). In contrast, baselines with model perfor-

mances on randomly sliced subsets or random noise do

not provide similar improvement.

Capability tests especially helps predict how well models
generalize to further domains. We also mapped out the

approximated distances between each target domain and

the source domain, using a proxy 𝒜-distance [28]. As in

Fig. 2, we observe a positive slope between the distance

and the 𝑅2
power. This shows that capabilities are par-

ticularly helpful for distributions that deviate more from

the training distribution, such as in Bob’s scenario where

distribution details could not be shared.

Discussion. Besides the positive signals, our experi-

ment also highlighted several challenges we faced when

using capabilities during ML engineering. In particu-

lar, we observe that vanilla capability identification and

instantiation have limited utility, for two reasons:

• Different capabilities add different amount of informa-
tion. Some capabilities (e.g., negation) produce too

many test cases, which leads to an uninformative dis-

tribution close to the source dataset, while others (e.g.,

modality) result in a rather distinct distribution, which

is more informative for predicting generalization.

• Different capabilities add different kinds of informa-
tion. Some capabilities are complementary but others

are highly correlated and add little additional infor-

mation over other capabilities. For example, in our

experiment, we found that using only shifter improves

predicting generalizability in 20% cases, but adding

modality further improves in 40% cases. At the same

time, capabilities could also add conflicting informa-

tion, where models perform or generalize worse if

they better support a capability, which is similar to

common tradeoffs between model accuracy and other

qualities (e.g., robustness).

In essence, the design space of capabilities and their

corresponding instantiations is massive. While prior

work has reported positive impacts of capabilities, as

well as success in scaffolding the identification and in-

stantiation process [4], few studies have comprehensively

evaluated the information gain of different capabilities,

the interactions between capabilities, and the effective-

ness of different identification / instantiation strategies.

In our experiment, we resolved to the most basic

and typical methods for identification and instantiation,

which has inherent limitations: We identified capabilities

by reusing domain knowledge from existing work, which

is not tailored for generalization to specific target distribu-

tion; we instantiated capabilities through coarse-grained

slicing on keywords, which does not always produce use-

ful test suites (e.g., negation). While we also considered

other identification and instantiation strategies, we even-

tually discarded them as they require much more manual

effort — a reflection on the reality that most people would

probably prefer simpler (if rather flawed) methods.

As a result, we argue that proper guidance needs to

be designed, such that different stakeholders can quickly

climb the rather steep learning curve for making capabil-

ities useful. We discuss future directions next.
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4. Challenges and Opportunities
To more systematically use capabilities, further research

is needed. We argue that ML engineering can gener-

ally benefit from software engineering disciplines, with

principles from requirements engineering and software

testing in particular. In the following, we identify promis-

ing research directions based on gaps in the literature

and our own observations in our experiment.

Identifying capabilities. It is challenging to identify

capabilities for concrete scenarios. Capabilities often dif-

fer across different modes (vision vs. language), different

tasks (sentiment analysis vs. natural language inference),

and different domains (product reviews vs. book reviews).

While we may develop a catalog of common capabili-

ties for general-purpose tasks, such as sentiment analy-

sis [27], we will likely need to identify specific capabilities

for each domain-specific problem. Existing strategies in-

clude using domain knowledge [16], performing error

analysis [14, 7, 25], and mining knowledge from existing

corpora [29]. Most strategies require extensive efforts of

domain experts or crowdsource workers, making them

hard to scale. They are also often conducted in an un-

systematic way and do not draw on classic requirement

elicitation and participatory design approaches. Future

work could explore:

RQ1 How could we support more effective discovery

and reuse of domain knowledge? When and how

can we automate discovery?

RQ2 What kinds of mechanisms could support more

efficient human-AI interaction in error analysis?

RQ3 How could we design a better process to help both

experts and non-experts identify capabilities?

Assessing capabilities. Capabilities often exhibit a hi-

erarchical structure. For example, understanding negation
is a very general capability, whereas understanding dou-
ble negation or handling modifiers as “hardly” and “never”

are more specific (sub-)capabilities. How fine-grained a

capability should be will likely depend on the specific

scenarios. More coarse capabilities are more reusable,

whereas finer-grained ones capture concrete concepts

that might be especially useful for the domain (but may

not transfer — e.g., concrete adjectives like “cold” is posi-

tive when describing refrigerators but not so much for

thermos). Their predictiveness also differs across scenar-

ios, as we observed in our experiments. When identifying

capabilities, we need to determine the proper granularity,

and evaluate their importance within the context:

RQ4 What is a good granularity for a capability?

RQ5 How do we evaluate/rank capabilities by context?

Communicating capabilities. Identified capabilities

need to be efficiently communicated between different

stakeholders, who might have different requirements and

potential conflicts, or may describe the same capabilities

in drastically different ways depending on their exper-

tise (e.g., an expert may say “invariant to environmental

conditions” when a lay user says “performs the same in

sunny, raining, stormy weathers.”) Common communi-

cation vocabularies and conflict resolution mechanisms,

possibly informed by existing requirements engineering

literature, would greatly facilitate the process.

RQ6 How can we develop a shared language or inter-

face to facilitate capability communication?

RQ7 How can capabilities support conflict resolution

between different stakeholders?

Instantiating capabilities. Abstract capabilities need

to be instantiated as concrete test cases, to be further

used as regression tests, examples for communication,

or augmentation data for training. Existing work has

explored different strategies for instantiating capabilities

(c.f. Sec. 2), but it remains unclear how different strategies

perform in different scenarios and whether they could be

combined in a meaningful way. These strategies are sim-

ilar to software testing (e.g., unit tests and metamorphic

testing [30]) and can be informed by existing software

engineering literature (e.g., test case generation, fuzzing,

prioritization, and requirements validation).

RQ8 How should we select instantiation strategies in

different scenarios? How to measure and trade

off costs and benefits?

RQ9 How do different instantiation strategies comple-

ment each other?

5. Conclusion
A capability is a generic abstraction that unifies exist-

ing efforts on model testing, debugging, and evaluation.

It can also benefit the entire ML engineering lifecycle

from data collection to model deployment, addressing the

needs of different stakeholders and model qualities. Our

exploratory experiments showed that capabilities could

provide strong signals for model generalizability, as well

as highlighted challenges in integrating them into the ML

engineering process. We hope future research will bet-

ter support identifying, assessing, communicating, and

instantiating capabilities.
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