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Abstract
Adversarial examples can be useful for developing safer AI both by identifying vulnerabilities in a model and improving its
robustness via adversarial training. In reinforcement learning, adversarial policies can be developed by training an adver-
sarial agent to minimize a target agent’s rewards. Prior work has studied black-box attacks where the adversary only sees
the state observations and effectively treats the target agent as any other part of the environment. In this work, we study
white-box adversarial policies to understand whether an agent’s internal state can offer useful information for other agents.
We make three contributions. First, we introduce white-box adversarial policies in which an attacker can observe a target
agent’s internal state at each timestep. Second, we demonstrate that white-box adversarial policies are more effective at
finding weaknesses in a target agent, resulting in both faster initial learning and higher asymptotic performance. Third, we
show that training against white-box adversarial policies can be used to make learners in single-agent environments more
robust to domain shifts. Code is available at this https url.
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1. Introduction
The ability to discover and correct flaws with models is
key for safer AI. One approach to this can be via con-
structing and training against adversarial attacks that are
specifically crafted to make a system fail. Adversarial
attacks in the form of subtle perturbations to inputs have
been widely studied in supervised learning [1, 2]. How-
ever, compared to supervised learning, reinforcement
learning (RL) agents can face an expanded set of threats
[3, 4], including adversarial policies from other agents.
Adversarial policies have been used both to attack target
agents [5, 6] and to improve their robustness through
adversarial training [7]. However, the standard approach
for developing them has been to simply train an attacker
against a black-box target until the attacker (over)fits a
policy that minimizes the target’s reward. This black-box
approach sometimes works well, but it fails to utilize
any information beyond what the attacker can directly
observe, thus treating the target as any other part of
the environment. This approach also typically requires
cheap query access to the target, often for many millions
of timesteps. Thus, we set out to expand on the conven-
tional threat model with adversarial policies that exploit
richer information from the target, known as white-box
attacks, in order to encourage more robust performance.

The analog to training a black-box adversarial policy
in supervised learning would be to make a zero-order
search through a model’s input space to find examples
that make it fail. While black-box attacks like these have
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Figure 1: White-box adversarial policies. At each timestep,
both the adversary (adv) and target (tgt) observe the state
𝑠𝑡. The adversary also observes information from the inter-
nal state of the target and concatenates this extra informa-
tion, 𝑚𝑡, into its observations. We demonstrate how this type
of white-box adversarial policy is more useful than black-box
ones for identifying vulnerabilities using attacks and improv-
ing robustness using adversarial training.
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Figure 2: Our setup for (a) adversarial attacks in the two-player Google Research Football (Gfootball) environment and
(b) robust adversarial reinforcement learning (RARL) in single-player Mujoco environments. At each timestep, the state
observation 𝑠𝑡 is passed to the adversary and target. The adversary is also given internal information 𝑚𝑡 from the target
which is concatenated into its observations or internal activations. The vector 𝑚𝑡 can include the target agent’s action
distribution Δ𝑡𝑔𝑡

𝑡 (𝒜), value estimate 𝑣𝑡𝑔𝑡𝑡 , and/or latent activations ℓ𝑡. For the two-player Gfootball environment, both
actions are passed into the environment’s step function. For single-player Mujoco environments the adversary’s action is
added to the target’s as a perturbation.

been studied in supervised learning [8], they are much
less effective and query-efficient than white-box ones
which permit access to the model’s internal state. Thus,
here we study how using information from the target can
help an attacker learn an adversarial policy more quickly
and effectively. Our version of white-box attacks are ad-
versarial policies that can “read the target’s mind.” Fig. 1
depicts our general approach. At each timestep, both the
adversary and target observe the state 𝑠𝑡. The adversary,
however, is also able to observe internal information, 𝑚𝑡,
from the target agent. In our experiments, 𝑚𝑡 is a vector
that consists of the target’s action distribution ∆𝑡𝑔𝑡

𝑡 (𝒜),
value estimate 𝑣𝑡𝑔𝑡𝑡 , and/or latent activations ℓ𝑡.

Specifically, we test this approach in two different set-
tings. First, we test adversarial attacks using the two-
player Google Research Football (Gfootball) environment
[9] and large convolutional policy networks. Both the
adversary’s and target’s actions are passed into the envi-
ronment’s step function. This setup is illustrated in Fig.
2a. Here, we show that white-box attackers are better
for identifying weaknesses in the target agent, achiev-

ing both higher initial and asymptotic performance than
black-box baselines. Second, we adopt the robust ad-
versarial reinforcement learning (RARL) approach from
[7, 10] for experiments in single-player Mujoco environ-
ments (HalfCheetah and Hopper) [11] with small fully-
connected policy networks. The adversary acts by per-
turbing the target agent’s actions. This is shown in Fig.
2b. Here, we find that white-box adversaries can be more
useful for training robust agents whose policies are not
only more robust to the adversary but also generalize
better to environments with altered transition dynamics.

Given these results, we argue that adversarial poli-
cies that exploit inner information from the target agent
pose greater opportunities for identifying and correct-
ing weaknesses in reinforcement learners. More gen-
erally, our results demonstrate that observations from
an agent’s internal state can be useful for other agents
that interact with it. Following a discussion of re-
lated works in section 2, Section 3 details our threat
model and methods. Section 4 presents results, and
Section 5 a discussion. For a high-level explanation



and summary, see the Appendix. Code is available at
https://github.com/thestephencasper/white_box_rarl.

2. Related Work
Adversarial Policies: Reinforcement learning agents
can be vulnerable to several types of adversarial threats
including input perturbations, action perturbations, re-
ward perturbations, environments, and policies from
other agents. Both [3] and [4] offer surveys of threats
and defenses. Our focus is on adversarial policies. Con-
ventionally, these attacks have been developed by simply
training the adversary against the fixed target agent’s pol-
icy. This approach has been used by [12, 5, 6, 13, 14, 15]
for attacks. These adversaries were even observed unin-
tentionally by [16] and [9] who found that in competitive
multiagent environments, it was key to rotate players in
a round-robin fashion to avoid agents overfitting against
a particular opponent. Additionally, [17] introduced a ap-
proach based on planning, [5] tested the detectability of
adversarial policies, [5, 18] explored defense techniques
via obfuscating the attacker and using option-based poli-
cies respectively, [14, 19] experimented with defense via
adversarial training, and [6, 20] offered methods of at-
tacking a target whose reward is unknown.

Meanwhile, [7, 21, 22, 10, 23, 24] have studied Robust
Adversarial Reinforcement Learning (RARL) in which
an agent is trained alongside an adversarial policy that
perturb’s its state or actions in order for the agent to learn
more robust control. [25] studied the stability of this
approach. Others [26, 27, 28] have adversarially trained
agents under observation or environment perturbations.
To the best of our knowledge, however, no works to
date have studied white-box attacks or RARL in modern
reinforcement learning contexts.

Black vs. White-box Attacks: In supervised learning,
adversarial attacks are simple to make using white-box
access to the target’s internal weights. Black-box attacks,
however, typically require transfer, zero-order optimiza-
tion, or gradient estimation, and they are usually less
successful [8]. Several others including [26, 29, 30, 31, 27]
have studied attacks against reinforcement learners based
on perturbing the target agent’s observations. [32] fur-
ther demonstrated the use of a target’s internal state
by using the value function for scheduling maximally-
effective adversarial observation perturbations. These
types of attacks require an attacker to have the ability
to manipulate agent observations and involve propagat-
ing the gradient for an adversarial objective through the
policy network. In contrast, our white-box adversarial
policies only differ from black-box ones from related
work in whether the attacker, a reinforcement learner,
can observe the target’s internal state. Several works
[33, 34, 35, 36, 37] have also trained agents with a theory

of mind for their opponent in competitive tasks, but only
in very simple tabular or cartpole environments. To our
knowledge, we are the first to introduce policies which
can exploit internal information from a target in complex
environments.

Open-Source Decision Making: We study targets
whose policies are transparent to other agents in the
environment. Agents with open source policies pose a
number of challenges and pitfalls for decision-making.
Several works formalize these challenges in the context
of decision theory or game theory [38, 39, 40, 41, 42].
Our work adds to this by empirically studying one such
challenge: attacks in reinforcement learning.

3. Methods

3.1. Framework
We consider the goal of training an adversary
against a target inside of a two player Markov
Decision Process (MDP) defined by a 6-tuple:
(𝒮, {𝒜𝑎𝑑𝑣,𝒜𝑡𝑔𝑡}, 𝑇, 𝑑0, {𝑟𝑎𝑑𝑣, 𝑟𝑡𝑔𝑡}, 𝛾) with 𝒮 a
state set, 𝒜𝑎𝑑𝑣 and 𝒜𝑡𝑔𝑡 action sets for the adversary
and target, 𝑇 : 𝒮 ×𝒜𝑎𝑑𝑣 ×𝒜𝑡𝑔𝑡 → ∆(𝒮) a state transi-
tion function which outputs a distribution ∆(𝒮) over 𝒮 ,
𝑑0 an initial state distribution, 𝛾 a temporal discount fac-
tor, and 𝑟𝑎𝑑𝑣 and 𝑟𝑡𝑔𝑡 reward functions for the adversary
and target s.t. 𝑟𝑎𝑑𝑣, 𝑟𝑡𝑔𝑡 : 𝒮 × 𝒜𝑎𝑑𝑣 ×𝒜𝑡𝑔𝑡 × 𝒮 → ℛ.
We assume 𝑟𝑎𝑑𝑣(𝑠) ≈ −𝑟𝑡𝑔𝑡(𝑠) ∀𝑠 ∈ 𝒮 . We only run
experiments in which the target’s policy is fixed, so the
two-player MDP reduces to a single-player one. We
will use 𝜋𝑎𝑑𝑣 : 𝒮 → ∆(𝒜𝑎𝑑𝑣) and 𝜋𝑡𝑔𝑡 : 𝒮 → ∆(𝒜𝑡𝑔𝑡)
to denote the policy of an adversary and target, and
𝑉

𝜋𝑎𝑑𝑣
𝑎𝑑𝑣 , 𝑉

𝜋𝑡𝑔𝑡
𝑡𝑔𝑡 : 𝑆 → R to refer to their value functions.

3.2. Threat Model
There are multiple notions that have been used in su-
pervised and reinforcement learning to characterize an
adversary. These include being effective at making the
target fail, being subtle and hard for an observer to de-
tect (e.g., [32]), and being target-specific (e.g., [5]). Here,
we use the first criterion and consider any policy that
is effective at making another fail to be adversarial. For
further discussion, see Appendix, A.1.

Previous works discussed in Section 2 have assumed
a threat model in which the adversary only has black-
box access to the target but can cheaply train against
it for many timesteps. We both strengthen and weaken
this. First, we make the permissive assumption that the
adversary can observe the target’s internal state at each
timestep and is able to use this information as an observa-
tion in the same timestep (see Section 3.3 for details). This
could be a plausible assumption if a malicious attacker
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could obtain access to a target agent’s policy parameters
– especially if its designers make the target open-source.
However, a more realistic case for safety-critical settings
in which an attacker may have white-box access to a
target agent is if the agents developers use white box ac-
cess to it to find and correct flaws in the agent’s policy.
Second, we consider the restrictive assumption that the
number of timesteps for which the adversary can train
against the target may be limited. Realistically, this could
be the case if gathering experience is limited or costly
for any reason.

3.3. White-Box Adversarial Policies
We train policies using Proximal Policy Optimization
(PPO) [43] and Soft Actor Critic (SAC) [44]. Both involve
training a value function estimator alongside the policy.
We consider attackers that have access to (1) the target
agent’s action outputs, (2) its value estimate, and/or (3)
the internal activations from its policy network. Our
goal for (1) is to give the adversary a glimpse of the near
future so that it can better counter the target agent’s
behavior. Our goal for (2) is to make it easier for the
attacker to quickly learn its own value function because
𝑉

𝜋𝑡𝑔𝑡
𝑡𝑔𝑡 (𝑠𝑡) ≈ −𝑉

𝜋𝑎𝑑𝑣
𝑎𝑑𝑣 (𝑠𝑡). Note this is only possible for

targets that have a critic. Finally, our goal for (3) is to
give the adversary rich and generally-useful information
on how the target represents the state.

At timestep 𝑡, the environment state, 𝑠𝑡, is observed.
The target processes the state and produces an action
𝑎𝑡𝑔𝑡
𝑡 ∼ 𝜋𝑡𝑔𝑡(𝑠𝑡). At the same time, the white-box adver-

sary queries the target to get its action output 𝜋𝑡𝑔𝑡(𝑠𝑡),
value estimate 𝑉𝑡𝑔𝑡(𝑠𝑡), and/or latent activations ℓ𝑡𝑔𝑡(𝑠𝑡)
in the form of a vector 𝑚(𝑠𝑡). In a slight abuse of
notation, we refer to ℓ𝑡𝑔𝑡(𝑠𝑡) as ℓ𝑡 and 𝑚(𝑠𝑡) as 𝑚𝑡.
Thus, the adversary’s policy function can be written as
𝜋𝑎𝑑𝑣(𝑠𝑡) = 𝑓(𝑠𝑡,𝑚𝑡), and its value estimate can be
written as 𝑉 𝜋𝑎

𝑎 (𝑠𝑡) = 𝑔(𝑠𝑡,𝑚𝑡).
We train both adversaries that use large convolutional

neural networks (CNNs) and small multilayer percep-
trons (MLPs) as policy networks. These architectures are
illustrated in Fig. 2. For the large CNNs, we concatenate
𝑚𝑡 into the representation of the state twice: once at the
first fully-connected layer, and once at the last. We do
this so that the adversary can readily learn both complex
and simple functions of 𝑚𝑡. In particular,we hypothe-
sized that giving the adversary the target’s value estimate
in its final layer is helpful for learning its own value es-
timator, which ought to be approximately the negative
of the target’s. For the small MLPs policy networks, we
only concatenate 𝑚𝑡 with the observation once at the
beginning for efficiency.

4. Experiments

4.1. Identifying Vulnerabilities
Environment: We use the two-player Google Research
Football environment (Gfootball) [9]. Each agent in the
environment controls a set of 11 football (soccer) team-
mates. The states are 72 × 96 × 4 pixels with the four
channels encoding the left team positions, right team
positions, ball position, and active player position. Ob-
servations were stacked over four timesteps to give a per-
ception of time, resulting in observations of 72×96×16
pixels. The agents’ policy networks had a ResNet ar-
chitecture [45], and the action space was discrete with
size 19. We used the same reward shaping as in [9] in
which an agent was rewarded 1 for scoring, -1 for being
scored on, and 0.1 for advancing the ball one tenth of
the way down the field. We trained all Gfootball agents
using Proximal Policy Optimization [43] using the Stable
Baselines 2 implementation [46].

Target Agents: First, we trained target agents to develop
adversarial policies against. For Gfootball, this was done
in two stages for a total of 50 million timesteps. First, the
targets were trained against a ‘bot’ agent for 25 million
timesteps with an entropy reward to encourage explo-
ration. Second, they were trained for another 25 million
timesteps against an agent from the first phase with an
entropy penalty to encourage more deterministic play.
We found this to result in more consistent behavior from
adversaries. In Fig. 3 (a) shows the learning curves for
these targets.

Adversaries: We trained four types of adversaries, each
of which uses observes different information, 𝑚𝑡, from
the target’s internal state:

1. Black-Box Control: 𝑚𝑡 = ∅. This is the same
threat model used by [16], [5] and others men-
tioned in Section 2.

2. Action & Value: 𝑚𝑡 = 𝑉𝑡𝑔𝑡(𝑠𝑡) ⊕ 𝜋𝑡𝑔𝑡(𝑠𝑡)
where ⊕ is the concatenation operator. Here, the
adversary sees the scalar value and an |𝒜𝑡𝑔𝑡|-
sized observation giving the target agent’s distri-
bution over discrete output actions.

3. Latent: 𝑚𝑡 = ℓ𝑡 where ℓ𝑡 gives the latent acti-
vations from some layer during the forward pass
through the target’s network from 𝑠𝑡. Here, we
use those of the final layer from which both the
target agent’s actions and value are computed.

4. Full: 𝑚𝑡 = 𝑉𝑡𝑔𝑡(𝑠𝑡)⊕ 𝜋𝑡𝑔𝑡(𝑠𝑡)⊕ ℓ𝑡. This com-
bines the Action & Value and Latent threat mod-
els.

Results: We train each adversary for 50 million
timesteps. Fig. 3b shows the training curves for these at-
tackers. All improve significantly over the black box con-
trol, both by having faster initial learning and a higher
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Figure 3: Results for white-box adversarial attacks. (a) Training curves for Gfootball target agents. The curves give the mean
and standard error of the mean across 𝑛 = 20 target agents. The first 25 million timesteps of training is against a rule-based
“bot,” and the action entropy is rewarded while the second 25 million timesteps is against a peer and the action entropy is
penalized. (b) Learning curves over 50 million timesteps for various adversarial attackers against the target agents from (a)
starting from random initialization. The top three curves show the performance of white-box adversaries with access to the
target’s action distribution and value estimate and/or its latent activations. The bottom shows a black-box control. Notably,
the best white-box adversaries do as well after 5 million timesteps as the black box control does after 50 million. As in (a), the
curves give the mean and standard error of the mean across 𝑛 = 20 targets. Three 𝑝 value are shown below giving the results
of a one-sided 𝑡 test for the hypothesis that each white-box agent beat the black-box control.

asymptotic performance. The two types of white-box
adversaries that could observe the target’s latents per-
formed the best. Both do as well after 5 million timesteps
as the black box control does after 50 million. For the
action/value, latent, and full attacks, the 𝑝 values from a
one-sided 𝑡 test for the hypothesis that they were supe-
rior to the black box controls were 0.00638, 0.00001, and
0.00002 respectively, demonstrating clear improvements.

4.2. Improving Robustness
Environment: To evaluate white-box robust adversarial
reinforcement learning (RARL), we used HalfCheetah-v3
and Hopper-v3 Mujoco environments from OpenAI Gym.
[11]. In both environments, the agent controls a body
in a 3D simulated physics environment. Observations
are continuous-valued vectors specifying the position of
the body, and actions are continuous-valued vectors for
controlling it. The agents’ policy networks had a small
MLP architecture with two hidden layers of 256 neurons
each. We trained all gym agents using SAC [44] with the
Stable Baselines 3 implementation [47].

Training: In alternation, we trained a target agent and
an ensemble of three adversaries who perturbed the tar-
get’s actions. For each training episode for the target, a
random adversary from the three was chosen to make
the perturbations. We experiment with three methods:

1. RL Control: The target agent is trained with no

adversary.
2. RARL: The target agent is trained against an

ensemble of black-box adversarial agents. This is
the approach used by [10].

3. Latent/Action White-Box RARL (WB-
RARL): The target agent is trained against
an ensemble of white-box adversaries that
each observe its latent activations from the
penultimate layer of the policy network and
action outputs. Thus, 𝑚𝑡 = 𝜋𝑡𝑔𝑡(𝑠𝑡)⊕ ℓ𝑡

Results: We trained a total of 40 agents of each type for
2 million timesteps and selected the 20 with the best final
performance. Fig. 4a shows the evaluation performance
for the HalfCheetah and Hopper agents in an adversary-
free environment over the course of training. Perfor-
mance is comparable between all three conditions with
the RL controls seeming to perform the best in HalfChee-
tah.

To test the robustness of the learned policies, we use
the same approach as [7] and [10]. After RARL, we test
on a set of adversary-free environments with the transi-
tion dynamics altered. We selected a range of 8 mass and
8 friction coefficients to modify the environment dynam-
ics by and tested the agents on all 8 × 8 combinations.
The full arrays of results are shown in Fig. 5 in Appendix
A.2. And the mean results over all friction coefficients
and mass coefficients are plotted in Fig. 4b-c respectively.
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Figure 4: Results for white-box adversarial training. Training and testing performance for (top) HalfCheetah and (bottom)
Hopper agents. (a) Performance over training for robust adversarial reinforcement learning (RARL) experiments. Results are
obtained from adversary-free testing environments. The curves show the mean and standard error of the mean across 𝑛 = 20
agents. We then tested the final agents across a range of environments with perturbed mass and friction coefficients. The
full results are shown in Fig. 5 in Appendix A.2. Here, (b-c) show the mean and standard error of the mean for testing results
averaged across the friction and mass coefficients respectively. Again, all errorbars show standard error of the mean across
𝑛 = 20 agents. In general, agents trained with white-box adversarial training perform as well or better than controls.

In Fig. 4b-c, WB-RARL agents generally perform as well
or better than the other two. And on average, WB-RARL
performs the best over all testing environments. For RL,
RARL, and WB-RARL, the HalfCheetah agents achieve
mean episode rewards of 902, 914, and 1019, and the Hop-
per agents achieve 673, 645, and 716 respectively. We
performed four one-sided t-tests to test the hypotheses
that the WB-RARL agents had superior overall testing
performance. For HalfCheetah, the 𝑝 values were 0.085
and 0.111 for comparing the WB-RARL agents to the RL
and RARL ones respectively. For Hopper, the correspond-
ing 𝑝 values were 0.095 and 0.009. These suggest that the
WB-RARL agents are more robust to these domain shifts.

5. Discussion and Broader Impact
Our goal in this work is to better understand opportuni-
ties from adversarial policies in reinforcement learning
by studying white-box adversarial attackers. We show

that allowing an adversarial policy to observe the inter-
nal state of the target agent, can result in (1) better initial
and asymptotic performance for adversarial attackers
and (2) more effective adversarial training for improving
the robustness of a learned policy. These results suggest
that using white-box adversarial policies to identify and
correct flaws with reinforcement learners may be a useful
strategy for developing safer, more reliable reinforcement
learning systems.

More generally, our results show that information
about an agent’s internal state offers useful information
for other agents interacting with it. This may be the
case regardless of whether the setting is adversarial, co-
operative, or indifferent. In multiagent settings, it is
important to bear in mind that a policy which makes
use of white-box information from another agent need
not be implemented by nor against a conventional re-
inforcement learner. On one hand, policies can be de-
veloped without standard reinforcement learning algo-



rithms (e.g., PPO or SAC). For example, human video
game players constantly develop strategies to exploit the
weaknesses of computer-controlled competitors to great
effect. On the other hand, so long as a target agent com-
putes “actions” via latent information, this information
could be given to other agents seeking to interact with
it. One case in which using adversarial policies against
non-reinforcement-learners can be useful is for finding
flaws in language models. The inability to differentiate
through the sampling of discrete textual tokens makes
the task of finding failure modes for language models
one that adversarial policies can be useful for (e.g. [48]).
Future work on versions of white-box adversarial policies
for debugging language models may be useful.

Concerning adversarial attacks in particular, one risk
of any work that focuses on attack methods is that they
could be used for malicious attacks. This is an important
concern, but we emphasize that it is better to develop an
understanding of adversarial vulnerabilities through ex-
ploratory research than from incidents in the real world.
We also stress the benefits of adversarial training and the
fact that white box access to an agent can be kept from
malicious attackers if appropriate measures are taken.
For this reason, we expect white-box adversarial policies
to be much more practical for those working to make
systems more robust than for malicious attackers.

A limitation is that while we show that white-box at-
tacks can be useful, the improvements from granting the
adversary white-box access in the RARL experiments
were only modest. And even though white-box attacks
can help train adversarial policies more quickly, these
attacks may still demand many timesteps. Future work
on similar black-box attacks that use a model of the tar-
get learned from black-box (and potentially even offline)
access may be valuable. Studying ways to more effec-
tively leverage target agent information in fewer training
timesteps may also be useful. Additional progress like
this toward better understanding opportunities from ad-
versaries in reinforcement learning will be a promising
direction for expanding the toolbox for safer and more
trustworthy AI.
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A. Appendix

A.1. Understanding Adversarial Policies
The notion of an adversary for a deep learning system
was popularized by [1, 2] and subsequent research. These
works developed adversarial images that are both effec-
tive, meaning that they fool an image classifier, and subtle,
meaning that they only differ from a benign image by a
very small-norm perturbation. While they often transfer
to other models [49, 50, 51, 52], these adversaries are also
typically target-specific in the sense that they are created
specifically to fool a particular model.

As in supervised learning, “effectiveness” is used as
part of the definition for adversarial policies across the
literature. “Target-specificity” sometimes is, but many
RL works (e.g., [12]) including ours do not require an
adversary to be target-specific. Finally, “subtlety” has not
been adopted as a standard for adversaries research in
RL. A notion of subtlety for adversaries in RL that would
be analogous to adversaries in supervised learning would
be that the adversary produces distributions over actions
or trajectories that are very similar to a benign agent.

However, in this and all related work in RL of which we
know, no notion of subtlety is part of the definition of
an adversarial policy. So ultimately, we use “adversarial”
here to simply refer to a policy which is good at beating
a target.

A.2. Full Robust Adversarial
Reinforcement Learning Results

As discussed in Section 4.2, we tested agents on envi-
ronments with altered mass and friction parameters. For
both the HalfCheetah and Hopper environments, we used
a set of 8× 8 different mass and friction values. Testing
results across all testing environments for control, RARL,
and WB-RARL agents are shown here in Fig. 5. Under
each grid, the mean for all results in the grid is displayed.
Under the RL and RARL grids (columns 1 and 2), the
𝑝 value from a one-sided t-test for the hypothesis that
WB-RARL is superior to RL and RARL is shown.

A.3. High-Level Summary
Here, we provide a summary of this work which does
not assume that the reader has a technical background.

“Reinforcement Learning” (RL) is the process by which
an agent learns via some formalized process of trial and
error to accomplish a goal. Humans are reinforcement
learners. And so are some algorithms that are commonly
studied in machine learning research today. For example,
is common to use reinforcement learning algorithms to
train AI systems to play video games. Using experience,
they can infer what types of actions lead to higher scores
and adjust their behavior accordingly.

Multiagent RL describes settings in which there is more
than one agent acting in some setting. Past research has
shown that in multiagent settings, training “adversar-
ial” reinforcement learners to make other reinforcement
learners fail can be useful. One one hand, an adversar-
ial agent can often learn to act in a way that renders
the “target” agent unable to accomplish its goals. For
example, an adversary can sometimes act in ways that
make a target in a two player video game seem to take
actions that are as bad as – or even worse than – random
ones. On the other hand, training a target agent against
an adversarial agent can make it more robust to some
failures. For example, this might make the target particu-
larly effective at avoiding failures due to changes to its
environment.

In this work, we study a new approach to adversarial
attacks and adversarial training in RL. We experiment
with “white-box” attacks in which the adversary can
observe the internal state of the target. For humans, this
would be analogous to one person playing a game against
someone else while being able to view scans of their
brain. We show that these white-box adversarial agents
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Figure 5: Evaluations for Robust Adversarial Reinforcement Learning Experiments for 𝑛 = 20 agents with (top) HalfCheetah
and (bottom) Hopper agents. Each grid shows mean episode reward for adversary-free environments with the mass and
friction coefficients altered. Under each grid, the mean for all results in the grid is displayed. Under the RL and RARL grids
cols 1 and 2), the one-sided 𝑝 value for the hypothesis that WB-RARL is superior to RL and RARL is shown.

are more effective than controls for both attacks and
adversarial training. We argue that this helps us to better
understand opportunities from adversarial RL. And based
on these results, we argue that white-box adversaries may
be very useful for discovering and correcting flaws in
reinforcement learners.
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