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Abstract  
Online monitoring is an architectural pattern well-known to safety engineers, but it had to be 

adapted to AI technologies. In this paper, an innovative multi-time scale online monitoring 

architecture is presented. The main idea is to combine several monitoring timescales - Present-

Time Monitoring (PTM), Near-Past Monitoring (NPM), and Near-Future Monitoring (NFM) - 

on different monitoring assets (inputs, internal states, and outputs of the AI model) to ensure a 

high anomaly detection rate by design of the online monitor. 
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1. Introduction 

In the industry, it is commonly established that 

the main objective of online monitoring of AI 

models (also called Run Time Assurance in [21] 

or safety control structure in [25])  is to detect (i) 

any deviation of the AI component deployed in 

production from the expected behavior (i.e., intent 

specified at the system level and allocated to the 

AI model), and (ii) precursors of the occurrence 

of failure conditions (i.e., feared events at the 

system boundaries) based on a predefined set of 

safety properties. Deploying a monitoring 

component running in parallel with the AI model 

is a practical way to manage the risk induced by a 

model for which it is not possible or feasible to 

formally demonstrate the achievement of the 

performance and the safety objectives resulting 

from the system analyses. Online monitoring is an 

architectural pattern well-known to safety 

engineers, but it had to be adapted to AI 

technologies. In an ideal world, the AI model can 

perform its prediction over its entire Operational 
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Design Domain (ODD) with the expected level of 

performance (e.g., 99.9% correct predictions, and 

this accuracy is maintained over time in 

operation). However, in practice, if we consider 

for example machine learning models in many 

recent papers, most of the time it is very difficult 

to achieve more than 99% accuracy (see for 

example the tables of results in [22, 23, 24]), 

which is an average of one wrong prediction out 

of 100 inferences in production. But should we 

hastily conclude that 1% of bad prediction 

systematically triggers unexpected behavior 

leading to a system failure condition? In practice, 

from the industrial experience of the authors and 

for a wide range of industrial applications, a single 

error does not directly lead to hazardous or 

catastrophic events, because the system design 

has eliminated Single Points Of Failure (SPOF) 

(e.g., application of the following guidelines 

ARP4754A [26] and ARP4761 [27] in the 

aeronautical domain). Therefore, based on this 

assumption (no SPOF in the system), it implies 

that a single failure of an AI component (i.e., an 

incorrect prediction at a given time) cannot 
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directly lead to hazardous or catastrophic events. 

However, what about the case where the AI 

component has persistent failures (i.e., the model 

fails to infer the correct prediction at a given point 

in time, and continues to fail during a subsequent 

time interval)? This could increase the residual 

risk due to a higher probability of having (during 

that time interval where the AI component 

continues to fail) a combination of multiple 

internal failures in the system leading to a system 

failure condition. To detect persistent failures, 

considering the dynamics of the system and thus 

the "time" variable is a major issue. In this paper, 

an innovative multi-time scale online monitoring 

architecture is presented. The main idea is to 

combine several monitoring timescales - Present-

Time Monitoring (PTM), Near-Past Monitoring 

(NPM), and Near-Future Monitoring (NFM) - on 

different monitoring assets (inputs, internal states, 

and outputs of the AI model) to ensure a high 

anomaly detection rate by design of the online 

monitor. 

2. Summary of Related Works 

To tackle the topic of monitoring AI models, 

some works started to define a taxonomy of 

anomalies that are specific to AI technologies [1, 

2, 3] but, to the best of our knowledge, no 

taxonomy is an undisputed reference. Other works 

tried approaches to perform runtime verification 

such as Monitoring Based on Past Experiences [4, 

5], and Monitoring Based on Inconsistencies 

During Inference [6]. We can also find many 

papers on Out of Distribution Detection using 

either Data-Driven Out-of-Distribution Detection 

[7, 8, 9], Detection by reconstruction [8, 10], 

Detection by test-time adversarial attacks [11, 

12], or Anomaly Detection for Time Series [13]. 

Another group of work is dedicated to Uncertainty 

Prediction including, Bayesian Neural Networks 

[15, 16], MC Dropout [17], Ensemble Methods 

[18], and Single-forward uncertainty estimation 

[19, 20]. 

3. Multi-timescale Monitoring 

The context of the online monitoring function is 

described in Figure 1 below. 

The AI-based product consisting of one or several 

integrated AI models is depicted in the black oval. 

This product can be an item (i.e., a component), 

or a subsystem of an entire system. The generic 

term "product" is used in the following. The 

product receives at inference time operational 

data from sensors. 

 
Figure 1: Context of the Online Monitor function 
 

Above the product, in a white oval, the online 

monitoring item receives both the external inputs 

and outputs of the product, as well as some 

information about the internal states of the 

product using pre-designed probes placed in the 

product's software code or hardware. At the top of 

Figure 1, an item in charge of continuously 

collecting all relevant operational data is usually 

required to feed a complementary offline 

monitoring function. The offline monitoring 

function may have several objectives according to 

the use case such as (but not limited to): (i) 

calculating offline metrics, (ii) fine tune some of 

the online monitor parameters, (iii) detecting data 

and concept drifts, and (iv) act as a hypervisor of 

the online monitor. At the bottom right-hand side 

of Figure 1, a controller is responsible for 

synthesizing the output produced by the product 

and the verdict of the monitor to compute, based 

on certain business logic (that is in general 

specific to the use case), the final output, which is 

so-called the “safe output”.  

To illustrate the product to be monitored, consider 

the very simplified didactic example in Figure 2, 

which represents a linear physical phenomenon 

𝑦 = 𝑓(𝑡) = 𝑎𝑡 + 𝑏 to be approximated by an AI 

model 𝑦̂ = 𝑓(𝑡𝑘), where tk is the system clock 

which also clocks the monitoring item (at each 

time tk the device acquires data to produce a 

verdict; 𝑡0 is the product start-up time). 

 



Figure 2: Illustration of the AI-based Product 
 

Let’s also assume that system requirements 

specify a set of properties to be satisfied by the 

product in operation. These properties are 

business-driven and thus specific to each use case. 

In general, these properties may be (but are not 

limited to) (i) functional properties related to the 

nominal expected behavior of the product like 

performance requirements, (ii) safety properties 

identified by safety risk analyses, (iii) security 

properties determined by security risk analyses, 

(iv) explainability properties coming from human 

factor analyses. To keep the logic of a simplified 

didactic example, consider that there is only one 

general property materialized by robustness 

bounds depicted by the green dashed segments in 

Figure 2. The area bounded by these two green 

dashed segments defines the validity domain ℧  of 

the product output 𝑦̂. The very simplified general 

safety property2 can therefore be expressed as 

follows: 

 

∀𝑡𝑘 ≥ 𝑡0, 𝑓(𝑡) ∈ ℧ (1) 
 

Regarding the design of the product, since 

sufficient data were collected and are available to 

characterize the physical phenomenon to be 

modeled, it has been decided to use Machine 

Learning (ML) technology to design the product 

(e.g., using an artificial neural network). The ML 

model is obtained after several iterations of 

learning and is depicted by the blue curve in 

Figure 2. It is deliberately not perfect. Indeed, it is 

possible to observe several operating points of the 

ML model output 𝑦̂ fall outside the validity 

domain ℧  and do not satisfy the safety property 

(1). The online monitoring function aims to detect 

all operating points that violate the system 

properties – let’s call them by the generic term 

anomaly in the rest of this paper. To be efficient, 

the online monitor should ensure a sufficient 

anomaly detection rate, and this is precisely the 

ultimate goal of the multi-scale monitoring 

framework which is the main contribution of this 

paper. 

The principle of multi-scale monitoring is 

described in Figure 3. It consists in combining 

several monitoring timescales: monitoring of the 

product at the present time, monitoring over a 

configurable time window in the near past, and 
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monitoring over a configurable time window in 

the near future. 

 

 
Figure 3: Principle of the multi-timescale online 
monitoring 
 

To illustrate the combination of these three 

different timescale monitoring functions, let us 

continue the discussion on the trivial example of 

Figure 4. At time tx, the ML model output 𝑦̂ 

overpasses the robustness boundaries, and it is 

expected that the Present Time Monitoring (PTM) 

will be able to detect such abnormal behavior. 

Between times tx and ty, it is possible to observe 

that 𝑦̂ starts to unexpectedly oscillate. It is an 

unintended behavior that could be a precursor of 

a failure of the ML model. Since this oscillation 

phenomenon should be observed and confirmed 

on several clock cycles, it is expected that the 

Near Past Monitoring (NPM) will be the 

appropriate monitoring timescale to detect such 

oscillation anomaly. 

 

 



Figure 4: Combination of the multi-timescale 
monitoring functions PTM, NPM and NFM 
 

At time tz, 𝑦̂ has an abrupt trend that will make it 

overpass the robustness boundaries at the next 

clock cycles. Here, the Near-Future Monitoring 

(NFM) is the most appropriate monitoring 

function to detect such potentially abnormal 

behavior since it is based on trend 

analysis.Through this didactic example, one can 

observe that an efficient combination of these 

three different monitoring timescales  NPM, 

PTM, and NFM  allows one to detect several 

classes of anomalies and to achieve this by 

designing a high online detection rate when the AI 

model is in production. 

4. Industrial Design Principles 

In the previous sections, a first design principle 

has been presented through the new multi-

timescale monitoring framework that aims at 

increasing by design the anomaly detection rate. 

However, there are many other design principles 

of online monitors that are important as well. 

Below is a synthesis of the main industrial design 

principles collected and formalized by major 

international industrial groups within the frame of 

the French research program Confiance.ai3. All 

these design principles are not detailed in this 

paper since each of them would require a full 

technical paper to be comprehensively presented. 

 

 Design Principle 1: The monitoring 

function should by design ensure completeness 

of anomaly detection while minimizing false 

alarms 

 Design Principle 2: The sophistication of 

the monitoring function should be 

proportionate to the criticality level of the AI 

function 

 Design Principle 3: The monitoring 

function should be smart to manage 

complexity and performance issues 

 Design Principe 4: The monitoring 

function should not have any safety adversarial 

common mode of failure with the monitored 

AI function 

 Design Principle 5: The monitoring 

function itself should not has an unacceptable 

                                                      
3 See www.confiance.ai involving more than 40 partners including 

large industrial groups such as: Airbus, Air Liquide, Atos, Naval 

impact on the system safety and security 

(innocuity) 

 

In the next section, an industrial use case from 

the automotive domain is presented to illustrate 

some of the concepts presented earlier. 

5. Application 

The application used to present some results 

related to multi-timescale online monitoring is 

called the Renault Welding Use Case.  

 

 
Figure 5: Renault Welding Use Case 

 

The industrial context is a plant producing 

mechanical components used for the ground 

connection of motor vehicles and the mechanical 

parts of interest in this use case are only the parts 

of the rear axle. During the manufacturing process 

shown at the top of Figure 5 (see Operational 

Platform (OP) #120), metal parts are welded 

together. The mechanical quality of the final 

component depends on the quality of the weld.  

Until now, a systematic inspection of the weld 

is carried out by a specialized human operator on 

a screen like the one at the bottom of Figure 5 (see 

Display OP#120). The screen displays different 

Group, Renault Group, Safran, Sopra Steria, Thales, Valeo, and 

others (full list on the web site). 
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photos of the same weld taken by different 

cameras from different angles. Based on its 

experience, the human operator classifies the weld 

as “compliant”, “not compliant” or “unknown” 

(see examples of welds in Figure 6). This last 

status "unknown" leads to a further deeper 

technical evaluation of the manufacturing 

process. 

 

(a) Compliant Weld 

 
(b) Non-Compliant Weld 

 
Figure 6: Examples of welds 
 

In practice, the overwhelming majority of 

welds are compliant (robotized welding), and 

from a human factor perspective, this situation is 

likely to decrease the attention of the operator in 

charge of quality control. To mitigate this risk, 

Renault launched a project to develop an AI-based 

system to assist the operator in charge of the 

quality control of welds as depicted in Figure 7.  

 
Figure 7: Online Monitoring of the Welding 
Classification Model 
 

The AI-based product in Figure 7 is called 

Welding Classification Model (WCM) and it 

performs an automated preliminary conformity 

assessment of the weld quality. The WCM is 

developed using supervised ML technology based 

on labeled datasets containing historical data of 

compliant and non-compliant welds. The design 

details of the WCM are not important in this paper 

since it is considered a black box by the online 

monitor that only looks at its inputs and its outputs 

and not at its internal states as shown in Figure 7). 

The WCM provided by Renault reaches very good 

performance (measured with an f1 score) but only 

on a given domain, called ODD, that is 

characterized according to operational 

parameters. Based on a dedicated study of the 

ODD done with Renault representatives, two 

operational parameters have been considered in 

this study as the most impacting the performance 

of the ML Model (and therefore of the correctness 

weld conformity classification): (i) image 

brightness and (ii) image blur. Thus, the 2 

properties to be monitored are expressed as 

follows: 

 

∀𝑡𝑘 ≥ 𝑡0, 𝑖𝑚𝑘 ∈ ℧𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 (2) 

 

∀𝑡𝑘 ≥ 𝑡0, 𝑖𝑚𝑘 ∈ ℧𝐵𝑙𝑢𝑟 (3) 
 

Where 𝑖𝑚𝑘 is the image received by the WCM at 

time tk and ℧𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 and ℧𝐵𝑙𝑢𝑟 are respectively 

a projection of the full WCM ODD on the two 

targeted operational parameters – i.e., image 

brightness and image blur. Besides, ℧𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 

and ℧𝐵𝑙𝑢𝑟 are not calculated theoretically, they 

are determined based on test campaigns with 

augmented data as illustrated for the brightness 

ODD in Figure 8. 

 

 
Figure 8: WCM Brightness ODD characterization 
 



Once ℧Brightness and ℧Blur are determined, it 

is possible to develop dedicated monitoring 

functions to detect Out-Of-Distribution (OOD) 

input images since we can observe in Figure 8 that 

the f1 performance score of WCM drops sharply 

outside ℧Brightness (depicted with the white arrow 

at the top of Figure 8). And it is the same for the 

blur (not represented in the paper to avoid 

overloaded information). The rules-based design 

of the online PTM monitoring functions for 

brightness and blur OOD detection are detailed in 

Tables 1, 2, and 3. Examples of anomalies 

detected in the Welding use case are represented 

in Figure 10 (brightness anomalies) and Figure 9 

(blur anomalies). 

 

 
Table 1 

Standard Brightness Detection 

 
 

 
Figure 9: Brightness Anomaly Detection on the Welding Use Case based on PTM monitoring 

 
Table 2 

Standard Blur Detection 

 
 

 



Figure 10: Blur Anomaly Detection on the Welding Use Case based on PTM monitoring 
 

The performance of the developed PTM 

monitoring functions has been evaluated by the 

LNE4 which is an independent partner of the 

Confiance.ai Program specializing in calibration, 

testing, and certification under the trusteeship of 

the French Ministry for the Economy and Finance 

with oversight for Industry. 

LNE randomly selected 11,000 images for the 

evaluation set, and identified the following 

evaluation metrics: 

 Analysis of the classification of the 

monitor compared to the noise for each image: 

­ True positive: the image has a medium 

noise or important noise, and the 

monitor raised an alarm 

­ True negative: the image has a slight 

noise, or no noise, and the monitor did 

not raise an alarm 

­ False positive: the image has a slight 

noise, or no noise and the monitor 

raised an alarm 

­ False negative: the image has a 

medium noise or important noise, and 

the monitor did not raise an alarm 

 Using these four values, the precision, 

recall, and f-measure are computed 

­ Precision: total of true positives by the 

total of detected positives (true and 

false) 

­ Recall: the total of true positives by 

the total of real positives (true 

positives and false negatives) 

­ F-measure: harmonic mean of the 

precision and recall 

 
Table 3 
LNE results by type on anomaly 

Noise Precision/Recall F-measure 
V motion blur5 0.68/0.90 0.77 
H motion blur6 0.68/0.96 0.80 
Brightness dark 0.79/0.99 0.88 
Brightness light 0.75/1.0 0.85 

 
The recall metric is very important in domains 

such as automotive quality controls where you 

want to minimize the chance of missing positive 

(i.e., missing to detect a non-compliant weld) by 

predicting false negatives (i.e., a non-compliant 

weld is predicted as a compliant one and there is 

no alarm sent by the monitor). These are typically 
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cases where missing a positive case has a much 

bigger safety impact than wrongly classifying 

something as positive. 

These evaluation results show that the rule-

based PTM OOD functions have a good or a very 

good recall (90%  recall  100%).  However, the 

precision results (and thus the f-measure scores) 

show that the number of false positive alarms is 

still high and needs to be reduced in a further 

version of the monitoring functions. 

There is no result presented in this paper on 

NPM and NFM functions since the development 

of these monitoring functions are in progress 

within the Confiance.ai Program. The results of 

ongoing research on NPM and NFM will be 

published in future papers, as well as the results of 

the integrated multi-timescale monitor combining 

PTM, NPM, and NFM into a single monitoring 

item. 
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