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Abstract
When a human expert demonstrates the desired behavior, there often exist multiple reward functions consistent with the
observed demonstrations. As a result, agents often learn a proxy reward function to encode their observations. Operating
based on proxy rewards may be unsafe. Furthermore, black-box representations make it difficult for the demonstrator to verify
the learned reward function and prevent harmful behavior. We investigate the efficiency of using explanations to update
and verify a learned reward function, to ensure that it aligns with the demonstrator’s intent. The problem is formulated
as an inverse reinforcement learning from ranked expert demonstrations, with verification tests to validate the alignment
of the learned reward. The agent explains its reward function and the human signals whether the explanation passes the
verification test. When the explanation is rejected, the agent presents additional alternative explanations to acquire feedback,
such as a preference ordering over explanations, which helps it learn the intended reward. We analyze the efficiency of our
approach in learning reward functions from different types of explanations and present empirical results on five domains.
Our results demonstrate the effectiveness of our approach in learning and generalizing human-aligned rewards.
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1. Introduction
With dramatic recent advances in artificial intelligence,
autonomous agents are being increasingly deployed in
the real world to complete complex and nuanced tasks [1].
A predominant way to train such agents in the absence of
a reward function is learning from demonstration (LfD) [2].
Inverse reinforcement learning (IRL) is a form of LfD de-
signed to retrieve a reward function that captures the
demonstrator’s behavior [3], allowing agents to learn and
generalize the observed behavior to unseen situations.

Despite the success of IRL in many research settings,
two key limitations may lead to unsafe behavior of the
deployed system: (1) the demonstrations may cover only
a subset of states, providing no direct information about
acceptable behavior in other states; and (2) a large space
of candidate reward functions may be consistent with the
demonstrations, each producing slightly different behav-
ior in states that were not visited in the demonstrations.
Consequently, an agent may learn a proxy reward that
leads to unpredictable, unsafe behavior when encounter-
ing novel situations.

Figure 1 illustrates this challenge with an autonomous
vehicle (AV) approaching a pedestrian walking two dogs.
In the demonstration data, the driver always stops when

The AAAI-23 Workshop on Artificial Intelligence Safety (SafeAI 2023),
Washington D.C., USA.
Envelope-Open smahmud@umass.edu (S. Mahmud);
sandhya.sai@oregonstate.edu (S. Saisubramanian);
shlomo@umass.edu (S. Zilberstein)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a human is crossing the street with dogs. Since dogs
are often accompanied by humans, the rare case of en-
countering dogs alone might be missing from the dataset.
Consider four different reward functions consistent with
the demonstration, (𝑅𝑖, 1≤ 𝑖≤4), each with the same neg-
ative reward for not stopping in this case. 𝑅1 does not
account for dogs, 𝑅2 rewards stopping for pedestrians
with dogs, 𝑅3 rewards stopping for pedestrians or dogs,
and 𝑅4 rewards stopping for all objects, including leaves
or a plastic bag on the road. In the absence of additional
information, the AV may randomly learn one of these re-
ward functions (say 𝑅2), however, 𝑅3 represents the true
intent of the demonstrator. When operating based on 𝑅2,
the AV may not stop for dogs unaccompanied by humans.
This example illustrates the inherent reward ambiguity
in IRL and the consequences of learning a proxy reward.

Existing IRL methods aim to resolve reward ambiguity
by either introducing heuristics such as Max Margin [4]
or Max Entropy [5], or by combining additional infor-
mation such as a trajectory ranking [6] or a preference
differentiator [7]. However, these approaches are not
guaranteed to avoid reward ambiguity and they do not
verify the learned reward. Recently, Brown et al. [8]
introduced an approach to verify the agent’s value or pol-
icy, but it does not amend the reward if it is misaligned.
Further, these methods are not interpretable and may
require additional knowledge, such as the value function.

To address this issue, we introduce a general frame-
work that utilizes explanations to learn a reward func-
tion that is aligned with the demonstrator’s intent. Our
framework for reward verification and learning using
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Figure 1: An example of reward learning and verification with REVEALE in autonomous navigation. Existing IRL approaches
learn a reward function that aligns with the demonstration (𝑅2), which may not be the intended reward function. Our approach
uses feature attribution based explanations to learn and verify if the system has learned the intended reward function (𝑅3).

explanations (REVEALE) consists of a reward learning
phase and a verification phase. In the reward learning
phase, the agent learns a reward function based on the
demonstrations. In the verification phase, the demon-
strator verifies the reward alignment through verifica-
tion tests in the form of queries to the agent. The agent
responds by explaining its reward, and the demonstra-
tor signals whether the model passes the verification
test. When it fails, the agent queries the demonstrator
by presenting additional explanations from alternative
candidate reward models. The demonstrator provides
feedback by selecting the explanation that matches most
closely their intended reward. This is followed by the re-
ward learning phase, in which the agent updates its prior
over candidate reward functions, based on the feedback.
Thus, REVEALE can identify and fix inconsistencies in the
reward function by alternating between the learning and
verification until the verification test is passed.

We use verification tests in the form of a query: “ex-
plain the reward at state 𝑠”, and explanations in the form
of feature attribution. We use feature attribution-based
explanations, due to their simplicity, but the framework
is general and can work with any form of explanation
that can help the demonstrator interpret a reward func-
tion. An example of a verification test for the scenario
described in Figure 1 is “explain the reward when the AV
encounters a dog accompanied by humans,” to which the
agent would respond with its reward value and feature
attributions indicating a low weight for the ‘dogs’ fea-
ture. This reveals a potential weakness of the model in
the counterfactual scenario in which the dog is not ac-
companied by a human (missing from the dataset). When
this fails the verification test, the agent explains another
candidate reward function (for example, 𝑅2 and 𝑅3). The
demonstrator then selects an explanation that is closer to
their intended reward (𝑅3 in this case), indicating that 𝑅3
is preferred over 𝑅2 and the desired behavior is to stop
for pedestrians or dogs.

Our key contributions are: (1) introducing a general

framework for verifying and learning human-aligned
reward from demonstrations and using explanations;
(2) presenting an algorithm to generate explanations as
feature attributions for reward functions and verify the
learned reward through human feedback; (3) analyzing
the reduction in reward ambiguity for linear rewards;
and (4) demonstrating empirically the effectiveness of
our approach on five domains.

2. Related Work
Reward learning Most IRL algorithms learn a reward
function using expert trajectories [4, 9, 10]. Recent algo-
rithms utilize additional information to improve reward
learning, such as preferences over trajectories [11, 12],
prior over reward functions [13], or feature queries [7].
A key obstacle to the safe deployment of an autonomous
agent is the long tail of novel situations [14] that cannot
be predicted by the demonstrations a priori. In fact, our
experiments show that adding additional demonstrations
or preferences over trajectories does not guarantee im-
provement in the learned reward. Further, unlike Basu
et al. [7] that uses human feedback to identify a fea-
ture that affects trajectory preferences, we use feedback
to identify which automatically generated explanation
aligns best with the intended reward, thereby reducing
reward ambiguity. While the former approach is limited
to linear rewards, our approach generalizes to nonlinear
cases. Finally, none of the existing IRL approaches per-
form reward verification. Our approach is complemen-
tary to many of the existing reward learning methods,
as the reward verification and explanation phases can be
used in tandem with any type of reward learning.

Value alignment Value alignment focuses on ensuring
that an agent behavior is alignedwith its user’s intentions.
Unlike the inverse reward design approach [15] that aims
to retrieve the intended reward by treating the specified
reward function as a proxy, we learn the true reward func-
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tion using human feedback on automatically generated
explanations of potential reward models. While some re-
cent work focused on value alignment verification (VAV)
with a minimum number of queries [8], our work dif-
fers in that: (1) we use human feedback in the form of
preferences over reward explanations to verify the re-
ward, while VAV uses reward weights, value weights or
trajectory preferences for verification; and (2) VAV can
detect but cannot amend misaligned rewards, while our
approach verifies and rectifies incorrect rewards. Further,
VAV can check the consistency of the value function only
in situations that occur during training, and cannot verify
the performance in novel situations that the agents may
encounter after deployment.

Explainable AI For autonomous systems to be widely
adopted, user trust in the systems’ capability must be
built [16], and it is widely accepted that explanations can
induce trust [17]. Much of the existing work on explain-
able AI uses feature attributions as explanations to help
understand the relationship between input features and
the output of a learned model. Some of the widely used
techniques are LIME [18], meanRESP[19], SHAP [20],
gradient as explanation (GaE) [21] and saliencymaps [22].
Besides feature attribution, there are other broad classes
of automated explanation generation methods such as
model reconciliation [23] and policy summarization [24].
While these existing approaches typically use explana-
tions to improve interpretability, we use them to verify
and improve the reward model. Relevant to our work
is [25] which uses a policy summarization technique to
explain reward function to humans in order to induce
trust. Another related line of work uses a model rec-
onciliation method to improve humans’ understanding
of reward function for better collaboration [26]. Unlike
these approaches where the focus is to induce trust or im-
prove collaboration, our framework uses explanations to
simultaneously learn and verify human-aligned reward.

3. Background
Markov decision process AMarkovDecision Process
(MDP)𝑀 is represented by the tuple𝑀 = (𝑆, 𝐴, 𝑇 , 𝑅, 𝑆0, 𝛾 )
where 𝑆 is a finite set of states, 𝐴 is a finite set of ac-
tions, 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition function,
𝑅 ∶ 𝑆 × 𝐴 → ℝ is the reward function, 𝑆0 is the initial
state distribution, and 𝛾 ∈ [0, 1) is the discount factor. A
policy 𝜋 ∶ 𝑆 × 𝐴 → [0, 1] is a mapping from states to
a distribution over actions. The state and state-action
values of a policy 𝜋 are 𝑉 𝜋(𝑠) = 𝔼[∑∞

𝑡=0 𝛾 𝑡𝑅(𝑠𝑡) ∣ 𝑠0, 𝜋]
and 𝑄𝜋(𝑠, 𝑎) = 𝔼[∑∞

𝑡=0 𝛾 𝑡𝑅(𝑠𝑡) ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋], ∀𝑠 ∈ 𝑆
and 𝑎 ∈ 𝐴. The optimal values are denoted by 𝑉 ∗(𝑠) =
max𝜋 𝑉 𝜋(𝑠) and 𝑄∗(𝑠, 𝑎) = max𝜋 𝑄𝜋(𝑠, 𝑎).

Bayesian IRL A Bayesian framework for IRL defines
a probability distribution of reward functions given a
demonstration dataset 𝒟 using Bayes rule, 𝒫 (𝑅|𝒟) ∝
(𝒟|𝑅)𝑃(𝑅). Various algorithms define 𝑃(𝒟 |𝑅) differ-
ently. We use the definition from B-REX [11], as it is
scalable. Let 𝜏 𝑖 and 𝜏 𝑗 denote two different trajectories.
Expert demonstrations are given in the form of prefer-
ences, 𝜏 𝑖 ≻ 𝜏 𝑗, indicating that 𝜏 𝑖 is preferred over 𝜏 𝑗. The
demonstration data is denoted by 𝒟 = {(𝜏11 ≻ 𝜏21 ), (𝜏12 ≻
𝜏22 ), ..., (𝜏1𝑛 ≻ 𝜏2𝑛 ), }, where the trajectory 𝜏1𝑖 is preferred
over trajectory 𝜏2𝑖 . Hence, such data are called preferential
dataset. B-REX defines 𝒫 (𝒟|𝑅) as:

𝒫 (𝒟|𝑅) = ∏
(𝜏𝑖≻𝜏𝑗)∈𝒟

𝑒𝛽𝑅(𝜏𝑖)

𝑒𝛽𝑅(𝜏𝑖) + 𝑒𝛽𝑅(𝜏𝑗)
,

where, 𝑅(𝜏) = ∑𝑠∈𝜏 𝑅(𝑠) and 𝛽 ∈ [0,∞).

4. The REVEALE Framework
Consider an agent operating in an environment mod-
eled as a Markov decision process (MDP), 𝑀 =
(𝑆, 𝐴, 𝑇 ,R, 𝑆0, 𝛾 ) where the reward function R is initially
unknown to the agent. The agent aims to learn R using
expert demonstration data 𝒟. We consider a factored
state representation.

Definition 1. Given an MDP 𝑀 with an unknown re-
ward function R, a REVEALE instance is defined as
⟨𝑀,𝒟 ,ℛ,𝒫 , 𝑆𝑉, ℰ ,𝒳 , 𝑉𝑇, ℱ ⟩ where

• 𝑀 denotes the underlying MDP with R initially
unknown to the agent;

• 𝒟 denotes the demonstration data;
• ℛ denotes the space of possible reward functions
for 𝑀 that are consistent with 𝒟;

• 𝒫 is the probability distribution over the reward
functions in ℛ, with 𝒫 (𝑅|𝐷) ∈ [0, 1] denoting the
probability of a reward function 𝑅 ∈ ℛ being the
true reward function1 R, given the demonstration
data 𝒟;

• 𝑆𝑉 ⊆ 𝑆 denotes the set of states used by the human
to verify the agent’s learned reward;

• ℰ is the space of explanations, corresponding toℛ;
• 𝒳 ∶ 𝑆𝑉 × 𝑉𝑇 → ℰ is the agent’s explanation gener-
ation function that generates an explanation 𝑒 ∈ ℰ,
given a verification test 𝑣𝑇 ∈ 𝑉𝑇 and a state 𝑠𝑉 ∈ 𝑆𝑉;
and

• ℱ is the feedback provided by the human, in re-
sponse to the agent’s explanation 𝑒 ∈ ℰ.

1A reward function that captures the true intention of the demon-
strator
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We assume that the agent has access to a limited num-
ber of expert demonstrations to learn R. While the gen-
eral framework can leverage different types of demon-
strations, explanation generation, and verification tech-
niques, we target settings where the demonstrations are
in the form of trajectory preferences, explanations are
generated as reward value and feature attribution, and
verification tests describe the reward function at certain
critical states identified by the human. In Section 5, we
briefly discuss how to handle other forms of explanations,
demonstrations, and IRL algorithms.

Demonstration data Similar to [11], we use expert
demonstrations in the form of pairwise preference over
trajectories, 𝒟={(𝜏11 ≻𝜏21 ), … , (𝜏1𝑛 ≻𝜏2𝑛 )}, called a preferen-
tial dataset, due to its computational efficiency.

Based on [9, 27], the space of reward functions consis-
tent with a policy and preferential demonstrations are
defined as follows.

Definition 2. Given an MDP 𝑀, a policy-consistent
reward set, denoted Δ(𝜋), is a set of reward functions
under which 𝜋 is optimal, Δ(𝜋) = {𝑅 ∈ ℛ ∣ 𝜋, 𝑠0, 𝑉 𝜋

𝑅 (𝑠0) =
𝑉 ∗(𝑠0)} where 𝑠0 is the initial state.

Definition 3. Given an MDP 𝑀 and preferential dataset
𝒟, a demonstration-consistent reward set, denoted
Δ(𝒟), is a set of reward functions under which the preferred
trajectories have a higher reward than the less preferred
trajectories, Δ(𝒟) = {𝑅∈ℛ ∣ 𝑅(𝜏1𝑖 ) > 𝑅(𝜏2𝑖 ), ∀(𝜏1𝑖 ≻ 𝜏2𝑖 ) ∈
𝒟}.

In practice, 𝒟 may not cover all states and there
may be mismatches in the training and testing environ-
ments [15, 28]. Such situations lead to reward ambiguity
and the agent may end up learning a proxy reward. RE-
VEALE overcomes these drawbacks by generating expla-
nations of the reward functions that are consistent with
the expert’s policy/demonstrations, which are verified
by the demonstrator.

Explanation generation function (𝒳) The agent’s
explanations involve two components: (1) the reward
at the verification test state 𝑠𝑉, denoted by 𝑅(𝑠𝑉), fol-
lowing the most likely reward function; and (2) feature
attribution indicating the influence of state features on
the reward function. Attribution-based explanations are
commonly used in interpretable machine learning [29].

A feature attribution is a scoring function denoting
the contribution of each state feature to the output, 𝐹𝐴 ∶
𝑆×ℛ → ℝ|𝑆|. This is a form of local explanation as it only
explains the reward function at each state in isolation. We
use established local explanation techniques mentioned
earlier: gradient as explanation (GaE), LIME, and saliency
maps.

Verification and feedback We use verification tests
of the form “Explain the reward at state 𝑠𝑉” with 𝑠𝑉∈𝑆𝑉
selected by the demonstrator. Hence, 𝒳(𝑠𝑉, 𝑣𝑇) =
𝒳(𝑠𝑉), ∀𝑠𝑉, 𝑣𝑇. However, 𝑆𝑉 can also be generated auto-
matically using techniques such as policy summariza-
tion [30]. The agent responds by automatically generat-
ing explanations, consisting of the reward value at 𝑠𝑉 and
the feature attribution describing the reward function.

Approval: A binary signal indicating whether the
demonstrator approves (ℱ𝐴(𝒳(𝑠𝑉)) = 1) or disapproves
(ℱ𝐴(𝒳(𝑠𝑉)) = 0) the explanation, denoting the outcome
of the verification test.

Explanation feedback: When the verification test fails,
the demonstrator provides accurate feedback on expla-
nations generated by the agent in one of the following
two forms, used by the agent to update 𝒫:

(1) Oracle explanations, typically provided by the human,
in the form of exact feature attribution corresponding
to their intended reward, ℱ𝑂(𝒳(𝑠𝑉)) = 𝒳𝑂(𝑠𝑉), ∀𝑠𝑉 ∈ 𝑆𝑉,
where 𝒳𝑂(𝑠𝑉) denotes the exact feature attribution gen-
erated by the Oracle. Though this is an ideal setting as
𝒳𝑂(𝑠𝑉) provides features that are critical to learning the
intended reward, this type of feedback can be harder to
collect in practice, except for simpler domains.

(2) Pairwise preference over feature attributions generated
by the agent, ℱ𝑃(𝒳1(𝑠𝑉), 𝒳2(𝑠𝑉))=𝒳𝑃(𝑠𝑉), ∀𝑠𝑉 ∈𝑆𝑉 where
𝒳𝑃(𝑠𝑉) ∈ {𝒳1(𝑠𝑉), 𝒳2(𝑠𝑉)} and 𝒳1(𝑠𝑉) and 𝒳2(𝑠𝑉) denote
explanations of two different reward models that are con-
sistent with 𝒟. This is a more realistic form of feedback
that identifies the explanation that better captures the
intended reward.

Definition 4. Given an MDP 𝑀 and a set of verifica-
tion states 𝑆𝑉, an explanation-consistent reward set,
denoted Δ(𝒳(𝑆𝑉)), is a set of reward functions whose cor-
responding explanations are approved by the demonstrator,
Δ(𝒳(𝑆𝑉)) = {𝑅 ∈ ℛ ∣ ℱ𝐴(𝒳𝑅(𝑠𝑉)) = 1, ∀𝑠𝑉 ∈ 𝑆𝑉}.

Definition 5. Reward Ambiguity is a measure propor-
tional to the size of the consistent reward set Δ, such as
|Δ| when Δ is finite and discrete, and volume of Δ, 𝒱 (Δ),
when Δ is continuous, as in a simplex in ℝ𝑘.

REVEALE aims to eliminate reward ambiguity, by re-
ducing the size of consistent reward set Δ(𝒟)∩Δ(𝒳(𝑆𝑉)),
using verification tests and feedback on explanations.

Definition 6. A solution of a REVEALE instance is a re-
ward function, 𝑅 ∈ Δ(𝒟)∩Δ(𝒳(𝑆𝑉)), that is better aligned
with the demonstrator’s intent.

An optimal solution eliminates reward ambiguity and
identifies a reward function that is aligned with the
demonstrator’s intended reward, when feasible. The fol-
lowing section presents an algorithm that produces a
solution.
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Algorithm 1: ILV

Input: Demonstration data 𝒟, verification states 𝑆𝑉
Output: Final Reward 𝑅𝑏 and test score

1: 𝒞 = ∅
2: 𝒞𝑠𝑉 = ∅; ∀𝑠𝑉 ∈ 𝑆𝑉
3: 𝑅𝑏 ∼ ℛ
4: 𝑇𝑏 = [−∞, −∞]
5: 𝜖 = |𝑆𝑉|
6: while 𝜖 > 0 do
7: 𝑅𝑚 = MAP estimation of 𝒫 (𝑅|𝒟 , 𝒞 )
8: 𝑇𝑚 = [𝒫 (𝒟|𝑅𝑚), 0]
9: for 𝑠𝑉 ∈ 𝑆𝑉 do

10: ℱ𝐴(𝒳𝑅𝑚
(𝑠𝑉)) = 𝐺𝑒𝑡_𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙(𝒳𝑅𝑚

(𝑠𝑉))
11: if ℱ𝐴(𝒳𝑅𝑚

(𝑠𝑉)) = 1 then
12: 𝒞 = 𝒞 ∪ 𝒳𝑅𝑚

(𝑠𝑉)
13: else
14: 𝒞𝑠𝑉 = 𝒞𝑠𝑉 ∪ 𝒳𝑅𝑚

(𝑠𝑉)
15: 𝒞 = 𝐺𝑒𝑡_𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝒞 , 𝑠𝑉, 𝑆𝑒𝑙𝑒𝑐𝑡_𝑞𝑢𝑒𝑟 𝑖𝑒𝑠(𝒞𝑠𝑉))
16: 𝑇𝑚[2] = 𝐺𝑒𝑡_𝑆𝑐𝑜𝑟𝑒(𝒳𝑅𝑚

(𝑆𝑉))
17: if 𝑇𝑚 ≥ 𝑇𝑏 then
18: 𝑅𝑏 = 𝑅𝑚
19: 𝑇𝑏 = 𝑇𝑚
20: 𝜖 = ∑𝑠𝑉 1 − ℱ𝐴(𝒳𝑅𝑚

(𝑠𝑉))
21: return 𝑅𝑏, 𝑇𝑏

5. Solution Approach
Our algorithm, iterative learning and verification of re-
ward (ILV), is outlined in Algorithm 1. The input is a set
of demonstrations, 𝒟, and verification test states, 𝑆𝑉. We
assume that the final reward is the MAP of the distribu-
tion (mean reward can be obtained by modifying Line 7).
The algorithm first initializes an empty set of feedback
𝒞, an empty list of candidate explanations 𝒞𝑠𝑉 for each
𝑠𝑉 ∈ 𝑆𝑉, best reward 𝑅𝑏 randomly drawn from ℛ, and
best test score 𝑇𝑏. The test scores consist of two numbers:
the first number indicates how likely the demonstrations
are under the reward model, and the second number
indicates how good the model is in explaining the reward.

In each iteration, the current best reward model, de-
noted by𝑅𝑚, is calculated as theMAP of𝒫 (𝑅|𝒟 , 𝒞 ) (Line
7). The corresponding test score of that model, denoted
by 𝑇𝑚 is initialized to a 2-D array that consists of the
likelihood of data 𝒟 under 𝑅𝑚, and zero to indicate that
the correctness of the model has not been evaluated (Line
8). For each verification test state 𝑠𝑉, the reward value
𝑅𝑚(𝑠𝑉) and the corresponding explanation 𝒳𝑅𝑚(𝑠𝑉) are
shown to the demonstrator for approval (Line 10).

If approved, then 𝒳𝑅𝑚(𝑠𝑉) is added to 𝒞 (Lines 11-12).
If disapproved, then the explanation is added to the can-
didate explanation set 𝒞𝑠𝑉 and additional feedback from
the demonstrator is requested, by selecting two explana-
tions from 𝒞𝑠𝑉 that have not been queried so far (Lines
14-15). The agent can also add additional explanations

to 𝒞𝑠𝑉 either by modifying existing ones or sampling ad-
ditional models from 𝒫 (𝑅|𝒟 , 𝒞 ) and generating their
corresponding explanations for query selection. The
demonstrator can provide no feedback (𝒞 unchanged),
generate exact feature attribution, or provide pairwise
preferences over explanations from 𝒞𝑠𝑉 .

A test score for 𝒳𝑅𝑚(𝑠𝑉), ∀𝑠𝑉 ∈ 𝑆𝑉 is added to 𝑇𝑚 using
the score function (Line 16). The score reflects the similar-
ity of 𝒳𝑅𝑚(𝑠𝑉) to human-generated explanations or their
preferred explanations. Finally, 𝑅𝑏 and 𝑇𝑏 are updated
based on the score and the algorithm ends by returning
the best reward and best score, when all verification tests
have been approved, 𝜖=0 (Lines 17-20).

MAP Estimation The maximum a posteriori probabil-
ity (MAP) is estimated as 𝒫 (𝑅|𝒟 , 𝒞 ) = 𝒫 (𝒟|𝑅)𝒫𝒞(𝑅)
where 𝒫𝒞(𝑅) is a prior over 𝑅 defined by the feedback
on explanations. The feedback on explanations is rep-
resented as a distribution because semantically it is a
set of constraints over the model parameters. This also
allows generalization to other IRL algorithms that use
the Bayesian framework, as most algorithms differ only
in their likelihood function.

5.1. Learning Linear Reward Using
Explanations

This section analyzes our proposed method using linear
reward models. A linear reward is described by a linear
weighted combination over the 𝑛-size vector of features
describing the state, 𝑅(𝑠) =w𝑇𝜙(𝑠), w ∈ ℝ𝑛. The corre-
sponding explanations generated using GaE and LIME
(LM) will produce the same output. Therefore, we only
present results using GaE and saliency maps (SM).

For a linear reward, GaE(𝑅(𝑠)) = ∇𝜙(𝑠)𝑅𝑤(𝑠) =
∇𝜙(𝑠)w𝑇𝜙(𝑠) =w, and SM is |w|. Using Definition 5, we
now show that feedback on GaE-based and SM-based
explanations reduces reward ambiguity. We assume that
the agent and the demonstrator share the same similarity
measure, and discuss results with cosine similarity.

Proposition 1. The complexity of removing reward ambi-
guity with Oracle-generated GaE explanations as feedback,
ℱ𝑂(𝒳(𝑠𝑉)) = 𝒳𝑂(𝑠𝑉), ∀𝑠𝑉 ∈ 𝑆𝑉, is 𝑂(1).

Proof Sketch. ∀𝑠∈𝑆, the explanation given by the oracle
is 𝐺𝑎𝐸(𝑅w∗(𝑠)) = w∗. Thus one oracle-generated GaE
explanation is sufficient to reduce |𝒞𝒳𝑂

𝐺𝑎𝐸(𝑆𝑉)| to one.

Though 𝒳𝑂 is often difficult to obtain, it shows the
best-case scenario for REVEALE to eliminate reward am-
biguity. The significance of Proposition 1 is that it es-
tablishes a direct bridge between the feature attribution
methods and reward learning.
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Proposition 2. To reduce reward function ambiguity by
𝑥% in expectation, it suffices to have preference feedback
over a set of 𝑘 = log2(1/(1 − 𝑥/100)) randomly generated
GaE explanation pairs.

Proof Sketch. Consider a set of pairwise preference GaE
feedback denoted by 𝒞𝒳𝑃

𝐺𝑎𝐸(𝑆𝑉) = {(𝑒11 ≻ 𝑒21), … , (𝑒1𝑚 ≻
𝑒2𝑚)} where, (𝑒1𝑖 , 𝑒2𝑖 ) are candidate explanations for 𝑠𝑉.
By Definition 4, the explanation-consistent reward set,
Δ(𝒞𝒳𝑃

𝐺𝑎𝐸(𝑆𝑉)), is described by the half-space constraints:

w𝑇( ̂𝑒1𝑖 − ̂𝑒2𝑖 ) > 0, ∀(𝑒1𝑖 ≻ 𝑒2𝑖 ) ∈ 𝒞𝒳𝑃
𝐺𝑎𝐸(𝑆𝑉),

where ̂𝑒𝑗𝑖 is normalized vector of 𝑒𝑗𝑖 . Each constraint

in 𝒞𝒳𝑃
𝐺𝑎𝐸(𝑆𝑉) enforces that the cosine similarity of w

with 𝑒1𝑖 should be larger than the cosine similarity of
w with 𝑒2𝑖 . We want to find the bound 𝑘 on the size

of 𝒞𝒳𝑃
𝐺𝑎𝐸(𝑆𝑉), |𝒞

𝒳𝑃
𝐺𝑎𝐸(𝑆𝑉)|, that is sufficient for reducing

the size of reward hypotheses by 𝑥%. Let |ℛ| = 𝐽. Ac-
cording to [27] |Δ(𝒞𝒳𝑃

𝐺𝑎𝐸(𝑆𝑉))| =
𝐽
2𝑘 in expectation where

|𝒞𝒳𝑃
𝐺𝑎𝐸(𝑆𝑉)| = 𝑘. Therefore, 𝑥 = (1 − 1

2𝑘 ) ∗ 100% volume
of ℛ is removed in expectation using feedback over a
set of 𝑘 = log2(1/(1 − 𝑥/100)) randomly generated GaE
explanation pairs.

Proposition 3. It is sufficient to have O(1) Oracle-
generated SM Feedback to reduce |Δ(𝒞𝒳𝑂

𝑆𝑀 (𝑆𝑉))| ≤ 2𝑛,
𝑛 = dim(w).

Proof Sketch. ∀𝑠∈𝑆, the explanation given by the oracle
is 𝐺𝑎𝐸(𝑅w∗(𝑠))= |w∗|. Then we can construct at most 2𝑛,
w′𝑠 such that |w| = |w∗| by taking +, − sign combination
of each element of |w∗|. Therefore, |Δ(𝒞𝒳𝑂

𝑆𝑀 (𝑆𝑉))| ≤ 2𝑛.

Propositions 1 and 3 show that GaE can be more effec-
tive than SM in reducing reward ambiguity. Our empiri-
cal results show a similar trend for non-linear rewards.

Prior Definition The prior 𝒫𝒞(𝑅) for explanation func-
tion 𝒳 and feedback ℱ is computed as:

𝒫𝒞(𝑅) ∝ ℐ (𝒞ℱ
𝒳 (𝑆𝑉)), (1)

where ℐ (.) is 1 if 𝑅 satisfies all the constraints imposed
by 𝒞ℱ

𝒳 (𝑆𝑉) and 0 otherwise. Now, MAP of 𝒫 (𝑅|𝒟 , 𝒞 ) =
𝒫 (𝒟|𝑅)𝒫𝒞(𝑅) can be estimated using an off-the-shelf
Markov Chain Monte Carlo (MCMC) solver.

Generalization Notice that Equation 1 does not depend
on the explanation generation mechanism, i.e. feature
attribution. REVEALE can utilize any explanation gen-
eration method as long as 𝒞ℱ

𝒳 (.) can be represented for
that method. Defining such constraints requires a mea-
surement of similarity 𝜓(.) between two explanations of

similar representation (e.g. cosine distance). Though our
discussion of the framework uses the definition of the
likelihood function presented in B-REX [11], REVEALE
can be used with other Bayesian IRL methods as well by
replacing the definition of the likelihood function.

5.2. Deep REVEALE
Using MCMC for estimating MAP of 𝒫 (𝑅|𝒟 , 𝒞 ) with
𝒫𝒞(𝑅) as in Equation 1 is inefficient in problems with
large dimensions and feedback constraints because it can
take a large number of steps to get a good estimation
of the MAP. In addition, explanation feedback cannot
be represented as linear constraints when reward func-
tions are represented using neural networks. Hence, we
present a method for calculating the priors as soft ver-
sions of the constraints discussed earlier. Note that when
calculating the priors, the agent uses the previously col-
lected feedback (𝒞) and the explanations generated. For
oracle-generated explanations, 𝒳𝑂(𝑠𝑉),

𝒫𝒞(𝑅) ∝ ( ∏
𝒳𝑂(𝑠𝑉)∈𝒞

𝒳𝑂
𝒳

𝑒𝜓(𝒳𝑅(𝑠𝑉),𝒳𝑂(𝑠𝑉)))
𝜆
, (2)

where 𝒳𝑅(𝑠𝑉) is the agent’s explanation, 𝒳𝑂(𝑠𝑉) is the
oracle-generated explanation as feedback, 𝜓(.) is a mea-
surement of similarity, and 𝜆 ∈ [0,∞).

Similarly, for pairwise preferences,
ℱ𝑃(𝒳1(𝑠𝑉), 𝒳2(𝑠𝑉))=𝒳𝑃(𝑠𝑉),

𝒫𝒞(𝑅) ∝ ( ∏
(x1𝑖 ≻x2𝑖 )∈𝒞

𝒳𝑃
𝒳

𝑒𝜓(x
𝑅
𝑖 ,x1𝑖 )

𝑒𝜓(x𝑅𝑖 ,x1𝑖 ) + 𝑒𝜓(x𝑅𝑖 ,x2𝑖 )
)
𝜆

(3)

where x𝑅𝑖 = 𝒳𝑅(𝑠𝑉) is the agent’s explanation, x1𝑖 ≻ x2𝑖
denotes the human’s preference, and 𝜆 ∈ [0,∞).

For the above priors, gradient-based MCMC optimiza-
tion methods [31] work well in high dimensions and can
be used to optimize Bayesian neural networks. In addi-
tion, 𝒫 (𝑅|𝒟 , 𝒞 ) can be approximated using a gradient-
based method with − log𝒫 (𝑅|𝒟 , 𝒞 ) as loss functions.
This loss function will decompose into two parts, one
for the likelihood function and the other for the prior.
The parameter 𝜆 can be adjusted to optimize these two
parts simultaneously. Also notice that when 𝜆 is set to
zero this becomes standard B-REX [11] and T-REX [6].
Optimizing this loss function requires calculating the gra-
dient of the explanation function 𝒳 with respect to state
features. This can be automatically calculated through
auto-diff libraries such as JAX [32].

6. Experimental Setup
We evaluate the effectiveness of learning aligned linear
and non-linear rewards with REVEALE using three expla-
nation generation techniques: gradient as explanations
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(GaE), LIME, and saliency map (SM). Reward alignment
is measured by (1) the accuracy of predicting the user’s
trajectory preferences in test environments, and (2) the
average reward collected by executing the policy in the
test environments trained using the learned reward. The
results of our approach are compared with those of the
policy with the true reward function (Optimal) and two
recent IRL algorithms, B-REX [11] (for linear rewards)
and T-REX [6] (for non-linear rewards). Hence, we use
REX to denote B-REX for domains with linear reward
and T-REX for non-linear reward.

We report results on five proof-of-concept domains,
including three domains from the AI safety literature.
Many of the domains we consider suffering from spuri-
ous feature correlation, where two or more state features
always co-occur in the demonstrations and this correla-
tion affects the learning process. Since such correlations
are spurious during test time the agent encounters novel
states. We use 𝒫𝒞(𝑅) as a test score for REVEALE. Veri-
fication states 𝒮𝑉 are selected from 𝒟. Explanations are
randomly selected from 𝒞𝑠𝑉 for querying feedback. No-
tice that neither the 𝒟 nor the 𝒮𝑉 contains novel states
that the agent encounter during evaluations. As a re-
sult, evaluation performance is a good indicator of the
generalizability of the methods. All algorithms were im-
plemented by us and tested on a machine with 32 GB
RAM and 12GB GPU. Values are averaged over 60 differ-
ent random seeds. Experiments with non-linear rewards
use a four-layer neural network with Relu activation.
LavaLand This domain introduced by Hadfield-Menell
et al. [15] consists of a ‘lava’ feature that never appears
in the demonstrations. As a result, the agent may not
learn to avoid it when it navigates to a goal location, po-
tentially resulting in unsafe behavior when deployed.
DogWalk This is the AV domain illustrated in Figure 1,
where the AV must learn to stop for both pedestrians
and dogs. Each state is represented by ⟨location, human,
dog, bag⟩. This environment is an example of spurious
feature correlation as humans and dogs occur together
in the demonstrations.
WaterWorld This domain, based on [33], tests how the
agent responds to a distribution shift. There are two
types of surfaces in the problem: ‘water’ and ‘ground’.
We consider a linear reward, with a negative reward for
stepping into the water. The demonstrations and the
training environment have fixed water locations, but the
test environments have scattered water locations. Re-
ward ambiguity arises as the agent may not be able to
distinguish if the negative reward is associated with the
surface type or grid location.
Navigation (AVNav) This domain, designed by us, de-
scribes a safe route planning problem, where the demon-
strations are preferences over different routes. Each state
represents a road segment and is denoted by the tuple
⟨road segment length, average speed, #potholes, mobile

Figure 2: Preference prediction accuracy

Figure 3: Dataset size vs accuracy for REX

network quality, and accident history in the segment⟩.
The non-linear reward incentivizes the AV to navigate
on safe (low pothole and low accident history) and com-
fortable (good mobile network) routes while reducing
the time to the destination. However, the demonstration
data contains spurious feature correlation as most roads
that have good mobile networks also have bad accident
history, leading to reward ambiguity.
CoinRush This domain is similar to the CoinRun en-
vironment described in [31]. The cells in the grid have
coins, gold, or an enemy. The target is to gather as much
gold and coins while avoiding the enemy. However, in
the demonstration data, the enemy and coin/gold always
have fixed colors (green and yellow respectively), result-
ing in spurious feature correlation. But in the test envi-
ronment, they can have any color.

In WaterWorld and CoindRush, the ambiguity is about
which feature should get attribution. In other domains,
the ambiguity is about which feature to attribute and
whether their attribution should be positive or negative.
AVNav and CoinRush have a non-linear reward structure,
while the other problems use linear rewards.

7
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Models LavaLand DogWalk WaterWorld AVNav CoinRush

REX −6.50 ± 0.26 [−8.5] −6.10 ± 0.29 [−24] −7.10 ± 0.35 [−20] −29.30 ± 0.23 [−31.5] 33.30 ± 0.73 [14.8]

GaE (𝒳𝑂) −2.50 ± 0.00 [−2.5] −2.60 ± 0.00 [−2.6] 2.00 ± 0.00 [2.0] −25.97 ± 0.21 [−27.9] 35.00 ± 0.00 [35.0]

GaE (𝒳𝑃) −2.50 ± 0.00 [−2.5] −2.60 ± 0.00 [−2.6] 2.00 ± 0.00 [2.0] −26.25 ± 0.20 [−27.9] 35.00 ± 0.00 [35.0]

SM (𝒳𝑂) −5.50 ± 0.35 [−8.5] −13.50 ± 0.41 [−18] 2.00 ± 0.00 [2.0] −25.94 ± 0.21 [−27.9] 35.00 ± 0.00 [35.0]

SM (𝒳𝑃) −5.50 ± 0.33 [−8.5] −13.50 ± 0.39 [−24] 2.00 ± 0.00 [2.0] −26.63 ± 0.24 [−27.9] 35.00 ± 0.00 [35.0]

LIME (𝒳𝑂) −2.50 ± 0.00 [−2.5] −2.60 ± 0.00 [−2.6] 2.00 ± 0.00 [2.0] −26.37 ± 0.20 [−27.9] 35.00 ± 0.00 [35.0]

LIME (𝒳𝑃) −2.50 ± 0.00 [−2.5] −2.60 ± 0.00 [−2.6] 2.00 ± 0.00 [2.0] −29.20 ± 0.22 [−31.5] 32.00 ± 0.93 [14.8]

Optimal −2.50−2.50−2.50 −2.60−2.60−2.60 2.002.002.00 −24.00−24.00−24.00 35.0035.0035.00

Table 1
Average ± standard error and worst case reward (in brackets) achieved by executing policies with the learned reward models.

6.1. Results and Discussion
Prediction accuracy Figure 2 shows the average pre-
diction accuracy tested on 2000 pairs of trajectories. For
training, we use 256 demonstrations and 64 preference
feedback over pair of explanations for domains with lin-
ear reward and 1024 demonstrations and 256 preference
feedback over pair of explanations for non-linear reward.
The red star over each bar represents the accuracy of the
corresponding explanation method when exact Oracle
explanations were given instead of preference feedback.

In every domain, except CoinRush, REVEALE with
GaE explanations achieves the highest accuracy and
matches the accuracy of prediction based on human-
generated explanations. In LavaLand and DogWalk, SM
identified that ‘lava’ and ’dogs’ are important features,
respectively, but could not identify whether they should
be positively attributed because it uses the absolute value
of the gradient. B-REX also suffers from this drawback.
In domains where the ambiguity is about which feature
should be attributed, such as location or surface type
in WaterWorld, SM performs comparably to other ap-
proaches. However, B-REX often associated the reward
with location, instead of surface type. Overall, our results
indicate that REVEALEwith any explanation method per-
forms better than REX.

In all five environments, all the approaches, including
REX, achieve near-optimal prediction accuracy on the
demonstration dataset used to learn the reward. The
performance degrades in the test scenarios because the
agents encounter novel states that did not occur in the
demonstration data. As evident from Figure 2, REVEALE
improves the prediction performance significantly in
such cases. In the absence of prior knowledge about
novel situations, it might not be possible to predict how
the agent will perform just by assessing the agent’s re-
ward/policy/value function in states that appear in the
training environment. However, examining the consis-
tency of the agent’s explanations in states that appear in
training data allows the demonstrator to infer its behavior
in many novel situations. This allows the demonstrator

to provide valuable feedback, which the agent uses to
reduce reward ambiguity in novel situations.
Effect of number of demonstrations We also test the
effect of #demonstrations on the prediction accuracy of
REX (Figure 3), with the size of 𝒟 ranging between 2 to
2048. We observe no improvement in the accuracy of
B-REX beyond 128 demonstrations and 1024 for T-REX,
which indicates that the approach is unable to eliminate
reward ambiguity even if the number of demonstrations
increases. This is because the additional trajectories do
not encode any information about novel situations the
agent may encounter when deployed. Therefore, the per-
formance does not improve in the test cases.
Average and worse case reward Table 1 shows the
average and worst reward obtained with different ap-
proaches in test environments. We report the worst-case
reward since it provides insights into the degree of un-
safe behavior that may arise when the reward is not
well-aligned. We evaluate the effectiveness of each ex-
planation method using both types of feedback: Oracle-
generated 𝒳𝑂 and pairwise preferences 𝒳𝑃. We also
report the average reward obtained with the true reward
function in each setting, denoted by Optimal. Our re-
sults show that REVEALE with GaE using 𝒳𝑃 feedback
performs better on most domains. SM outperforms the
other approaches only when the ambiguity was about
whether the reward should be associated with a feature
or location. That is, SM often identifies the magnitude of
correlation but struggles to refine whether it is positive
or negative, often associating incorrectly. LIME performs
similarly to GaE, when feedback is 𝒳𝑂 but performs rela-
tively poorly when feedback is𝒳𝑃. This is because LIME
works with a large set of states in the neighborhood of the
input states, unlike GaE and SM, which only work with
a single state. Therefore when exact inputs are given,
LIME works very well. With 𝒳𝑃 feedback, the error can
propagate to many states causing worse performance
than GaE. Overall, our results show that REVEALE can
learn and generalize reward that is better aligned than
the existing approaches.

8



Saaduddin Mahmud et al. CEUR Workshop Proceedings 1–10

7. Summary and Future Work
This paper presents a general interpretable reward learn-
ing and verification framework to ensure that the learned
reward is aligned with that of the demonstrator’s intent.
The results demonstrate the benefits of our approach in
learning the intended reward, thereby supporting the
safe deployment of RL agents in the real world. In the
future, we aim to develop techniques to automatically
identify critical states for verification, and integrate ac-
tive learning methods [34] to optimize queries.
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