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Abstract
A measure of robustness against naturally occurring distortions is key to the safety, success, and trustworthiness of machine
learning models on deployment. We investigate an adversarial black-box attack that adds minimum Gaussian noise distortions
to input images to make deep learning models misclassify. We used a Reinforcement Learning (RL) agent as a smart hacker to
explore the input images to add minimum distortions to the most sensitive regions to induce misclassification. The agent
employs a smart policy also to remove noises introduced earlier, which has less impact on the trained model at a given state.
This novel approach is equivalent to doing a deep tree search to add noises without an exhaustive search, leading to faster
and optimal convergence. Also, this adversarial attack method effectively measures the robustness of image classification
models with the misclassification inducing minimum 𝐿2 distortion of Gaussian noise similar to many naturally occurring
distortions. Furthermore, the proposed black-box 𝐿2 adversarial attack tool beats state-of-the-art competitors in terms of
the average number of queries by a significant margin with a 100% success rate while maintaining a very competitive 𝐿2

score, despite limiting distortions to Gaussian noise. For the ImageNet dataset, the average number of queries achieved by the
proposed method for ResNet-50, Inception-V3, and VGG-16 models are 42%, 32%, and 31% better than the state-of-the-art
"Square-Attack" approach while maintaining a competitive 𝐿2 .
Demo: https://tinyurl.com/2p8pnjn6
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1. Introduction
Deep learning models have yielded impressive results
in numerous applications, but research on adversarial
attacks has shown that these models suffer from a vulner-
ability where small distortions could lead to wrong pre-
dictions. Specifically, naturally occurring distortions that
affect the inputs are of greater concern in safety-critical
applications such as self-driving cars, facial recognition,
and image-based authorization [1][2]. Measuring robust-
ness, i.e., how resilient these machine learning models are
against distortions, is key to discovering vulnerabilities
of poorly trained models.

Literature has provided us with two major paths to
identify the sensitivity of the deep learning models,
White box attacks [3][4] and Black box attacks [5][6].
Even though recent works have introduced efficient
white-box approaches targeting a specific region or very
minimum distortion to fool the Convolutional Neural
Network (CNN) models, it requires complete visibility of
the network architecture and the parameters. In general,
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Original Input Adversarial Sample (RLAB)

Figure 1: An example of adversarial perturbations driven by
the learnt policy of RLAB agent. The image "𝑥" classified as
Panda, an adversarial sample generated with RLAB (ours)
"𝑥+ 𝛿" has been classified as dolphin where 𝛿 represents the
noise added to the image.

visibility into the models is not practical in many real-
world applications for intellectual property (IP) concerns
and support issues. On the contrary, black box attacks do
not require complete visibility into the models but suffer
from inefficiency and require too many queries to create
the adversarial sample that could break the evaluated
model.

In this paper, we propose a black-box approach using a
Reinforcement Learning (RL) agent (RLAB) that can learn
a policy to make an adversarial attack with fewer queries
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Figure 2: Average number of queries in un-targeted 𝐿2-
attacks for ImageNet datasets of 3 CNN models for black-box
attacks. RLAB outperforms all other attacks by a large margin.
Note: There is no official results for pixle with Inception-V3.

and with a 100% success rate while maintaining other
metrics like distortion at a minimum. The motivation for
using RL is to learn an optimum policy that incrementally
adds noise to deceive a model, unlike the hand-crafted
heuristics that are used in State-of-the-art adversarial
attacks. Our method includes a dual action RL agent,
which makes parallel addition and removal of distortions
to image regions, based on the image region sensitivity at
the current state and the history of progression of added
distortion as shown in Figure 1. The goal is to cause a
misclassification with minimum number of queries In
an extensive evaluation of un-targeted attacks with Ima-
geNet and CIFAR-10 datasets on CNN architectures such
as ResNet-50, Inception-V3, and VGG-16, RLAB outper-
forms the state-of-the-art methods for 𝐿2 threat model
on the number of queries while achieving competitive
𝐿2 norm as shown in figure 2. The main contribution of
the work can be summarized as follows.

1. A novel Reinforcement Learning agent, that beats
the state-of-the-art un-targeted black-box 𝐿2 at-
tack models in terms of an average number of
queries by a wide margin with a 100% success
rate while keeping the 𝐿2-norm minimum.

2. This RL approach learns a policy to form an op-
timum adversarial attack agent that can outper-
form the engineered heuristic approach of the
prevailing SOTA adversarial attacks by the above
metrics.

3. A high-performance adversarial attack agent that
limits the distortions to Gaussian noise, which
is one of the naturally occurring real-life non-
malicious distortions, unlike most adversarial at-
tacks.

2. Related Works
Some of the established metrics to evaluate the perfor-
mance of a machine learning model include accuracy,
precision, recall, and F1 score. With the recent advances
in adversarial attacks, the models that showed excellent
performance on static test sets with the above metrics
were easily misclassified with adversarial examples. For
example, work done by Szegedy et al. [3] was one of the
first works to introduce adversarial attacks. White-box
attacks showed great results with one of the initial works
from Goodfellow et al. in their work [4] introducing
Fast Gradient Sign Method (FGSM) based attack where
a small vector whose elements are equal to the sign of
the elements of the gradient of the cost function with
respect to the input changed the classification outcomes.
Following this work, there were other incremental works
based on gradients-based distortion that could flip the
model [7][8][9]. Papernot et al. [10] generated an in-
dication map representing the right area on the input
that can be attacked. Similarly, DeepFool by Moosavi et
al. [11] proposed a simple yet effective approach to add
perturbations to the input to fool the machine learning
models.

2.1. Black-box attacks
In Black-box attacks, there is only partial visibility to no
visibility into the model. In a partially visible black-box
attack, information about the loss function, the predic-
tion probabilities, or top-K sorted labels could be avail-
able based on which the attack is executed in a query
access approach. Work done by Michel et al. [12] and
Chakraborty et al. [13] provides a detailed survey on the
current trends in adversarial attacks on neural networks.
Further, Ilyas et al. [14] in their early work approached
this problem with multiple level of restrictions including
limited visibility, limited query access and so on. Some
of the most popular black-box attack in recent times
that has been acknowledged by the research community
include Square attack [5], SimBA [15], and LeBA [16],
which achieved significant results in breaking Convolu-
tional Neural Network based models. Guo et al. [15] in
their work proposed a simple approach where they itera-
tively and randomly sample a vector from a predefined
orthonormal basis such that it can be added or subtracted
from the target image. Similarly, Andriushckenko et al.
[5] proposed an approach where square-shaped updates
are added at random positions such that at each iteration,
the total budget constraint is still preserved. Furthermore,
some of the most recent works in the black-box attack
include EigenBA [17], Pixle [18], Querynet [19], advFlow
[20], and CG attack [21] producing state-of-the-art re-
sults.
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2.2. Reinforcement learning for
adversarial attacks

Reinforcement Learning has solved problems that clas-
sic machine learning struggles in various domains and
applications such as healthcare, energy [22, 23], medical
imaging, etc. Their unique ability to learn a policy for
action is a key attribute of their success. Reinforcement
learning for adversarial attacks has not been explored
much. Sun et al. [24] in their work use reinforcement
learning to target graph neural networks via node in-
jections. Similarly, work done by Yang et al. [16](Patch
Attack) applies reinforcement learning to attack CNN
models by superimposing textured patches on the input
image. Unlike the previous approach, our RL agent uses
a comprehensive state representation that captures the
model’s sensitivity to various image regions and imple-
ments a patch-based process with natural distortions.
This enables our approach to significantly outperform
state-of-the-art adversarial attacks, including RL-based
methods in terms of minimum distortion measured by
L2-norm, query efficiency, and success rate.

3. Proposed Method

3.1. Reinforcement Learning/problem
formulation

The Deep Neural Network (DNN) model under test/e-
valuation can be represented as 𝑦 = 𝑓(𝑥; 𝜃), where 𝑥
denotes the input image, 𝑦 represents the prediction and
𝜃 represents the model parameters. The motivation is to
generate a perturbation 𝛿 such that, 𝑦 ̸= 𝑓(𝑥+𝛿; 𝜃). The
objective is to minimize 𝛿 which represents a measure of
robustness.

3.2. RLAB Overview
In our approach, the image is divided into squared
patches and sensitivity of the ground truth probability
𝑃𝐺𝑇 , to addition and removal of distortion, is computed
for each patch. Based on the sensitivity information,
the RL decides the patches to which Gaussian noise is
added or removed at every step. This process is done
iteratively until the model misclassifies the image. To fur-
ther reduce 𝐿2, we perform an iterative image cleanup
as a post-processing step while maintaining the misclas-
sification. The overall flow of the proposed method is
represented in the figure 3.

3.3. Image Sensitivity Analysis
In our proposed approach, we limit all distortions to
Gaussian noise, as it is a commonly encountered and nat-
urally occurring distortion. During the image sensitivity
analysis, we generate a fixed number of noise masks of
same noise level, of size 𝑛 × 𝑛 sampled from a normal
distribution as represented in the equation 1.

𝑁𝑜𝑖𝑠𝑒𝑀𝑎𝑠𝑘(𝑛×𝑛) = 𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(0, 𝑁𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙)
(1)

At every step during the training and validation, one
mask is randomly chosen from the generated noise masks
and applied across all image patches to evaluate the drift
in the ground truth classification probability 𝑃𝐺𝑇 . A
lower noise level is chosen as it helps more granular
addition of noise in successive steps to specific regions
that create maximum drift with the 𝑃𝐺𝑇 , while keeping
𝐿2 minimum. The noise mask is generated such that
they have the same effect on change in 𝐿2 distance. The
perturbations �̂�− 𝑥 are constrained to the values [0, 1]𝑑.
Note that the size of the patch is fixed throughout the
experiment and is chosen as a hyper-parameter based on
the performance-cost trade-off. Table 6 provides detailed
experiments on different patch sizes.



3.4. Alternative to Tree Search
Generating adversarial examples for image classification
through multiple steps is similar to board games. For
board games, the most effective moves or actions are fig-
ured out through a Deep Tree Search (DTS) of multiple
layers to determine the effectiveness of an action taken
at the current step on a longer time horizon as the game
evolves. DTS is computationally expensive, even with
approximations like Monte Carlo Tree Search (MCTS).
But unlike a board game, in this problem, there is a pos-
sibility to reset the earlier moves when we realize that
we have made a less optimized move a few steps back.
In RLAB this is done by removing distortions from some
patches and adding distortions to some other patches,
considering the state of the modified image at any given
step (equivalent to position on the board). This is equiva-
lent to replaying all the moves in one step while keeping
the sensitivity analysis restricted to the current state of
the image without a tree search.

Our method reduces the complexity from 𝑂(𝑁𝑑) to
𝑂(𝑁) where N represents the computation complexity
of one level of evaluation and corresponds to the image
size, and d represents the depth of the tree search, which
translates to how many queries and actions we would
like to look ahead if we were doing a tree search. d=[1,
max_steps].

3.5. Reinforcement Learning
The decision of which patches to choose for adding or re-
moving distortion has multiple dependencies and needs
to be adaptive for the most efficient generation of adver-
sarial examples. Mapping this adversarial sample genera-
tion as a Reinforcement Learning (RL) problem requires
defining the states, actions, and rewards. The state-space
is constructed such that the environment becomes ob-
servable in a way it enables the RL agent to learn the
optimum policy to take actions while maximizing the
reward. We used the Dueling DQN Reinforcement Learn-
ing (RL) based agent in RLAB. Algorithm 1 represents the
overall flow of the proposed method. Figure 6 represents
the steps involved in adding and removing distortion by
the RL agent.
3.5.1. RL States

We designed a state space that gives required observabil-
ity to the RL agent but is simple enough and of lower
dimension such that the agent could be trained efficiently
as shown in Figure 5. The image sensitivity analysis acts
as a feature extractor where the the top ordered square
patch locations are ordered both based on the change
in 𝑃𝐺𝑇 for adding and removing distortion in the state
vector. Also included are the classification probabilities
and 𝐿2 distance progression.
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Gaussian noise for various image tiles 
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Figure 4: Reinforcement Learning agent for RLAB

LISTADD Square patches in descending order of normalized sensitivity to addition of distortion

LISTREMOVE Square patches in ascending order of normalized sensitivity to removal of distortion

LISTPROB Classification probability of various classes at this step

LISTL2 L2 distance from original for the last Nsteps = 4 steps

Figure 5: RL States

3.5.2. RL Action

To keep the number of actions limited and discrete,
we define RL action as the number 𝑁𝐴𝐶𝑇𝐼𝑂𝑁 , where
RLAB adds distortion to the top (𝑁𝐴𝐶𝑇𝐼𝑂𝑁 + 1) patches
from the 𝐿𝐼𝑆𝑇𝐴𝐷𝐷 in the state and removes distortion
from the top 𝑁𝐴𝐶𝑇𝐼𝑂𝑁 patches from 𝐿𝐼𝑆𝑇𝑅𝐸𝑀𝑂𝑉 𝐸

as represented in Figure 4. 𝑁𝑎𝑐𝑡𝑖𝑜𝑛 ∈ [1, 𝑁𝑚𝑎𝑥] where
𝑁𝑚𝑎𝑥 is a hyperparameter and is set to 8 for ImageNet
(224 × 224) image size with 2 × 2 patch size), to bal-
ance effectiveness and computation. Note that the net
difference is one square patch where distortion is added,
keeping the change in the 𝐿2 distance approximately
bound to what we would have got if we had added dis-
tortion to just one patch. However, there is a possibility
that the patch where we are removing the distortion may
have distortion added to it multiple times, which will
only lower the net increase of 𝐿2 distance.
3.5.3. RL Reward

We define a probability dilution (PD) metric, which mea-
sures the extent to which the classification probability
shifts from the ground truth to the other classes. The
difference between the PD of the altered image and the
original image as a result of an action (∆PD) is a measure
of the effectiveness of the action. Moreover, the change in
𝐿2-distance (∆𝐿2) as a measure of the distortion added
is the cost for an action. The reward is defined by the
normalized PD as represented in equation 2.

𝑅𝑡 = ∆𝑃𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = −∆𝑃𝐷/∆𝐿2 (2)

However, there is a dependence on 𝐿𝐼𝑆𝑇𝑃𝑅𝑂𝐵 and
𝐿𝐼𝑆𝑇𝐿2 for the optimum action to achieve the best effi-
ciency in terms of both minimizing the 𝐿2 distance and
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Figure 6: Details of the Reinforcement Learning step (addition
and removal) for RLAB

number of steps/queries. Through hyperparameter tun-
ing we obtained a discount factor 𝛾 = 0.95, where 𝛾
determines how much the RL agent cares about rewards
in the distant future relative to those at the current step.

3.5.4. RL Algorithm

We developed a Dueling DQN algorithm-based Reinforce-
ment Learning (RL) agent for RLAB as an adversarial
attack agent [6, 7], which also evaluates the CNN image
classification models for robustness, as shown in Figure 8.
The Dueling DQN algorithm splits the Q-values into two
parts: the value function V(s) and the advantage function
A(s, a). As shown in Figure 8, the same neural network
splits its last layer into two parts, one of them to estimate
the state value function for states (V(s)) and the other one
to estimate state-dependent action advantage (A (s, a)). It
then combines both parts into a single output, estimating
the Q-values. This change is helpful because sometimes
it is unnecessary to know the exact value of each action.
So just learning the state-vlue function can be enough
in some cases. The main benefit is generalizing learn-
ing across actions without imposing specific changes to
the underlying reinforcement learning algorithm. The
Dueling DQN model fits well with the discrete action
space of a limited number of 𝑁𝐴𝐶𝑇𝐼𝑂𝑁 and has the suit-
able complexity to predict 𝑁𝐴𝐶𝑇𝐼𝑂𝑁 effectively with a
reasonably bounded training.

3.6. Post-processing noise removal
Once an adversarial sample is generated using RL fol-
lowing the initial misclassification we perform a final
noise removal process. This iterative process maintains
the misclassification while attempting to remove noise

from the data to minimize 𝐿2. The patch that has the
maximum decrease in distortion ∆𝐿2 normalized by the
change in classification probability ∆𝑃𝐷 is chosen.

𝑅𝑒𝑣𝑒𝑟𝑠𝑒𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = −∆𝐿2/∆𝑃𝐷 (3)

Algorithm 1: RLAB: Reinforcement Learning
Training
1 Initialization: Policy parameters
2 Input: Validation set, number of iterations 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 3500
3 Output: Optimized policy for Dueling DQN
4 for image in validation set do
5 Load the image;
6 Calculate reward 𝑅𝑡 and advantage �̂�𝑡 based on current value

function;
7 Calculate sensitivity of ground truth classification probability 𝑃𝐺𝑇

to change in distortion for square patches;
8 𝑖← 0 ;
9 𝑃𝑟𝑒𝑑𝑓𝑠𝑡𝑒𝑝 ← 1− 𝑃𝐺𝑇 ;

10 while 𝑃𝑟𝑒𝑑𝐺𝑇 == 𝑃𝑟𝑒𝑑𝑓𝑠𝑡𝑒𝑝 and 𝑖 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 do
11 Collect set of trajectories (state, action) by running policy

𝜋𝑘 = 𝜋(𝜃𝑘) in the environment→ action;
12 Calculate reward 𝑅𝑡 and TD error;
13 Update the DQN policy;
14 Compute/take action and perform prediction 𝑃𝑟𝑒𝑑𝑓𝑠𝑡𝑒𝑝 ;
15 𝑖← 𝑖 + 1 ;
16 end
17 end

3.7. Nature of Distortions
Most state-of-the-art competitive solutions use unnatural
modifications as shown in Figure 7. The only other RL
method used for a similar adversarial attack, Patch At-
tack, has completely unnatural squared patches placed
on the images. In contrast, our proposed method pre-
serves the true nature of the image with barely percep-
tible Gaussian noise. Moreover, Patch Attack’s distor-
tion measured in 𝐿2-norm of 191 is significantly higher
than our RLAB’s 𝐿2-norm of 4.03 for ImageNet. Also,
as shown in Figure 7, the state-of-the-art high-efficiency
Square Attack has unnatural colors of red and green all
over the cougar, unlike our RLAB method. In RLAB, any
distortion is barely perceptible because of low Gaussian
noise.

4. Experiments
In this section, we discuss the effectiveness of our pro-
posed method with the same experimental setup as our
competitors. We evaluate on two popular image clas-
sification datasets ILSVRC2012 [31] and CIFAR-10. 80
percent of the validation set was used to train our RL
agents, and 20 percent of the validation set was used
for evaluation. We performed our attacks on three ma-
jor Convolution-based Neural Network architectures:
ResNet, Inception-V3, and VGG-16. We used three met-
rics to evaluate the performance of our approach. 𝐿2

distance which is a measure of distortion, the average
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number of queries to make a model miss-classify a cor-
rectly classified sample, and the average success rate.

For validation, we had an overall average 𝐿2 of 4.03
with the values of pixels ranging between 0 and 1 and
setting a maximum query budget of 3500 evaluated over
1000 samples from imagenet dataset on ResNet-50 ar-
chitecture. A failure case is when the proposed method
could not fool the victim model within the given budget,
and failure cases were not included in any of the metrics
calculated except for the success rate. All experiments
were performed for a patch size of 2 × 2 and with the
noise level of 0.005 as we got the best results for this
configuration.

The computation for the complete pipeline is GPU-
dependent and is efficiently batched, and scaled on GPUs.
Caching techniques were used for pre-computed infor-
mation such as the noise masks for improved efficiency.
Apollo servers with 8 × 𝑉 100 32 GB GPUs were used
for training and validation. We processed 16(images per
GPU) x 8(GPUs) = 128 images in a batch for the complete

Table 1
Comparing 𝐿2 and average queries of the proposed method
with competitors on the ResNet-50 model trained on Imagenet
dataset. AVG.Q represents Average queries, 𝐿2 represents the
average𝐿2 distance of the adversarial samples generated from
the original data, and ASR represents the average success rate.
L2s for some papers were not published.

Attack AVG.Q 𝐿2 ASR
Q-Fool [26] 5000 7.52 -
NES (2018) [14] 1632 - 82.7
𝐵𝑎𝑛𝑑𝑖𝑡𝑠𝑇𝐷(2018) [27] 5251 5 80.5
HopSkipJumpAttack [28] 1000 11.76 -
Subspace(2019) [29] 1078 - 94.4
P-RGF𝐷 (2019) [30] 270.5 - 99.3
LeBA (2020) [16] 178.7 - 99.9
Square (2020) [5] 401 5 99.8
SimBA-DCT (2021) [15] 1665 3.98 98.6
querynet (2021) [19] - 5 -
AdvFlow (2021) [20] 746 - 96.7
EigenBA (2022) [17] 518 3.6 98
Pixle (2022) [18] 341 - 98
CG-Attack (2022)[21] 210 - 97.3
Patch Attack (2022) [16] 983 - -
RLAB (ours) 169 4.01 100%

pipeline.
It is worth mentioning that the proposed robust-

ness measure in Deep Fool [4] involves minimizing
the amount of distortion needed for misclassification,
which is defined by ∆(𝑥; 𝑘) := min𝑟 ‖𝑟‖2 subject to
𝑘(𝑥 + 𝑟) ̸= 𝑘(𝑥), where min𝑟 ‖𝑟‖2 = min𝐿2 and
∆(𝑥; 𝑘) is the robustness of classifier 𝑘 for input x. As
we can see, this is consistent with our goal, which is



Table 2
Performance comparison of our approach with State-of-the-
art methods. The average number of queries (AVG.Q) and Suc-
cess Rate (ASR) were evaluated on victim models for Inception-
V3, and VGG-16 on ImageNet dataset.

Method Inception-v3 VGG-16
ASR % AVG.Q ASR % AVG.Q

NES (2018) [14] 88.2 1726.2 84.8 1119
Bandits𝑇𝐷 (2018) [27] 97.7 836.1 91.1 275.9
Subspace (2019) [29] 96.6 1035.8 96.2 1086
P-RGF𝐷 (2019) [30] 99 637.4 99.8 393.1
TIMI (2019) [32] 49 - 51.3 -
LeBA (2020) [16] 99.4 243.8 99.9 145.5
Sqr. Attack (2020) [5] 99.4 351.9 100 142.3
SimBA (2021) [15] 99.9 423.3 - -
querynet (2021) [19] - 518 - -
AdvFlow (2021) [20] 99.3 694 95.5 1022
EigenBA (2022) [17] 95.7 968 - -
Pixle (2022) [18] - - 99 519
CG-Attack (2022) [21] 100 139 99.4 77
Patch Attack [16] - - - -
RLAB(ours) 100 132 100 98

minimizing 𝐿2.

4.1. Evaluation on Imagenet
Table 1 aggregates the proposed method’s results com-
pared to other state-of-the-art black-box algorithms on
Imagenet dataset for ResNet-50 architecture. The com-
petitors’ results were generated with the best parame-
ters described in their papers. The average Success Rate
(ASR) and Average Query (AVG.Q) were calculated for
each victim model while the average L2 for most of the
competitors were presented in their paper. It can be ob-
served that our proposed approach beats state-of-the-art
algorithms for average queries and success rate by a sig-
nificant margin while maintaining competitive 𝐿2. It is
also worth mentioning that the proposed approach was
able to achieve 100% success rate for a maximum query
set to 3500 while the competitors have experiments per-
formed with a maximum query set to 10000. Similarly,
from table 2 our proposed approach outperforms com-
petitors for Inception-v3 for average number of queries
while maintaining competitive queries for VGG-16. Fur-
thermore, we have achieved a 100 % success rate for both
Inception-v3 and VGG-16 models. Figure 9 shows the
comparison of RLAB with the competition RL method
and Square attack.

4.2. Evaluation on CIFAR-10
Table 3 shows the performance of the proposed method
against state-of-the-art attacks on CIFAR-10 dataset.

Table 3
Evaluation of the proposed method with competitors on
ResNet-50 model trained on CIFAR-10 dataset

Attack Avg. queries S. Rate
SimBA-DCT [15] 353 100
AdvFlow [20] 841.4 100
MetaAttack [33] 363.2 100
AdvFlow [20] 598 97.2
CG-Attack [21] 81.6 100
EigenBA [17] 99 99.0
RLAB (ours) 60 100

Table 4
Variation of 𝐿2 and average queries with change in noise. The
noise represents the variance in the Gaussian noise. Higher
the variance, greater the intensity of the noise. Experimented
on 1000 random images from the validation set with same
seed

Noise Average queries Average 𝐿2 Success Rate
0.0005 981 4.42 100
0.001 621 5.31 100
0.005 169 4.01 100
0.01 123 6.24 100

Both approaches were evaluated on the ResNet-50 model.
It can be observed that the success rate of our proposed
method is the same as the competitors which is 100
percent while the average queries of the proposed ap-
proach outperform every state-of-the-art technique. Ex-
cept EigenBA [17] and CG-Attack[21] which are close
to our results, our approach beats the competitors by a
large margin.

4.3. Ablation study on different noise
intensities

One of the key hyperparameters for RLAB is the quantity
of Gaussian noise that it adds for distortion. Experiments
showed that higher noise levels increased the final 𝐿2 of
the adversarial sample, while too less of noise impacted
the average number of queries. We performed an eval-
uation of different noise levels and their impact on the
metrics as represented in table 4. We applied the same
noise level for evaluation on both datasets (ImageNet,
CIFAR-10) and all three victim models. We observed that
the chosen noise level gave the best results across all
datasets and victim models.

4.4. Learnt Policy Vs. Heuristic for
optimal Action

In our proposed approach, the RL agent decides based
on the input, the number of noise patches (N+1) to add
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Figure 9: Comparing performance of our approach with competitors

Table 5
Comparison of RLAB results between Dynamic policy driven
patch selection and baseline heuristics for ’N’. Dataset: Ima-
genet, Model: ResNet-50

Approach Average queries Average 𝐿2

Dynamic 169 4.03
Baseline 210 5.62

and remove (N) at each step. This decision is based on
a learned policy (Dynamic) or based on a tuned hyper-
parameter baseline. From the table 5, it can be observed
that the results improved when the RL learned policy
made the decision than the baseline for the number of
patches to which noise was added and removed

4.5. Performance vs Complexity
In our proposed work, we generated all our results with
the patch of size 2× 2 for best results. It can be observed
from table 6 that as the patch size increases, the number
of queries decreases while the 𝐿2 increases. Further-
more, we observed similar pattern with other models
such as VGG-16 and Inception-V3. This could be due
to that fact that the computation for sensitivity analy-
sis primarily depends on the size of the image and can
be accelerated, scaled, and batched on the GPU, there
is a smaller variation based on the number of patches
due to the post-processing overhead which is typically
around 20% of the total computation for 224x224 images
with 2× 2 patch sizes. Depending on the use case, our
approach allows using different patch sizes at different
levels of performance which are represented in table 6.

5. Conclusion
RLAB outperforms the state-of-the-art adversarial at-
tacks in query efficiency by a significant margin and
achieves a highly competitive 𝐿2-norm indicative of

Table 6
Ablation study on different patch sizes. All the experiments
were performed on the same set of images for a fair compari-
son. Dataset: Imagenet, Model: ResNet-50

Patch Size AVG. Q Average 𝐿2 ASR %
2x2 179 4.03 100
4x4 197 11.29 100
8x8 188 17.52 100

16x16 133 32.16 100
32x32 114 63.45 100

very low distortion with 100% success rate for miss-
classification. But as RLAB only uses Gaussian noise,
the distortions are similar to real-life deployment. This
makes it valuable for a more appropriate test for non-
malicious distortions and an effective measure of robust-
ness, which is a key attribute of trustworthiness with a
positive social impact.
Also, Reinforcement Learning proved to be very effec-
tive in learning the optimum policy to make the complex
decision of choosing the square patches for changing
distortion and making RLAB adaptive, as compared to
hand-crafted heuristics. This is by far the best RL imple-
mentation of this type of Black-Box adversarial attack
considering both the results achieved and the flexible
nature of the optimization approach. This RL design will
be extended to include other types of distortions as part
of future work. Also, this RL approach is generic enough
to extend to a wide variety of adversarial attack agents
beyond image classifiers.
The adversarial samples generated by RLAB can be used
to augment the train data set to retrain the model and
enhance its robustness.
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