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Abstract 
The research considered the motion control of a 2R planar robot consisting of two links 

connected in series through two revolute joints, suitable for the task of simulating the human 

arm and other similar mechanisms. The aim of the study was to apply Machine Learning 

(artificial neural networks, ANN) methods to control the position of the 2R planar robot's 

end-effector within the workspace along a given trajectory. The possibility of using ANNs to 

achieve a single solution of the Inverse Kinematics Task is shown. 
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1. Introduction 

Nowadays, robots have deeply penetrated into our everyday life and are used in a variety of 

practical tasks. Robotics is an actively developing field, the achievements of which are used in 

manufacturing, medicine and many other spheres. For example, the work [1] gives a voluminous 

overview of robot models used in the medical sphere. Today, robotic manipulators of the "multi-link" 

type are popular and have not lost their relevance for research purposes for many years. Palleschi and 

his co-authors [2] "presented a time-optimal trajectory planning algorithm for moving a flexible joint 

robot along smooth parametrized paths" for a 2R planar robot. In work [3] 2R planar robot is also 

considered, and the authors "designed a genetic algorithm to perform time-optimal control of robotic 

manipulators along specified paths, subject to torque constraints". Work [4] also deals with canonical 

SCARA 2DoF. Based on all of the above, robotic manipulators of the "multi-link" type are popular 

and in demand due to their simple design and convenience in performing calculations and 

experiments. 

The Inverse Kinematics Task (IKT) in robotics is important. The solution of the IKT is often the 

basis for solving other problems facing the mechanical system, for example, for calculating the 

workspace of a robot. It is known that the IKT is often has more than one solution. The solution of 

robot's IKT is considered in many works, the problem does not lose its relevance [5]-[8]. It is solved 

in different ways for different mechanical systems. The most popular are classical mathematical 

(including geometric) methods, as well as widely used methods of machine learning. In work [5] 

solution of GLC for multilink with spherical joints (7 links) with application of mathematical 

apparatus is considered. In the work of Mukanova B.G. solves IKT and Direct Kinematics Task 

(DKT) for RPR robot also with the use of classical mathematical methods and transformations [6]. 
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W.H. Zayer with co-authors proposed the use of FuzzyNeuralPetriNet to solve the IKT and the DKT 

of a 2DoF robot manipulator [7]. Using ANN to solve the IKT for multi-link is also applied in [8] for 

PUMA 560 robot, and the training result equals to 90 %. Solving IKT is an important step in solving 

robotics problems. 

Machine learning methods are extensively used in robotics not only for solving DKT (direct 

kinematics task) and IKT. Machine learning makes it possible to solve problems where it is difficult 

to derive dependencies by classical methods. The review by Laith Alzubaidi and his co-authors[9] 

states that "recently, machine learning (ML) has become very widespread in research and has been 

incorporated invariety of applications,including text mining, spam detection, video recommendation, 

image classification, and multimedia concept retrieval" and that "the effectiveness of an algorithm is 

highly dependent on the integrity of the input-data representation". For example, holonomy systems in 

solving DKT, IKT have the problem of geometric inaccuracy of the obtained result. Article [10] 

discusses a solution to this problem using the Artificial Neural Network (ANN) and "is trained to 

predict the position error in the workspace for the given input coordinates of the planar geometry to 

be sewed in the fabrics". 

Robotics is an actively developing field, but it is likely that the highest peak of development in this 

area has not yet been reached. First, there is no single solution (framework) that fits all robot models. 

You have to use highly specialized tools to solve narrow problems. Second, each robot is a 

mechanism with unique features that require an individual approach. This relates to the description of 

the kinematics, the dynamics of a robot, how links are connected and their order, whether closed or 

open kinematic chains are used, whether the system is holonomous or whether odometry must be 

used, whether a solid body forms the basis of the mechanical system, and other nuances. Therefore, 

there are still many discoveries to be made in robotics, and often today they refer to specific robot 

models aimed at solving a narrow range of problems. In [11] described trends in the industrial 

robotics sector and graphically shows the growth of number of publications in the field of industrial 

robotics. The paper [12] shows trends in the evolution of service robots and lists some unresolved 

issues in robotics, such as "the lack of generalization and formalism in classifications and taxonomy, 

the current perceived utilitarian value, battery and autonomy modelling and estimation, ethics, and 

even design problems related to gender biases based on the occupation of the robot". 

It is a well-known fact that in robotics there are two kinematics tasks: direct and inverse (IKT and 

DKT). The solution of the DKT gives us an unambiguous answer, while the IKT does not always give 

a single or unambiguous solution. We must rely on the goal pursued in solving the IKT, which may be 

to find multiple solutions and further process the results, or to derive a single solution that fits the 

criteria. IKT is an important step in solving many kinematics problems in robotics, e.g., solving IKT 

is an important step in computing the Workspace of a robot. It should be noted that the application of 

Artificial Intelligence (AI) increasingly overlaps with robotics problems and provides many fresh 

ways to solve different problems. The exact location of not only the end-effector, but also other links 

in the path can be critical, depending on the tasks the robot is designed to perform. For example, when 

teaching a robot to repeat movements to train flexor-extensor muscles for those in need of 

rehabilitation, it is not enough for a robot to follow the end-effector movement along a given 

trajectory; we also need the most precise movement of all links due to the limited degree of freedom 

of the human hand. There are many tasks where this criterion is important according to the condition 

or formulation of the problem. Also, the IKT solution is important in calculating the robot's 

workspace. Knowing the robot's workspace helps to ensure that the robot's mechanisms and parts 

work less traumatically for the robot. This study proposes to solve the inverse kinematics problem for 

2R planar robot-arm using Artificial Neural Networks (ANN) apparatus and further use the results to 

build the workspace of the robot, to move the robot along the trajectory taking into account the more 

exact location of all links. The features and advantages of the proposed solution are given in further 

sections of the paper. 

2. Description of the robot-manipulator 

In this work we operate with 2R planar robot-arm to test hypotheses and do research. Due to the 

simple design and ease of prototyping the robot, the demand for this model in different industries, its 



accessibility and canonicality, the significance of the results for both, training purposes and practical 

purposes, is achieved. 

This work considers the IKT for a 2R planar robot manipulator using Machine Learning methods 

to obtain a single (unambiguous) solution on output. 

As mentioned above, the study deals with a 2R planar robot because it has a simple construction 

consisting of two links connected in series through two revolute joints, and is suitable for the task of 

simulating the human hand and other similar mechanisms. The robot mechanism under consideration 

is a holonomous system and can be described geometrically. The geometrical scheme of 2R planar 

robot with notations is shown in Figure 1. 

 

 
Figure 1: 2R Planar Robot Geometric Schema 

 

Let introduce the following notations:  

O – is the center of the first link (base) or the junction point of the base and the first link,  

OB – is the first link, 

BA – is the second link, 

pointВ- is point of connection of the first and second links, 

pointА – is the end-effector coordinate,  

Q1 – is the angle between the x-axis and the link OB,  

Q2 – is the angle between the OB link and the BA link,  

L1-length of the first link, 

L2 – length of the second link, 

rxb, ryb –projections of the length of link L1 on coordinate axes,  

rxa, rya– projections of the radius-vector determining the position of the end-effector on coordinate 

axes, 

�̅� - the radius-vector determining the position of the end-effector in space (the vector connecting 

the 0 and the target point). 

The degree of freedom of the robot equals two (DOF=2). 

 

Figure 2: 2R Planar Robot Prototype 
 



According to the described geometrical scheme, the prototype 2R Planar Robot - manipulator was 

assembled using the ArduinoUno platform based on the ATMEGA328 microcontroller and using two 

servo motors at the points O and B.  

Thus, two servo motors (model SG 90) play actuators roles in the physical implementation. The 

implemented physical model of the 2R Planar Robot prototype is shown in Figure 2. 

The principal model of the robot, implementedin the CoppeliaSim environment, is shown in Figure 

3. 

 

Figure 3: 2R Planar Robot CoppeliaSim model 
 

Note that due to the fact that 2R Planar Robot is a holonomous system, only the dimensions of the 

first and second links mattered for calculations. The links length of the mechanical system prototype 

was L1 =0.16 m and L2 =0.1 m. The parameters of the robot adopted in the study are described in 

Table 1. Robot design was chosen based on characteristics of used servomotor models specifications 

and the weight of the elements that were used in the construction. The characteristics of the SG 90 

servomotor can be taken from the manufacturer's official website. According to them the servomotor 

can hold up to 1 kg of weight on the end of the arm with the length 0,01 m, the servomotor force is 

1.2-1.6 kg∙cm at voltage 4.8 V. The maximum speed of the SG 90 servomotor is 1.046 radians in 0.1 s 

(the specification show it as 60 degrees/ 0.1 s). 

 

Table 1  
Robot parameters 

Parameter Length (m) Width (m) Height(m) Weight(kg) 

First Link (L1 ) 0,16 0,017 0,002 0,016 
SecondLink (L2 ) 0,10 0,017 0,002 0,023 

Base 0,095 0,095 0,05 Not considered 

 
Let's present the specifications of servomotors in table (see Table 2). As you can see from the 

table, SG 90 servomotor is restricted and can rotate from 0 to 180 degrees (90 degrees to one side and 

90 degrees to the other side). In the calculations we denote the range of motion from -90 to 90 degrees 

for a convenient representation on the Cartesian coordinate system. In fact, the maximum boundary 

values are not attainable for the working area. We take this fact into account when constructing the 

robot workspace. 

 

Table2 
Servoparameters 

Parameter Max angular 
velocity 

Min position 
(degrees) 

Max position 
(degrees) 

Mass (kg) 

Servo 1 1,046 rad/0.1sec -90 90 0,009  
Servo 2 1,046 rad/0.1sec -90 90 0,009 

 



By projecting the radius-vector�̅�onto the coordinate axes, express the values of its projections onto 

the coordinate axes using the law of cosines. Thus, we obtain the kinematic equations of motion 

describing the mathematical solution to the DKT (1). 

{
𝒓𝒙𝒂 = 𝑳𝟏 ∗ 𝐜𝐨𝐬(𝑸𝟏) + 𝑳𝟐 ∗ 𝐜𝐨𝐬⁡(𝑸𝟏 +𝑸𝟐)

𝒓𝒚а = 𝑳𝟏 ∗ 𝐬𝐢𝐧(𝑸𝟏) + 𝑳𝟐 ∗ 𝐬𝐢𝐧⁡(𝑸𝟏 +𝑸𝟐)
⁡(𝟏) 

Performing calculations by formula (1) in the loop, taking into account the constraints on the 

servomotors, we obtain the set of workspace points of the robot-manipulator. The boundaries of the 

workspace are unreachable for the end-effector, so we remove them from the set of points of the 

workspace (highlighted in black). The calculation step equal to 1 degree, angles from -90 to 90 

degrees. Then subtract from the set the points being the boundary points. Based on this, with regard to 

the given lengths of the links, the workspace has the surface shown in Figure 4. 

 

 
Figure 4: 2R Planar Robot Workspace with given constraints 

3. Problem Formulation  

The following definitions and terms should be introduced for the convenience of the following 

presentation: 

• A Transitional link–is any movable link that participates in the movement and affects the 

coordinates of the end-effector, on which the end-effectoris not located and the coordinates of 

which do not coincide with the coordinates of the end-effector. In our case, we highlight the link 

L1as the only intermediate link. 

• The coordinates of point B are coordinates of the Transitional link. 

• The set of allowable coordinate points of the Transitional link is called a workspace of the 

Transitional link. Obviously, in this case the workspace of the Transitional link is an arc of a 

circle with radius L1. 

• A Target link – is a link those coordinates are associated with the coordinates of the end-

effector.  

• When controlling the motion of the robot, we will be based on the "exactly-the-same" 

principle. This principle implies that all intermediate links of the robot and the target link of the 

robot will repeat the necessary movements as accurately as possible, and not only the trajectory set 

for the end-effector. 

• Thus, we implement the ESM method with with application to ANNs with different 

topologies and models, inputs and outputs, to obtain a single output. This makes it possible to train 

the robot to move by following the correct location of the target and intermediate links on the 

selected surface according to the "exactly-the-same" principle. 

The formulation of the problem is below: 



Given: The workspace of the robot is defined and the trajectory is given by a sequence of discrete 

points along which the end-effector should move, with a given time step Δt=(t1-t0)/H -H number of 

steps. 

It is required to set the angles of rotation on the actuators in real time, so that at the next moment 

of time +Δt the working tool moves to a given point on the trajectory. Perform a calculation for a 

given time interval, with regular step Δt, such that the robot follows the given trajectory from the 

initial to the final position. 

The restrictions on the workspace and the technical limitations on the torques on the actuators 

must be satisfied. 

4. Concept of the proposed method 

We propose the following method for solving IKT for a 2R multi-link robot: 

• The IKTis solved using Artificial Neural Networks (ANN). The trajectory, time step of links 

rotations is given. 

• At the input of the ANN is the coordinates of the intermediate link and the coordinates of the 

end-effector. 

• The proposed ANN model gives a single solution on output. 

Thus, ANN gives a single and unambiguous output result. The input data, which contain the 

coordinates of the intermediate link, gives opportunity to avoid the ambiguity of the solution. The 

specific feature of the proposed solution is that the input of the ANN is consist of, in addition to the 

coordinates of the end-effector, also the coordinates of the intermediate link (point B). 

When data are sequentially sent to the input of the ANN, it should be noted next statements: 

• taking into account that each subsequent input vector is the coordinates of points of an 

arbitrary trajectory, when moving with a step Δt; 

• taking into account that the coordinates of points are taken with a fixed time step, by the 

results of the output vector it is possible to reproduce the laws of change of linear speeds, linear 

and angular accelerations on the route, if necessary. 

5. ANN Model 

The advantage of the proposed ANN topology, that implements the ESM method, is that, with 

taking into account of the intermediate link position, the output is a single solution of the IKT for 2R 

planar robot-arm. This allows the trained robot not just to repeat the required trajectory by the end-

effector, but also to repeat completely the movements of all intermediate links. 

So, using these solutions, it is possible to set the trajectory and positions of its intermediate links to 

the robot and teach it to repeat exactly all movements according to the "exactly the same" principle. 

The total time, the resulting law of velocity change, the energy expended on the motion, and other 

dynamic indicators are not optimal. These indicators are called intuitive outputs based on the results 

of the conversion of the ANN output data. 

The modules developed to implement the goal of the research were written in Python. Different 

models of a fully coupled ANN with different topologies were implemented using the frameworks 

Tensor Flow and Keras. The graphs were constructed with the help of ТensorBoard, Matplotib, and 

Graphviz libraries. 

Implemented research steps to make work on the simulator and the robot model prototype and to 

find a suitable ANN topology are below: 

1. Designing the circuit of the future robot prototype, description of the robot kinematics, model 

implementation in CoppeliaSimEDU environment. 

2. Developing of a module to build the robot's workspace and its boundaries. 

3. Developing of a module for generating a pseudo-random trajectory within the workspace. 

4. Assembling the construction of the robot prototype on the ArduinoUno board using 

Atmega328 microcontroller. 



5. Developing of a module for generating training and test samples based on the movements of 

the robot model in the CoppeliaSim environment. 

6. Designing the ANN topologies, verification, training, testing. 

7. Visualization of results, evaluation of ANN performance, and selection of the best models. 

8. Developing of module for testing, verification of training results and recreation of robot 

movements on robot model in CoppeliaSim environment. 

9. Testing of the model implemented on ArduinoUno board.  

The training samples was generated in 1-degree increments, because a larger increment had 

insufficient effect on the learning process of the ANN, while a smaller increment did not produce 

better learning results.  

Pre-testing of the training results was performed using the simulation on the robot model 

implemented in the CoppeliaSim environment. Then, after passing the pre-test, the learning results 

were tested physically on the prototype of the serial 2R Planar robot assembled on the ArduinoUno 

board with the Atmega328 microcontroller. The computational load of working of the Neural 

Network was performed on the PC, and training results was transferred to the microcontroller through 

the interface Firmata. 

5.1.1. The ANN model implements the "exactly the same" principle. Topology 
description and training result 

Preparation of the training and test samples. The set of consecutively arranged trajectory points 

from the working area, calculated in the range of the angular actuator [-90⁰, 90⁰] with step 1⁰ and the 

corresponding set of intermediate points is a training sample for the ANN. The training sample with 

this step is chosen due to the good result obtaining while working. A larger step did not give a better 

result in the test. A smaller step did not give a better result. The size of the training sample is 32040. 

Four parameters are input: 

• rxa, rya – determine the coordinates of point A on the coordinate plane; 

• rxb, ryb – determine the coordinates of point B on the coordinate plane. 

Calculated by the following formula (Formula 2): 

 

{
𝑟𝑥𝑏 = 𝐿1 ∗ cos(𝑄1)

𝑟𝑦𝑏 = 𝐿1 ∗ sin(𝑄1)
⁡(2) 

 

The injection of the coordinates of the Transitional link into the ANN allows us to avoid the 

problem of choosing solution between many solutions of the IKT (in our case is two solutions). At the 

output we have two parameters: Q1 and Q2-angles of rotation of the actuator that determine the 

position of the links in the angular coordinate system. 

The ANN, which gave the best result in realization of "exactly the same" principle consists of an 

input layer of dimension 4, hidden layers of dimension 9 and 12 neurons, an output layer of two 

neurons (see Table2). Visual diagram (topology) of the full-connected ANN is shown in Figure 5. 

 

Table2 
Model: "sequential" 

Layer (type) Output Shape Param # 

Input Layer 4 4 
Dense 9 45 

Dense_1  12 120 
Dense_2 2 26 

Total params:  195  
Trainableparams:  195  

 
The following activation functions built into Keras are used for the layers:  



• The activation function - hyperbolic tangent calculates according to the following formula (3) 

and gives the result at the neuron output in the range [-1,1]. 

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1⁡⁡⁡⁡(3) 

• The sigmoid activation function, gives a result on the neuron output in the range [0,1] 

(Formula 4): 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
⁡⁡⁡⁡(4) 

 

These activation functions were used in the final ANN model because they gave the best learning 

results and are suitable for solving similar problems, are the most commonly used and well-proven. 

The custom activation functions were not necessary and their development was not the purpose of the 

study. 

To measure the accuracy we used Accuracy metric, which is also an embedded metric. This metric 

was chosen for the task due to its simplicity and clarity. The built-in losses was chosen as Loss 

function MAPE (mean absolute percentage error) calculated using formula (5) below. The Inverse 

Error Propagation Algorithm was used for training. The Adamax function was used as an optimizer 

and the learning rate parameter for the ANN was equal to 0.01. More details on metrics, loss 

functions, and optimizers can be found in the Keras documentation. 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

(y_true⁡ − ⁡y_pred)

y_true
|

𝑛

𝑡=1

⁡⁡ , (5) 

Where 𝑦𝑡𝑟𝑢𝑒 is the actual value and 𝑦𝑝𝑟𝑒𝑑 is the forecast value. 

 

 

Figure 5: Neural network graph indicating the activation function on the layer 

6. Results and Discussion 

The results of training and testing of the ANN are given in this section. The evaluation of the 

trained ANN during testing with test samples (model.predict()) was performed with the standard 

function model.evaluate(). 



6.1. Model Training and Testing Results 

The designed ANN model was trained with a final Accuracy equals 98.84% (see Figure 6a). A 

total of 500 epochs were allocated for training to achieve the specified Accuracy. The final value of 

the loss function was 5.16% (see Figure 6b). Optimizer Adamax was used with a learning rate equal 

to 0.01. 

 
Figure 6: a) Accuracy     b) Loss 

 

Next, the Random Trajectory Generation module generated a test sample with a step Δt=10 ms and 

an angle of no more than 50 degrees, taking into account the maximum speed (Figure 7). It represents 

the points of the trajectory that the robot prototype should repeat. 

 
Figure 7: Random generated trajectory 

 

The ANN performed well in testing and showed Accuracy equals 95%. The graphical result of the 

output parameters Q1 and Q2 is shown in Figure 8. The blue line indicates the test data, the orange line 

is the result of the ANN operation. As shown in the graphs, the lines are almost repeats each other. 

 



 
Figure 8: a) Q2 is Theta2 angle b) Q1 is Theta1 angle 

 

Another property of the proposed ANN is that it always produces a result that is within the 

workspace of the robot even when input data has values outside of the workspace. This allows to save 

the mechanisms of the robot. And it allows to put the constraints associated with the robot design into 

the process of the ANN learning and training. 

7. Conclusion 

The main result of the study is the proposed model of the ANN for solving the IKT, which 

implements the proposed ESM method. The ANN model solves the problem of finding angles Q1 and 

Q2, having information about the coordinates of the target link and the coordinates of the transitional 

link, it implements the "exactly the same" principle. The accuracy of the proposed final ANN was 

98% in training and not lower than 95% in test samples. The proposed ANN model is called 

ESMNeuralNetwork 1.0v. 

The results of this study can be applied to robots with a similar configuration, if: 

• It is important to obtain a single solution of IKT; 

• The working area of an end-effector and transitional links is known. 

• There is a need to specify or calculate the total time taken to move along a trajectory.  

• There is a need to obtain the law of angular velocity change on a trajectory and other 

characteristics of movement. 

• The coordinates of target trajectory coordinates and transitional links coordinates. 

The results of the work can be adapted for flat artist robots, flexor-extensor muscle trainer robots, 

and others with a similar configurations and problem formulation. 

Results of work can be developed for other robot models, as well as to improve the mechanical 

characteristics of motion, continue research in the direction of calculating the optimal trajectory, the 

laws of change of the control moments on the actuators, improve the comfort of movement and 

minimize energy costs. 
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