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Abstract 
Managing a nonlinear dynamic object is a rather complex and urgent task. This task is even 

more complicated if there are destabilizing feedbacks in it. If such a connection is global, i.e. 

connects the output of an object with its input, then if there is sufficiently accurate information 

about the mathematical model of such an object, such a connection is most simply compensated 

by an external additional contour, which coincides with the specified global connection 

according to the mathematical model, but has the opposite sign. If the stabilizing feedback is 

local, then its compensation becomes significantly more complicated. An additional difficulty 

is such nonlinear feedbacks, which are not always positive or negative, but their sign depends 

on other factors, for example, on the sign of the signal at the input of the object. An example 

of such feedbacks is a quadratic feedback, or, for example, a feedback formed by the product 

of an internal quantity by its derivative. Examples of such objects have been written in the 

literature, but reliable evidence of the solution of the problem has not been found in these 

sources: either the declared successful solution of such a problem is not confirmed by 

independent modeling, or a simplified model of the object is used for control, free from this 

ambiguity of negative connection. This article discusses a similar problem without this 

simplification. The only known sufficiently effective method is based on local negative 

connections, and if such are not possible, then an equivalent option is possible only with the 

use of a digital double of a controlled object, which gives the method of pseudolocal feedback. 

This article offers a solution to such a problem, known from the literature, using the proposed 

method. 
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1. Introduction  

The most effective method for controlling nonlinear dynamic objects is based on numerical 

optimization using specialized software. However, there are examples from the literature of objects for 

which such a method is ineffective, it does not provide the desired solution to the problem. Despite the 

fact that there are reports of an effective solution to this kind of problem, for example, [1], a detailed 

study using modeling shows that the reliability of such a message is not confirmed, as shown, for 

example, in [2] and [3]. In particular, in [3] a simplified problem is solved in which, instead of the 

product of the signal by its derivative, the product of the signal modulus by its derivative is used, and 
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instead of the square of the signal, the product of the signal by its module is used. In this case, the 

negative relationship is always either positive or negative, but not necessarily variable, as in the original 

case, according to the problem statement in the article [1]. This article describes a method for solving 

this problem without using the specified simplification of the mathematical model of the object. 

2. Problem statement 

In the article [1] it is stated that the authors have designed a robust controller for an object described 

by the following differential equation: 

𝑦̈ = 𝑎1(𝑡)𝑦𝑦̇ − 𝑎2(𝑡)𝑦
2 + 𝑏(𝑡)𝑢 +𝑀(𝑡).                                        (1) 

Here y - is the output value of the control object, u - is the input value of the object, t is the time 

since the beginning of the transition process, M, a1 and a2 b(t) are the parameters of the object (1). 

These parameters, according to article [1], can vary in the range: 

−2 ≤ 𝑎1 ≤ 5; 

0 ≤ 𝑎2(𝑡) ≤ 2; 

4 ≤ 𝑏 ≤ 6. 

The claim that the authors [1] managed to design a robust controller for this object is refuted by 

modeling, as stated in [2], [3]. In [3], a simpler problem is solved, where by introducing an output signal 

module instead of this signal itself in one of the two multipliers, the feedback becomes unambiguously 

either positive or negative. The paper solves a simpler problem, where by introducing the output signal 

module instead of the actual signal in one of the two multipliers [3], the feedback becomes 

unambiguously either positive or negative. Thus, the object model takes the following form: 

𝑦̈ = 𝑎1(𝑡) · |𝑦| · 𝑦̇ − 𝑎2(𝑡) · y · |𝑦| + 𝑏(𝑡)𝑢 +𝑀(𝑡).                             (2) 

We will limit the task of synthesizing the regulator due to an excessively broad formulation. 

Controlling even a stationary object with such nonlinear feedbacks is a rather complex problem, 

therefore we will set fixed parameter values, exactly those at which the exponential modeling was 

carried out in the publication [1], namely: a1 = -5, a2 = 2, b = 1. The numerical value of the last 

coefficient, if it is stationary, is not significant, because whatever it is, the problem can be reduced to a 

problem with a single value if a common coefficient equal to the inverse value is introduced into the 

sequential regulator, therefore the choice of b = 1 does not simplify or complicate the task in practice, 

but in modeling eliminates the extra block that provides this coefficient. If the system has a single 

negative feedback, it is not necessary to consider the impact of the disturbance on the system, since the 

response to the jump of the disturbance applied at the output of the object and the response to the jump 

of the task at the input of the system are uniquely interrelated by a simple ratio, therefore, without loss 

of complexity of the task [2], we can put M = 0. Thus, the equation of the object takes the following 

form: 

𝑦̈ = −2𝑦𝑦̇ − 5𝑦2 + 𝑢.                                           (3) 

The transfer function of the regulator should have the following form in the area of the Laplace 

transform: 

𝑊(𝑠) = 𝑘P +
1

𝑠
𝑘I + 𝑠𝑘𝐷.                                           (4) 

Here 𝑘P, 𝑘I, 𝑘𝐷  – coefficients of proportional, integrating and differentiating paths, s – Laplace 

transform operator. 

In terms of Laplace transformations, an object cannot be represented as a transfer function, since 

this mathematical apparatus is applied only to linear objects. 

For optimization, a target (cost) function based on the integral of the product of the control error 

modulus by a linearly increasing signal is used: 



𝐹𝐶(𝑇) = ∫ {𝑡|𝑒(𝑡)| + 𝑓[𝑒(𝑡)]}𝑑𝑡
𝑇

0
.                                     (5) 

Here 

𝑓[𝑒(𝑡)] = 1000 ∙ max⁡{0; ⁡𝑒(𝑡)
𝑑

𝑑𝑡
𝑒(𝑡)}.                                       (6) 

The additional term 𝑓[𝑒(𝑡)]is introduced to further ensure stability. This is the positive part of the 

product of the error by its derivative. We will not justify this cost function, because it has been too often 

justified and explained in our earlier publications [4–9].  

The simplest control system should contain a serial PID controller [2]. The diagram for modeling 

and optimizing such a system in the VisSim program is shown in the Figure. 1. Unfortunately, this 

method, which is very effective for controlling nonlinear objects, in this case does not allow to obtain 

a successful result. Optimization is interrupted due to the fact that the output signals in this system reach 

unacceptably large values. In addition, even if the optimization procedure led to a successful solution 

of this problem, it would be successful only for the special case of using such an input signal that is 

used in this procedure. In the case of optimizing regulators for a linear system, any value of the 

amplitude of the test effect can be taken with equal success, since the system is linear, an increase in 

input signals causes only the same increase in all other signals in the system. In nonlinear systems, the 

situation is different: a system that is stable with one set of signals will not necessarily be stable with 

other signals.  

 

 
Figure 1: Scheme for modeling and optimization of a system with an object (3) 

 

Indeed, if the test signal were taken very small, then both feedback signals would be even smaller. 

For example, if the input signal is reduced by introducing a small coefficient μ, then both feedback 

signals would decrease by a factor of µ2. This follows from the fact that the internal feedback is equal 

to the product of the signal y by its derivative, and the feedback signal of the external circuit is equal to 

the square of the value y. Thus, it is always possible to choose such a small value that the feedback will 

make a negligible contribution to the operation of the system. 

Speaking about the problems of solving this problem, we should mention the biggest problem that 

arises if the internal feedback is negative with a sufficiently large coefficient, and the input signal also 

has a sufficiently large amplitude. 

An additional and very significant problem is the presence of uncertainty in the feedback sign: if the 

feedback in any of the circuits, for example, is positive, then when the sign of the input signal changes, 

it turns into negative and vice versa. This follows from the rectification effect when taking the square 

of the signal. In the case of the product of a signal by its derivative, this product is positive if the system 



performs unstable movements moving away from the equilibrium state. If the system approaches an 

equilibrium state, then this product is negative. 

Thus, the task is to create a system of effective management of the object (3), while there are no 

restrictions on the complexity of the structure, since with the modern development of electronic 

technology this is not a problem. 

3. The principle of using local feedback 

The block diagram of the object is shown in Fig. 2, where some important points are additionally 

indicated. 

 

 
Figure 2: Object model with control points 

 

Note that the signal at the output of the object at point B is available for measurement and use. An 

additional summing amplifier can be installed at the input of the summing element, so it can be argued 

that additional summing inputs are available for use at point C. For this reason, the effect of a global 

feedback that feeds the square of the output signal of an object to its input with a coefficient a2 = 2 can 

be effectively suppressed by adding an additional contour, the structure of which is identical, and the 

coefficient is opposite in value, but equal in magnitude, also d2 = -2. In this way, you can either 

completely compensate, that is, neutralize the effect of global feedback, or, if the specified coefficient 

is not known precisely enough, or it changes within small limits, then you can at least reduce the effect 

of this feedback to a value corresponding to the error of its estimation. For example, if the coefficient 

is known with an error of 1%, then the effect of such a connection can be suppressed 100 times.  

If the signal from point A was available for measurement, it could be suppressed in exactly the same 

way, so the object as a whole could be made linear due to two compensating feedbacks, after which it 

would remain to design a regulator to control a linear object consisting of two sequentially connected 

integrators. Management of such an object can be carried out quite successfully. If such control would 

not work with a sufficiently successful result, then it would be additionally possible to introduce another 

local feedback so that the integrator could be covered, for example, by a proportional link with a 

negative coefficient. This would transform the integrator into an aperiodic link, after which it would be 

possible to use the method described above for controlling such an object, which is not significantly 

complicated.  

The problem of implementing this method is the impossibility of receiving a signal from point A. 

4. The use of a digital double and the pseudo-local feedback method based 
on it 

If you create a digital or analog double of an object that will work in parallel and simultaneously 

with the object, then in this double you can access all the internal signals in it. In this copy of the object 

there are also points A, B, C. Further, compensating feedbacks can be carried out from these points, 

equal in magnitude, but opposite in sign. As a result, we get a composite object, the final transfer 

function of which is equivalent to the transfer function of the object without taking into account 



nonlinear feedbacks. Thus, we actually get a linear object. The control of a linear object can then be 

easily carried out by using a traditional PID controller, and the coefficients of this controller can be 

calculated by numerical optimization using the cost function (5), (6). Figure 3 shows a structure with a 

digital double and compensating feedbacks. In this figure, the object model is collapsed into a 

Compound block for a simpler view of the structure (the VisSim program allows you to apply such a 

graphical simplification). Figure 4 shows the complete model for optimization, where the optimization 

block is also shown in accordance with (5) and (6), and the digital twin of the object is also shown as a 

composite Digital Twin block.  

 
Figure 3: A model of a system with a digital double of the object and compensating feedbacks 

 

The obtained coefficients of the regulator for this case (see Fig. 4) have the following values:  

 

kP = 6.61807 ≈ 6.618, kI = 4.66217·10-4 ≈ 0, kD = 4.16013 ≈ 4.16. 

 

 
Figure 4: A model of a system with a digital double of the object and compensating feedbacks and 
with a block for optimizing the regulator in accordance with the cost function (5), (6) 



 

The resulting transition process is shown in Fig. 5, it is close to ideal. Indeed, the duration of the 

process is about 3 seconds, the overshoot does not exceed 2%, the static error is zero. However, the 

transient process in response to a single signal variant, that is, in this case, to a single step jump, is an 

insufficiently complete characteristic of a nonlinear system, if the system were linear, this characteristic 

would be sufficient. In this case, it is necessary to build a family of transients corresponding to different 

amplitudes of the input effect. In addition, since the mathematical model of the object does not have 

symmetry with respect to the sign of the input signal, it is necessary to build not only responses to 

positive jumps, but also responses to negative jumps of the task. Such a family of transients is shown 

in Fig. 6. When the amplitude changes from a negative value of -1.2 to a positive value of 1.2, the 

transients are completely identical, they differ only in scale, which is determined by the amplitude of 

the input signal. The simulation showed that this property is global, also a further increase or decrease 

in the amplitude of the input signal does not change this pattern, the system behaves like a linear 

automatic control system with high control quality. 
 

 
Figure 5: The resulting transition process in the system according to Fig. 4 

 



 
Figure 6: The resulting family of transients in the system according to Fig. 4 with an input signal 
amplitude from -1.2 to 1.2; the type of processes corresponds to a linear automatic control system 

 

The article [10] shows that in systems with a nonlinear object of this kind, the following effect can 

occur: even with a satisfactory form of transients in the form of a response to step effects starting from 

zero, the system may have unsatisfactory responses in processes that are formed as a response to a step 

effect that ends with a zero value. This is the so-called instability of the system in the small, that is, at 

small values of the final steady-state value. 

In the article [10], for this reason, it is recommended to use a stepwise effect as a test signal, which 

first increases abruptly from zero to some non-zero value, and then, when the process calms down, such 

an effect should return back to the zero steady value. Such test effects of different amplitudes were 

applied when modeling the resulting system, the resulting graphs are shown in Fig. 7. Transients 

correspond to processes in a linear system. 

A check on the rudeness of the system was also carried out. For this purpose, each of the coefficients 

of the digital double changed by 1% in both directions, and they also changed simultaneously by 1% in 

different directions, both in the direction of increase and decrease. The feedback coefficients also 

changed from the digital double by 1%. The greatest influence was exerted by changes in the coefficient 

of the differentiating channel: a change in this coefficient by 1% led to a change in the transition process 

by 2.5%, as shown in Fig. 8, but at the same time the static accuracy, of course, did not change, i.e. 

changes were made only at the end of the dynamic component of the transition process. Changes in the 

remaining coefficients affect less than half or even less. Thus, the resulting system is quite crude, which 

is required in order for it to be implemented in practice. 

 



 
 
Figure 7: The resulting family of transients in the system according to Fig. 4, when given in the form 
of a pulse returning to the zero state, the amplitudes of the input signal varied from 0.4 to 1.4; the 
type of processes corresponds to a linear automatic control system 

 

 
Figure 8: Changes in transients in the system according to Fig. 4 when changing the coefficient of the 
differentiating path of the regulator in both directions by up to 1% 



5. Discussion and conclusions 

In this article, the problem of controlling a substantially nonlinear object with two destabilizing 

feedbacks is solved. The task is complicated by the fact that these connections are not only nonlinear, 

but also change the sign of their effect depending on the sign of the input signal or interference, since 

they have the effect of rectification of this signal. Thus, if any of these connections, for example, is 

negative with a positive signal, then it will be positive with a negative signal, and vice versa. As you 

know, the concept of "negative feedback" or "positive feedback" does not indicate the sign of the signal 

coming through this connection, but the sign of the contribution of this signal to the interference that 

has arisen. Negative feedback, as a rule, for a linear system introduces a stabilizing effect, contributes 

to the fact that the object maintains its equilibrium state, and positive feedback, as a rule, introduces a 

destabilizing effect. However, in the case of nonlinear feedbacks, everything is far from so simple. In 

the works [2], [3], [10] it is demonstrated how difficult the task of controlling such an object is even if 

the feedback sign does not change, which can be done by introducing a rectifying amplifier into one of 

the feedback paths. This modification used in the works [2], [3], [10], it simplifies the task at least twice, 

because if such a modified system is stable, for example, with positive signals, it is automatically stable 

with negative signals, due to the symmetry of the mathematical dependence relative to the sign of the 

input signal. In these works there was not even an attempt to solve the problem without this 

simplification. 

This article offers a solution to this problem without this simplification by forming pseudo-local 

feedbacks through the use of a digital double of the object model. As a result, the system is identical in 

its properties to a linear automatic control system due to the fact that pseudo-local connections make it 

possible to compensate for nonlinear effects. If the model of an object in a digital double differs by no 

more than 1% from the true model of the object, this method works quite effectively. Studies with a 

larger error value were not included in the task of this article. To further improve the system, pseudo-

local coupling can be used not only to compensate for non-linearity, but also to cover the first part of 

the object model with proportional negative feedback, which further stabilizes the object. Such feedback 

will have the same effect as second-order differentiation. 
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