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Abstract  

This article is devoted to dynamic processes in the field of artificial intelligence, namely in the 

tasks of neurodynamics: the field of knowledge in which neural networks are considered as nonlinear 

dynamical systems and focuses on the problem of stability. The systems under consideration share 

four common characteristics: a large number of nodes (neurons), nonlinearity, dissipativity, noise. 

The purpose of this work is to build to construct of asymptotic stability conditions for dynamic 

model of neuronet network, which is described in terms of ODE nonlinear systems. Main method of 

investigation is Lyapunov direct method. Authors show that solution of pointed problem can be 

reduced to the task of convex optimization. By realization on Python tools the algorithm of Nelder-

Mead method, a number of numerical experiments were conducted to select the optimal parameters of 

the Lyapunov function. 

 

Keywords  1 
Neuronet model, differential equation system, software, stability, Lyapunov function. 

1. Introduction 

To date, it is difficult to overestimate the achievements of neural networks and their contribution 
to various fields of science, to the development of the world as a whole and to the lives of each of us 
in particular. Deep learning is used in a huge number of fields from image recognition, weather 
prediction or text translations to the creation of new medicines and unique works of art [1-5]. 
Nevertheless, very often the apparatus of neural networks is not investigated properly, and the 
programs themselves are used as "black boxes": data is given as an input, and the desired prediction is 
obtained as an output. It is clear that it is simply impossible to build a good working architecture 

without understanding how a neural network works.  
One of the urgent tasks of the modern theory of neural networks is learning. The dynamics of 

processes, and more precisely the process of "learning", comparing with processes in electric circuits, 
can be described using the apparatus of ordinary differential equations. In particular, by a system of 
stationary nonlinear differential equations with a selected linear part and nonlinearity of a special 
kinde. This direction of research is relevant, which is confirmed by many recent scientific works [6-
11]. One of the universal apparatuses of the mathematical theory of stability, allowing to study the 
dynamics of the learning process, i.e. the convergence of the solutions of the system to the established 

one, is the second Lyapunov method [12,13]. 

2. Formulation of the problem 

Without limiting the generality the authors first consider a dynamic system on a plane. It is a 
system of two nonlinear differential equations of the form  
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𝑦̇1 = −𝑎11𝑦1 + 𝑏11𝑓11(𝑦1) + 𝑏12𝑓12(𝑦2) + 𝑐1 , 

𝑦̇2 = −𝑎22𝑦2 +𝑏21𝑓21(𝑦1) + 𝑏22𝑓22(𝑦2) + 𝑐2.                                        (1) 

We assume that 𝑎11 > 0, 𝑎12 > 0, functions  𝑓𝑖𝑗(𝑦),   𝑖, 𝑗 = 1,2̅̅ ̅̅  are monotonic and continuously 

differentiable, and the system of differential equations (1) has a single singular point 𝑀0(𝑦1
0,    𝑦2

0), 
which is a solution of the system of equations 

−𝑎11𝑦1 + 𝑏11𝑓11(𝑦1) + 𝑏12𝑓12(𝑦2) + 𝑐1 = 0, 

−𝑎22𝑦2 +𝑏21𝑓21(𝑦1) + 𝑏22𝑓22(𝑦2) + 𝑐2 = 0.                                         (2) 

Let's make a replacement, a parallel transfer type, a fixed point 𝑀0(𝑦1
0, 𝑦2

0) to the origin of the 

coordinates  

𝑦1 = 𝑥1 +𝑦1
0, 

𝑦2 = 𝑥2 + 𝑦2
0.                                                                  (3) 

Then, taking into account (2), (3), system (1) will be reduced to the form 

𝑥̇1 = −𝑎11𝑥1 +𝑏11𝐹11(𝑥1) + 𝑏12𝐹12(𝑥2), 

𝑥̇2 = −𝑎22𝑥2 +𝑏21𝐹21(𝑥1) + 𝑏22𝐹22(𝑥2),                                            (4) 
where 

𝐹11(𝑥1) = 𝑓11(𝑥1 + 𝑦1
0) − 𝑓11(𝑦1

0), 

𝐹12(𝑥2) = 𝑓12(𝑥2 +𝑦2
0) − 𝑓12(𝑦2

0), 

𝐹21(𝑥1) = 𝑓21(𝑥1 + 𝑦1
0) − 𝑓21(𝑦1

0), 

𝐹22(𝑥2) = 𝑓22(𝑥2 +𝑦2
0) − 𝑓22(𝑦2

0).                                                 (5) 
Since 

𝐹11(0) = 0,𝐹12(0) = 0,𝐹21(0) = 0,𝐹22(0) = 0, 
then the study of the equilibrium position  𝑀0(𝑦1

0, 𝑦2
0)  and the convergence of solutions to this point 

is reduced to the study of the stability of the zero equilibrium position 𝑂(0,0) of  the system (4). 

Let the functions  𝐹11(𝑥1),  𝐹12(𝑥2),  𝐹21(𝑥1),  𝐹22(𝑥2)  from (5) satisfy the so-called "sector 
conditions", which can be written in a compact form as follows:  

(𝐿11𝑥1 − 𝐹11(𝑥1))𝐹11(𝑥1) > 0, 

(𝐿12𝑥2 −𝐹12(𝑥2))𝐹12(𝑥2) > 0, 

(𝐿21𝑥1 −𝐹21(𝑥1))𝐹21(𝑥1) > 0, 

(𝐿22𝑥2 − 𝐹22(𝑥2))𝐹22(𝑥2) > 0.                                                    (6) 

In fact, this means that these functions are located in the first and third sectors of the coordinate 
plane. Such functions are, for example, 

𝐹(𝑥) =
1 − 𝑒−𝜈𝑥

1 + 𝑒−𝜈𝑥
, 𝐹(𝑥) = 𝑎𝑟𝑐𝑡𝑔𝑥, 

which are successfully used in the design of neural networks as activation functions [1]. 
If the conditions (6) are satisfied, the asymptotic stability conditions and convergence estimates 

can be obtained using the Lyapunov function of the Lurie-Postnikov type [14 ]. Since the linear part 
has a diagonal form, we construct the Lyapunov function in the form of a sum of squares and integral 
additions with constant coefficients 

𝑉(𝑥1, 𝑥2) = ℎ11𝑥1
2 + ℎ22𝑥2

2+∫ (𝛾11𝐹11(𝑠)+ 𝛾21𝐹21(𝑠))𝑑𝑠+
𝑥1

0

 

+∫ (𝛾12𝐹12(𝑠) + 𝛾22𝐹22(𝑠))𝑑𝑠,
𝑥2
0

                                             (7) 

ℎ11 > 0, ℎ22 > 0, 𝛾11 > 0, 𝛾21 > 0, 𝛾12 > 0, 𝛾22 > 0. 

Let introduce next notation 

𝐶 = (

𝐶11 𝐶12 𝐶13
𝐶12
𝑇 𝐶22 𝐶23
𝐶13
𝑇 𝐶23

𝑇 𝐶3

),        𝐶1 = (

𝐶11
1 𝐶12

1 𝐶13
1

(𝐶12
1 )𝑇 𝐶22

1 𝐶23
1

(𝐶13
1 )𝑇 (𝐶23

1 )𝑇 𝐶33
1

),  
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𝐶11 = (
2ℎ11𝑎11 0
0 2ℎ22𝑎22

),             𝐶12 = (

1

2
𝛾11𝑎11 − ℎ11𝑏11 −ℎ11𝑏12

0
1

2
𝛾12𝑎22

),  

𝐶13 = (

1

2
𝛾21𝑎11 0

−ℎ22𝑏21
1

2
𝛾22𝑎22 −ℎ22𝑏22

),     𝐶22 = (
−𝛾11𝑏11 −

1

2
𝛾11𝑏12

−
1

2
𝛾11𝑏12 0

), 

𝐶23 = (
−
1

2
𝛾21𝑏11 0

−
1

2
𝛾21𝑏12 −

1

2
𝛾12𝑏21 −

1

2
𝛾12𝑏22

),   𝐶33 = (
0 −

1

2
𝛾22𝑏21

−
1

2
𝛾22𝑏21 −𝛾22𝑏22

), 

𝐶11
1 = (

0 0
0 0

),    𝐶22
1 = (

𝑘11 0
0 𝑘12

),    𝐶23
1 = (

0 0
0 0

),    𝐶33
1 = (

𝑘21 0
0 𝑘22

),      

 𝐶12
1 = (

−
1

2
𝑘11𝐿11 −

1

2
𝑘12𝐿12

0 0
),    𝐶13

1 = (
0 0

−
1

2
𝑘21𝐿21 −

1

2
𝑘22𝐿22

).                 (8) 

The following statement holds. 

Theorem 1. Let there exist constants ℎ11 > 0, ℎ22 > 0, 𝛾11 > 0, 𝛾21 > 0, 𝛾12 > 0, 𝛾22 > 0, such 

that the matrix 𝐶 + 𝐶1 is positive-definite. Then the zero-equilibrium position of the system (4) will be 
asymptotically stable. 

Proof. From dependence (7) it follows that the function 𝑉(𝑥1, 𝑥2) satisfies the following two 
bilateral inequalities  

ℎ11𝑥1
2 + ℎ22𝑥2

2 ≤ 𝑉(𝑥1, 𝑥2) ≤ (ℎ11 +
1

2
𝛾11𝐿11 +

1

2
𝛾12𝐿21)𝑥1

2 + 

+(ℎ22 +
1

2
𝛾21𝐿12 +

1

2
𝛾22𝐿22)𝑥2

2, 

i.e. is a positive definite function.  
Let's calculate its total derivative due to system (4). We will get  

𝑑

𝑑𝑡
𝑉(𝑥1, 𝑥2) == (2ℎ11𝑥1 +𝛾11𝐹11(𝑥1) + 𝛾21𝐹21(𝑥1)) × (−𝑎11𝑥1 + 𝑏11𝐹11(𝑥1) + 𝑏12𝐹12(𝑥2)) + 

+(2ℎ22𝑥2 +𝛾12𝐹12(𝑥2) + 𝛾22𝐹22(𝑥2))× (−𝑎22𝑥2+ 𝑏21𝐹21(𝑥1)+ 𝑏22𝐹22(𝑥2)) = 

= −2ℎ11𝑎11𝑥1
2 −𝛾11𝑎11𝐹11(𝑥1)𝑥1− 𝛾21𝑎11𝐹21(𝑥1)𝑥1 + 

+ 2ℎ11𝑏11𝐹11(𝑥1)𝑥1 + 𝛾11𝑏11𝐹11
2 (𝑥1) + 𝛾21𝑏11𝐹21(𝑥1)𝐹11(𝑥1) + 

+ 2ℎ11𝑏12𝐹12(𝑥2)𝑥1 +𝛾11𝑏12𝐹11(𝑥1)𝐹12(𝑥2) + 𝛾21𝑏12𝐹21(𝑥1)𝐹12(𝑥2) − 

−2ℎ22𝑎22𝑥2
2 −𝛾12𝑎22𝐹12(𝑥2)𝑥2 − 𝛾22𝑎22𝐹22(𝑥2)𝑥2 + 

+ 2ℎ22𝑏21𝐹21(𝑥1)𝑥2 + 𝛾12𝑏21𝐹12(𝑥2)𝐹21(𝑥1) + 𝛾22𝑏21𝐹22(𝑥2)𝐹21(𝑥1)+ 

+ 2ℎ22𝑏22𝐹22(𝑥2)𝑥2 + 𝛾12𝑏22𝐹12(𝑥2)𝐹22(𝑥2) + 𝛾22𝑏22𝐹22
2 (𝑥2). 

Let introduce next notation 

𝑧𝑇 = (𝑥1, 𝑥2, 𝐹11(𝑥1), 𝐹12(𝑥2),𝐹21(𝑥1), 𝐹22(𝑥2)). 

Then the total derivative of the Lyapunov function due to system (4) can be rewritten as a 
quadratic form 

𝑑

𝑑𝑡
𝑉(𝑥1, 𝑥2) = −𝑧

𝑇𝐶𝑧. 

The matrix 𝐶  in the last expression is not positive definite. Therefore, in order to make the 
quadratic form negative definite, we use the “sector conditions” (6) and write the total derivative of 
the Lyapunov function in the form  

𝑑

𝑑𝑡
𝑉(𝑥1, 𝑥2) = −𝑧

𝑇𝐶𝑧 + 

    +𝑘11(𝐿11𝑥1 − 𝐹11(𝑥1))𝐹11(𝑥1) + 𝑘12(𝐿12𝑥2 − 𝐹12(𝑥2))𝐹12(𝑥2)+ 

 +𝑘21(𝐿21𝑥1 −𝐹21(𝑥1))𝐹21(𝑥1) + 𝑘22(𝐿22𝑥2 − 𝐹22(𝑥2))𝐹22(𝑥2) − 

    −𝑘11(𝐿11𝑥1 − 𝐹11(𝑥1))𝐹11(𝑥1) − 𝑘12(𝐿12𝑥2 − 𝐹12(𝑥2))𝐹12(𝑥2)− 

−𝑘21(𝐿21𝑥1 − 𝐹21(𝑥1))𝐹21(𝑥1) − 𝑘22(𝐿22𝑥2− 𝐹22(𝑥2))𝐹22(𝑥2). 

Let's enter the first terms in the quadratic form, we get 
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𝑑

𝑑𝑡
𝑉(𝑥1, 𝑥2) = −𝑧

𝑇(𝐶 + 𝐶1)𝑧 − 

−𝑘11(𝐿11𝑥1 −𝐹11(𝑥1))𝐹11(𝑥1) − 𝑘12(𝐿12𝑥2 − 𝐹12(𝑥2))𝐹12(𝑥2) − 

−𝑘21(𝐿21𝑥1 −𝐹21(𝑥1))𝐹21(𝑥1) − 𝑘22(𝐿22𝑥2 − 𝐹22(𝑥2))𝐹22(𝑥2). 

Since the inequalities (6) hold, we can discard the remaining terms and write down the estimate of 
the complete derivative of the Lyapunov function (7) 

𝑑

𝑑𝑡
𝑉(𝑥1, 𝑥2) ≤ −𝑧

𝑇(𝐶 + 𝐶1)𝑧. 

The condition for the negative definiteness of the total derivative of Lyapunov function (7) due to 

the system (4) will be the positive definiteness of the sum of the matrices 𝐶 +𝐶1. In this way, it was 
possible to construct a positive definite Lyapunov function, the total derivative of which is negative 
definite due to the system, and therefore the zero equilibrium position of system (4) will be 

asymptotically stable. Which had to be proven. The matrices in (8) depend on arbitrary parameters 
ℎ11 > 0, ℎ22 > 0, 𝛾11 > 0, 𝛾21 > 0, 𝛾12 > 0, 𝛾22 > 0, 𝑘11 > 0, 𝑘21 > 0, 𝑘12 > 0, 𝑘22 > 0. Therefore, 
the problem of stability research is reduced to the problem of finding variables for which the matrix 

𝐶 + 𝐶1  will be positive definite. In this case, the equilibrium position will be asymptotically stable. 
Since the minimum eigenvalue of a symmetric positive definite matrix is a convex function, in the 

general case the problem is reduced to a convex optimization problem with constraints.   

2.1. Nelder-Mead method for solving the problem  

The use of methods for optimizing functions that require the existence of a gradient is not always 
practical. This applies especially to those cases when the gradient of the function either does not exist, 

or it is impractical to calculate it. The Nelder-Mead method or the deformed polyhedron method 
[15,16] is one of the non-smooth optimization methods used to find the optimum of a function. This 
method is easy to implement and useful in practice, but, on the other hand, there is no theory of 
convergence for it - the algorithm can diverge even on smooth functions. One of the main features of 
the Nelder-Mead algorithm is high efficiency for a possible complex calculation of the function. This 

is due to the fact that at each step it is necessary to calculate no more than 𝑛 + 1  values of the 

investigated function for its further analysis, where 𝑛  is the dimension of the space. The basis of the 

method is the idea of comparing the values of the function in 𝑛 + 1  vertices of the constructed 
simplex, and its iterative shift in the direction of the optimal value. The graphic representation of the 
method, which will be demonstrated later in the work, explains another of its interesting names - the 

"amoeba method". Let there exist a real function of many variables 𝑓(𝑥),𝑥 ∈ ℝ𝑛  . The task of 

optimizing 𝑓(𝑥) → min  or 𝑓(𝑥) → max is set, while 𝑓(𝑥) does not necessarily have to be smooth, 
and its noise is allowed. The Nelder-Mead method, which will be used for this task, has mandatory 

parameters and certain stages of work. The specified parameters 𝛼 > 0, 𝛽 > 0, 𝛾 > 0  are closely 
related to the idea of deformation of the 𝑛 + 1 -dimensional simplex, and, accordingly, specify the 
reflection, compression and stretching of the polyhedron. In practice, standard values are most often 

chosen for these parameters:   𝛼 = 1, 𝛽 =  0.5, 𝛾 = 2. 
Stages of the algorithm [16]: 

1) Preparatory stage. Randomly select 𝑛 + 1 -space point 𝑥𝑖 = (𝑥𝑖
(1), 𝑥𝑖

(2), … , 𝑥𝑖
(𝑛)), 𝑖 = 1…𝑛 +

1, which  satisfies all the constraints of the problem. These points will form the initial simplex. Values 

of the function  𝑓𝑖(𝑥𝑖), 𝑖 = 1…𝑛 + 1 are calculated at these 𝑛 + 1 points. 
2) Sorting and centering. The vertices of the simplex determined at the previous stage are sorted in 

order of increasing value of the function 𝑓(𝑥) in them. Among these values, three are chosen: 𝑥ℎ, 

which corresponds to the largest value of the function  𝑓ℎ(𝑥ℎ), 𝑥𝑔 is the value of  𝑓𝑔(𝑥𝑔), next after  

𝑓ℎ, and also the smallest - 𝑥𝑙 for 𝑓𝑙. We find the center of the simplex 𝑥с  without the point 𝑥ℎ. 

𝑥с =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1,𝑖≠ℎ

.                                                                       (9 ) 

3) Stages of deformation: reflection. The point 𝑥ℎ is displayed in 𝑥𝑟  relative to the point   𝑥с 
found by formula (9) with the coefficient 𝛼: 
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𝑥𝑟 = (1+ 𝛼)𝑥с − 𝛼𝑥ℎ.                                                                        

We find the value of the function 𝑓𝑟 = 𝑓(𝑥𝑟) for the point  𝑥𝑟   . 
4) Checking the direction. 

4.1. If  𝑓𝑟 < 𝑓𝑙, then we try to improve the result obtained in the previous step, get a new point 𝑥𝑒 
and the value of the function 𝑓𝑒  in it, using the stretching coefficient   𝛾 

𝑥𝑒 = (1 − 𝛾)𝑥с −𝛾𝑥𝑟 .                                                                     

If  𝑓𝑒 < 𝑓𝑟  , that is, the solution found at this step is even better than the previous one, then 𝑥ℎ  takes 

the value of 𝑥𝑒 , otherwise - the value of 𝑥𝑟 . After that, we move on to the next iteration. 

4.2. If  𝑓𝑙 < 𝑓𝑟 < 𝑓𝑔, then 𝑥ℎ takes value 𝑥𝑟. After that, we move on to the next iteration. 

4.3. If 𝑓𝑔 < 𝑓𝑟 < 𝑓ℎ , then 𝑥ℎ takes value 𝑥𝑟 else – 𝑥𝑟   takes value 𝑥ℎ. After that  go to step 5. 

4.4. If 𝑓ℎ < 𝑓𝑟, then finding point  𝑥𝑟 is not satisfied point, that is why cross to step 5. 
5) Stages of deformation: compression. When the attempt to stretch the simplex did not give 

results, we try to compress it using the given parameter 𝛽 . We calculate the point 𝑥𝑠 and the value of 
the function in it 

𝑥𝑠 = 𝛽𝑥ℎ + (1− 𝛽)𝑥𝑐.                                                                      
6) Checking the direction. 

6.1.  If 𝑓𝑠 < 𝑓ℎ, then 𝑥ℎ takes value 𝑥𝑠. We cross to the next iteration. 

6.2.  If 𝑓𝑠 > 𝑓ℎ, go to step 7. 
7) Stages of deformation: global compression. If the previous steps did not bring improvement 
in finding the optimum of the function, it means that the initial points turned out to be the best, we 

make the compression to the point 𝑥𝑖 

𝑥𝑖 ← 𝑥𝑙 +
𝑥𝑖 − 𝑥𝑙
2

, 𝑖 ≠ 𝑙.                                                                                 

8) Verification of convergence and stopping of the algorithm. Conditions for stopping the 
program are selected. For example, performing a set number of iterations, or achieving a certain 
accuracy. After checking, we return to step two, or, accordingly, stop the algorithm and get the 
desired result. 

Remarks 1. The previous algorithm is described for the problem of minimizing the function 𝑓(𝑥). 
To find the maximum of this function, all values of 𝑓𝑖(𝑥𝑖), 𝑖 = 1…𝑛 + 1   should be compared with 
the opposite sign.  

For a better explanation, the Nelder-Mead algorithm can be visualized for the two-dimensional 

case. Then the (𝑛 + 1)-dimensional simplex will be a triangle (Fig. 1), and all actions of the 
algorithm will be easy to represent in the form of ordinary transformations of a simple geometric 
figure: reflection, expansion and contraction of the triangle relative to its center of gravity without the 
worst point (marked in blue in Fig. 2). The first step of the algorithm is to display the point with the 
largest value (marked in red in Fig. 3) of the function relative to the center of gravity. At the new 
point, the current value of the function is calculated, which determines the next actions. 

If the value at the displayed point is even smaller, that is, it is better in the context of the 
minimization problem, then we perform stretching (Fig. 4). Conversely, if the value at the displayed 
point turned out to be not too good, we compress the simplex in the direction of the center (Fig. 5). If 
the previous steps do not contribute to the minimization of the function, then global compression is 
performed to the point with the smallest value (Fig. 6). In practice, there are very rare cases when it is 
necessary to apply this last type of polyhedron deformation. 

 Remarks 2. The deformation parameters 𝛼,𝛽, 𝛾 , chosen before starting the algorithm, are 
responsible for how strong the shape will be compressed or stretched at each step. For example, the 

reflection coefficient 𝛼 = 1  specifies a symmetrical reflection relative to the center. The compression 

parameter 𝛽 = 0.5  moves the examined point to a distance equal to half the distance to the center of 

gravity, and 𝛾 = 2 – the stretching coefficient moves it to twice the distance, respectively. 
This method optimizes the objective function quite quickly and efficiently. On the other hand, due 

to the lack of convergence theory, in practice the method can lead to incorrect answers even on 
smooth (continuously differentiable) functions. A situation is also possible when the working simplex 
is far from the optimal point, and the algorithm performs a large number of iterations, while changing 
the value of the function little. A heuristic method for solving this problem is to run the algorithm 
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several times and limit the number of iterations. So, having analyzed all the advantages and 
disadvantages of one of the methods of non-smooth optimization - the Nelder-Mead algorithm, we 
will try to apply it to find the parameters of the Lyapunov function (7).  

   
Figure 1: Initial simplex  Figure 2: Center of gravity Figure 3: Reflection 

  
 

Figure 4: Stretching Figure 5: Compression Figure  6: Global compression 

2.2. Realization 

The Python programming language version 3.6.9 was chosen for the numerical experiment. The 
Google Colab interactive cloud environment [17] served as the development and implementation 
environment. The choice of this language is due to its powerful mathematical functionality, which 

allows solving a sufficiently wide class of various problems, and the ability to graphically display the 
results of work, which is an important part of any development. The easy-to-learn environment of 
Google Colab is also convenient for mathematical calculations, as it provides free access to the use of 
powerful GPU and TPU processors. Thanks to this, all calculations are carried out quickly, and do not 
load the personal computer. Among the libraries used for the program are NumPy, SciPy for 
convenient operations with multidimensional arrays, PrettyTable for displaying results in a table, 
Plotlyb and Matplotlib for creating two-dimensional and three-dimensional visualization, as well as 

additional tools for generating random numbers, fixing execution time. The program itself consists of 
several parts: the first is the initialization of parameters and the definition of basic functions for 
matrices, the second is the implementation of the Nelder-Mead algorithm, the third is a graphical 
demonstration of the algorithm for the two-dimensional case of Nelder-Mead (simplex - triangle) and 
numerical comparisons for different initial simplexes and parameters. Testing was carried out for one-

dimensional and two-dimensional cases. Accordingly, the coefficients and matrices 𝐶 + 𝐶1  from the 
formulas found in (8) are specified separately for each of these cases. 

3. Results and comparisons 

Let's test the operation of the algorithm using examples of finding all three parameters ℎ, 𝑘, 𝛾. Let's 
choose the initial values 𝑎 = 10, 𝑏 = −50, ℎ = 10, 𝑘 = 10, 𝐿 = 10, 𝛾 = 35. Than the matrix:  

𝐶 + 𝐶1 = (
200 625
625 1760

) 

will have a minimum eigenvalue 𝜆𝑚𝑖𝑛 ≈ −19,51. Let's run the program for different initial 
simplexes, which are formed by using five different values of ∆: 0,01;  0,5;  1;  5;  10. This means that 

to form a polyhedron, a different value of ∆ will be added to one of the coordinates in turn for each of 
the tests.  We get the following graph - Fig. 7. The minimum eigenvalue is plotted on the ordinate 
axis, and the number of steps taken by the algorithm is shown on the abscissa axis. The map legend 
shows in color the correspondence between the graphs and the choice of the initial simplex, and the 

final minimum value obtained as a result for each of the cases is signed. It can be seen on the graph 
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that the initial simplex formed with  ∆ =  0,5  has the best result, and the worst with  ∆= 0.01 , which 
could not even choose the parameters for which the matrix will be positive definite. It can also be 
seen that the minimum eigenvalue calculated for each of the selected examples at each step does not 

grow infinitely. For example, for ∆ =  0,5   it took about 60 steps for the value to stop changing, while 

for ∆ =  1  it took just over 120 steps. 

 

Figure 7: Comparison of the Nelder-Mead algorithm for different initial simplexes without updating 
the center of mass (one-dimensional system) 

The initial simplex for the best of the obtained cases ∆ =  0,5 , formed on the basis of the initial 
parameters ℎ = 10, 𝑘 = 10, 𝛾 = 35, has 𝑛 + 1 = 4 vertices: 
(10,5;  35; 10), (10;  35,5; 10), (10;  35;10,5), (10;  35; 10). 
Accordingly, the optimized parameters are ℎ ≈ 4, 𝑘 ≈ 0,79, 𝛾 ≈ 40,82, and the positive definite 

matrix 𝐶 + 𝐶1 will have the form 

𝐶 + 𝐶1 = (
80,08 0,04
0,04 80,17

) , 𝜆𝑚𝑖𝑛 ≈ 80,06. 

Let's try to slightly improve the work results by updating the center of mass after each 
deformation of the polyhedron. Let's run the program again on the same data, and compare the 
obtained results (Fig. 8) for 20 steps of the algorithm. 

We see that now the minimum eigenvalue of the matrix has become much larger and reaches  

𝜆𝑚𝑖𝑛 ≈ 1892,98 in just 20 steps. In this case, large value of parameters ∆ =  10  and ∆ =  5 give the 

best value for the formation of the initial simplex, on the other hand, small ∆ did not increase the 
minimum eigenvalue too much, although they fulfilled the condition of positive definiteness of the 

matrix     𝜆𝑚𝑖𝑛 > 0 . It is worth noting that for the experiment in Fig. 8 as the number of steps 

increases, the  𝜆𝑚𝑖𝑛  grows very quickly. For example, for 100 steps and  ∆ =  5, the minimum 

eigenvalue reaches 𝜆𝑚𝑖𝑛 ≈ 7,07 × 10
17 .  Now consider a two-dimensional system of equations for 

which the matrix 𝐶 + 𝐶1 has a dimension of 6×6. Let the parameters be set as follows: 

 𝑎11 = 6, 𝑎22 = 6, 𝑏11 = −3, 𝑏12 = −2, 𝑏21 = −2, 𝑏22 = −3, 𝐿11 = 2, 𝐿12 = 3, 𝐿21 = 4,     𝐿22 =
7, ℎ11 = 10, ℎ22 = 92, 𝛾11 = 57, 𝛾12 = 2, 𝛾21 = 1, 𝛾22 = 71, 𝑘11 = 99, 𝑘12 = 74, 𝑘21 = 59, 𝑘22 =
71.  

Then the matrix 𝐶 + 𝐶1: 

𝐶 + 𝐶1 =

(

  
 

120 0
0 1104

102 −91
0 6

3 0
66 240,5

102 0
−91
3
0

6
66
240,5

270 57
57
1,5
0

74
3
3

1,5 0
3
59
71

3
71
284 )

  
 
, 𝜆𝑚𝑖𝑛 ≈ −36,03. 
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Let's run the Nelder-Mead algorithm for this case, and again analyze the results that depend on the 
choice of the initial simplex - Fig. 9. 
 

 

Figure 8: Comparison of the Nelder-Mead algorithm for different initial simplexes with updating the 
center of mass (one-dimensional system) 

 

Figure 9:  Comparison of the Nelder-Mead algorithm for different initial simplexes with updating the 
center of mass (two-dimensional system) 

This graph shows that, unlike the previous results for the one-dimensional case, not every 
parameters set for different steps was able to maximize the minimum eigenvalue of the matrix. For 

example, for a small ∆ =  0,01 , the minimum eigenvalue remained negative. We see that the value 

∆ =  50  performed best. For it, the result of  200 steps of the algorithm is the optimized matrix 

𝐶 + 𝐶1 ≈≈

(

 
 
 
 

6,2 × 104 0

0 3,2 × 104
−5,8 × 103 −1,3 × 103

0 2,3 × 102
−1,8 × 102 0

−5,3 × 103 −1,2 × 104

−5,8 × 103 0

−1,3 × 103

−1,8 × 102

0

2,3 × 102

−5,3 × 103

−1,2 × 104

6,1 × 103 49

49
88,9
0

9 × 102

1,4 × 102

1,2 × 102

88,9 0

1,4 × 102

5,4 × 103

3,2 × 103

1,2 × 102

3,2 × 103

1,8 × 104 )

 
 
 
 

,  
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and for it 𝜆𝑚𝑖𝑛 ≈ 34,67 with the parameter values found by the algorithm ℎ11 ≈ 5164,74;  
ℎ22 ≈ 2693,52; 𝛾11 ≈ 48,96; 𝛾12 ≈ 77,44; 𝛾21 ≈ 59,25, 𝛾22 ≈ 3248,9; 𝑘11 ≈ 5983,56; 𝑘12 ≈
903,42; 𝑘21 ≈ 5359,02; 𝑘22 ≈ 8521,24.  

Let's run the program for the same initial parameters, but without updating the center of mass for 

each operation. We will get the following results (Fig. 10): 

 

Figure 10: Comparison of the Nelder-Mead algorithm for different initial simplexes without updating 
the center of mass (two-dimensional system) 

 
Comparing with the previous result (Fig. 9) for the two-dimensional case, the experiment gave 

much worse results. In addition, all the obtained values are approximately the same. We see that ∆ =
 0,5   and ∆ =  0,01 performed best. Although the first simplex converged in about 30 steps, while the 

second only in 100. We conclude that for this case small values of  ∆ are better suited for determining 
the initial simplex. 

4. Conclusion 

The following results were achieved in this work: 
- Conditions for the stability of learning processes in neurodynamics models were obtained on the 

example of the Hopfield network using the second Lyapunov method. 
- The computer program was written that solves the problem of parameter selection in the 

Lyapunov function using the Nelder-Mead method with constraints for one-dimensional and two-
dimensional dynamical systems. 

As a result of the analysis of the work of the computer program, the following conclusions were 

made. The Nelder-Mead algorithm or the deformed polyhedron method, used for cases of 
optimization of a function without a gradient, coped well with the task of maximizing the minimum 
eigenvalue of a symmetric positive definite matrix for one-dimensional and two-dimensional 
dynamical systems. In particular, the parameters for obtaining a positive minimum eigenvalue were 
selected in just a few steps. It was also analyzed how the selection of the initial simplex for the 
Nelder-Mead method affects the obtained results for both cases. As a result, such ∆ was obtained for 
the simplex, for which the minimum eigenvalue constantly increases with increasing steps. This 
means that, depending on the mathematical problem, in further studies, with the help of this program, 

it will be possible to select the necessary values to obtain the maximum positive definite matrix of any 
dimension. All results are constructive from the point of view of performing computational 
experiments. In the future, they can be extended to the case of multidimensional systems. It is also 
known that Hopfield networks are more adequately described in terms of functional-differential 
equations with a time-delay. And all the results presented in this work can be used to continue the 
original author's research, started in the their works [18,19]. 
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