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Abstract  
The article proposes a methodical approach to designing secure adaptive embedded systems 

which is based on their ability to restore their proper functionality by way of reconfiguring 

hardware components, this process being based on the results of self-control. This approach 

includes two stages. The first stage involves the initial allocation of tasks to a system's 

hierarchy levels and nodes followed by their reallocation caused by the system failure in the 

wake of adverse exposure. The second stage sees the reconfiguration of the system 

implemented to restore its proper functionality by means of automatic hardware 

reprogramming. 
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1. Introduction 

Embedded Systems are specialised microprocessor-based systems whose development concept is 
based on their interaction with a controlled object and which are immediately built into the device 

controlled by them [1]. 

At present embedded systems are widely used in various fields of activity such as mechanical 
engineering, machine-tool construction, aviation, automobile production, nuclear energy, banking, 

military-industrial complex. As well as that, they are used as computer-aided systems and means of 

regulatory control of technological processes. 

It is to be noted that early embedded systems were developed as dedicated digital devices with the 
use of integral circuits having low- and high-degree integration. However, since the advent of 

microcontroller- and microprocessor-based hardware, as well as programmable logic devices that 

came later, the concept of embedded system has undergone radical change. If early embedded systems 
were dedicated structures that contained a central processing unit, separate integral circuits for 

peripheral controllers, digital data storage media, present-day embedded systems make use of system-

on-chip technologies (SoC) [2]. 
A system-on-a-chip or SoC is a computing system whose architecture is specifically developed to 

solve an application task (or a class of problems) and implemented as a complex of algorithm-specific 

hardware and software which is based on the configurable microelectronic platform [3]. 

Apart from that, it is to be noted that the designing of modern embeddable systems which are 
based on System-on-Chip technologies makes use of hi-tech computer-aided design software for 

digital devices, this requiring developers to have deep knowledge of digital circuit engineering, 

computer architectures, methods of synthesising dedicated microprogram-control devices, as well as 
knowledge of high-level languages and controllable synthesis methods. Considering the above, we 
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may draw a conclusion that the development of modern embedded systems is a process of designing 
proper components and using standard digital components of intellectual property that serve not only 

as circuit design description, but are in effect full form documents for functional and parametric 

modelling, verification and production with modern technologies being used [4]. 

At present the questions relating to the designing of dedicated microprocessor systems receives a 
lot of scientific attention. So, paper [5] examines the issue of improving the performance of 

microprocessors used in access control systems. The paper outlines the requirements and proposes a 

set of commands required for quality microprocessor designs based on residue number systems and 
used for access control. Paper [6] provides a review of facilities for designing embedded 

microprocessor systems relying on programmable logic devices and examines software debugging 

tools for microprocessor systems based on such core families as Pico Blaze, Micro Blaze and 
Power PC. Paper [7] reviews the issues of regularising embedded microprocessor systems as well as 

the synthesis of hardware componentof embedded systems by means of variable logic with the 

program-controlled automaton model being used. The paper [8] examines the need to ensure prompt 

(crisis) response to cyber incidents within a limited time frame and determines the improvement of 
the information decision-making model. 

However, the analysis carried out shows that as of today, the issues relating to health assessment 

of embedded systems have not been dealt with exhaustingly as regards their proper functionality in 
the event of adverse exposure (e.g. one producing ionising and electromagnetic effects, cyber-attacks 

by hardware and software Trojan horses, network worms, DDoS attacks etc.), the same applying to 

issues of automatic online restore of the system in question which is based on self-checking results. 
Considering the above, the purpose of this article is to develop a methodological approach to 

designing adaptive embedded systems which are able to work when adversely exposed and which are 

based on integral circuits with soft structures. 

2. Adaptation as a Means of Enhancing Survivability of Embedded Systems 

Adaptation is understood as a change of parameters and structure of the system and, possibly, of 

management action based on processing data which is implemented with the purpose of achieving a 

certain optimal system status with initial uncertainty under changing working conditions [9].  

The use of the adaptivity principles allows:  
the designing of the system in compliance with the requirement as to its quality when the initial (a 

priori) information about controlled objects and exposure is limited; 

correspondence of control quality to the specified requirements when the system in the controlled 
object is working and receiving exposure, this being done via rational adaptation of the system to 

changing conditions [10]. 

Figure 1 shows the generalised structure of the adaptive system, which can be represented as a 

two-level construction.  
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Figure 1: Flow diagram of the adaptive system 

 

The lower level represents the master control system made up of the control object and control 

device. The upper level is the combination of devices used to modify the properties of the master 
control systemas required by the stated adaptation aims. The adaptation device that constitutes the 

upper level of the construction and receives data about exposure, system statusand monitoring 
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signalsfrom the control object's inlet. On analysing this data, it establishes how much the quality 
criterionfor the basic system corresponds to the requirements applicable toit. If the quality criterion 

for these requirements is not met, the adaptation device generates commands that change the structure 

and parameters or only parameters of the device in such a way that the quality criterion is harmonised 

with the existing requirements.  
If one examines the adaptation of embedded systems to adverse exposure, one can see that is 

directly associated with such a property of complex systems as survivability. The property that is 

activated (by a properly organised structure and via its operation) to withstand adverse exposure and 
implement its functions in specified exposure conditionsis referred to as the system survivability [11]. 

Owing to this property, the failure of any subsystem or section of the system results in its reduced 

performance rather than the failure of the whole system. When evaluating the survivability of 
hierarchy structures, we assume the existence of a certain degree of functional, structural and 

information redundancy. According to [12], the maintenance and enhancement of survivability of 

complex hierarchic technical systems is provided by advanced mechanisms for recognition, 

counteraction and restore, as well as by special means of adaptation, reconstruction, reconfiguration 
and reorganisation.  

Papers [4, 13] propose the use of crash-proof programmable microprocessor systems as hardware 

components, which belong to the class of reconfiguration devices and are able to employ system-on-
chip technologies. Apart from that, paper [14] proposes the use of the service processor for 

diagnosing and automatic restorationof microprocessor systems. Here the main function of the service 

processor is to diagnose a microprocessor system and make decisions based on troubleshooting 
informationfor the reconfiguration of the system via reprogramming integrated-circuit logic, this 

beingcarried out to restore proper functionality. Thus, the service processor combined with the 

embedded system effectively serves as a closed cycle of the adaptive microprocessor.  

It is to be noted that the latest time has seen the arrival of a new type of control systems, namely 
distributed microprocessor-based control systems. In numerous cases, the architecture of these 

systems does have a central processing unit as all control functions are implemented on-device by 

local control cells based on microprocessors (often built into core process equipment). Frequently, in 
structural terms distributed (spatially) microprocessor-based control systems are hierarchic control 

systems. Notably, the upper-level control functions can be implemented both by a personal computer 

and microprocessor. 

In designing such systems, a major task is to synthesise the structure which defines the internal 
organisation of and relatively stable dependency between the elements of the system. When solving 

this problem, we will use the fundamental principles of the decomposition-aggregation approach [15]. 

According to this approach, the synthesis of the distributed microprocessor-based control system is 
understood as a successive solution to problems relating to the synthesis of the main elements and 

parts of the system which includes: 

determining the number of a system's hierarchy levels and nodes; 
task allocation (reallocation) to a system's hierarchy levels and nodes; 

a choice of computing systems capable of reconfiguring the underlying hardware structure.  

3. Determining the Number of a System's Hierarchy Levels and Nodes 

An embedded system is a microprocessor-based control system whose elements are spatially 
distributed between separate components of the complex controlled technological process. For this 

reason, the organisational design of the system is to be created in conformity with the principle of 

compatibility between its design and the organisational structure of the controlled technological 

process. In other words, based on the necessity of some or other equipment having a microprocessor 

system, one needs to build the map 11: MNMN  , where MN ,  is the number of hierarchy 

levels of the design of controlling elements and the number of these elements whereas 11, MN  is the 

number of hierarchy levels and nodes of the embedded system. 
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4. Task Allocation (Reallocation) to a System's Hierarchy Levels and Nodes 

Task allocation (reallocation) to a system's hierarchy levels and nodes consists of the following 

subtasks: ones involving initial allocation and ones involving reallocation in the wake of adverse 

exposure.  
Task allocation to a system's hierarchy levels and nodes is a typical task for designing complex 

technical systems. To minimise the time spent on the exchange of information between the system 

levels, the standard practice is to allocate to each level the tasks that have maximum interdependency 
when the system is at work [16]. 

Now we will pose an allocation problem. Let there be given a set of problems   nfF i ,1,  of the 

embedded system which has m  levels. Any of tasks  FFfi  can be performed only on one 

level, with F  being a set of tasks that have already been allocated.  

We will introduce the allocation parameter ikx : 



 


elyalternativ,0

,,1,levelth -k at the dimplemente istask th-iftask,1 mki
xik
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 is mandatory, this meaning that every 

task can be allocated only to one level.  

Then we will use ija  to represent the algorithmic connection of task i -th with task j -th (relative 

frequency of the executing task if  on completing task jf ), iB  is the memory space necessary for 

executing task i , 
)(kB  is the available memory space of the computing tools at level k . 

With the designations given above, task allocation can be represented as the linear integer 
programming problem coming below: to find  
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The problem solution will be a cluster of vectors )...,,...,,( 11111 ni xxxx  ; )...,,( 2122 nxxx  ; …; 

)...,,( 1 nmmm xxx  ; with the corresponding ones 1,0ikx , which ensure the implementation of (1).  

This problem can be interpreted as that of partition of the apex-directed weighted graph 

 VYG , , where the memory space occupied by task i -th iB  is placed in correspondence with 

apexes Y  and the algorithmic connection of task i -th with j -th ija  is made congruent with the set of 

circular-arc graphs V . The solution to the problem lies in partitioning graph G  into mk   of sub 

graph  kG  that meet conditions 




m

k

k

m

k

k YYY

11

;  and the requirements of the minimum 

objective function (1) with constraints imposed on other parameters (2).  
The application of one or another method to solving this problem largely depends on the number 

of apexes of the graph. The graph dimension is conventionally defined as small ( 6n  number of 

apexes); middle ( 306  n ) and high ( 30n ) [17]. As for small-dimension graphs, it is expedient 

that exhaustive algorithms are applied to them. The branch-and-bounds method works best with 
middle-dimension graphs. As regards higher-dimension graphs, these methods if applied to them take 

much time. On account of this, the methods that are most used for partitioning middle-dimensionand, 

all the more, higher-dimension graphs (this corresponding to embedded system graphs) are heuristic 
algorithms proposed in [18]. 
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The second subtask is the reallocation of tasks a system's hierarchy levels and nodes in the wake of 
their failure. As of today, there are two approaches applied to organising task reallocation in a system 

in the event of node failures. The first approach, a static one, assumes that a subset   sS  of system 

states for which task reallocation is necessary is known and it is required to find a set   GГ  of 

task allocations where each allocation G , which corresponds to state s , satisfies the requirements 

for the chosen indicators. In this case, the optimal allocations G  for all states Ss   are available 

when designing the system, and each node when building the system is provided with resources 

necessary to perform tasks both in state 0s  and in each of states Ss   as pursuant to allocation G . 

When the system is changed to state Ss   and a failure is detected in all the operable nodes of the 

system, the tasks corresponding to allocation G  are getting started. 

The second approach, which is referred to as a dynamic approach, is based on the fact that the task 

of finding the optimal allocation G  for state s  is performed each time (with the help of a special 

solver, i.e. service processor) when the system enters state s  and its result may depend on the 

previous states of the system. In general, in both static and dynamic approaches, obtaining an optimal 

allocation may require task reallocation of both failed and operable nodes. 

Let us consider a static approach to organising task reallocation, assuming that only failed nodes 

are reallocated when the system enters state s  [19]. 

For each state Ss  , find the allocation G  satisfying the conditions: 

max ; additCC   , additii TT  , vgi ...,,1 , 

where С  is the consumption required for the transfer of tasks carried out by failed nodes to operable 

ones state s ; 
iT  is the average time for handling the declaration in node iM  which is in state s ; 

additC , 

additiT  are permissible values of the specified indicators for state s . 

We shall designate task j  which is to be executed at the initial allocation to node iM , as ji . 

Let the initial allocations 0G  be assigned by matrix ji , Lj ...,,1 , ni ...,,1 . Element ji  is the 

weight of the task j , performed with the initial allocation given to node iM , defined as 






ji
s
ji F

s
jiji , where  s

jijiF   is a set of production processes which requires task ji  to be 

performed; 
s
ji  is the weight of the production process 

s
ji , jihs ...,,1 , jiji Fh  . Let  l

f MD  , 

 i
r MD   be sets of failed and operable nodes to be applied to state s ; fA  is a set of all tasks 

performed node 
f

l
DM   in state 0s . 

Then the equation used to determine the system efficiency in state s , which is defined by the 

performance of the operable nodes in state f
ji A , can be expressed as  




 
f

jl A

iljl
f b , 

where 1jlb , if task jl  is otherwise performed by one of the operable nodes 0jlb  when being 

in state s . 

Let ijlC )(  be the consumption required to implement the transfer of task )( f
jljl A  to some 

node iM , where 
r

i DM   and values ijlC )( , are independent of l  and allocated by matrix jiC . 
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Then the consumption required to implement the transfer of a fixed task jl  to any of the operable 

nodes in state s  is 





r

i DM

ijl
i
jljl CdC



 )()( ,  

where 1i
jld , if task jl  is otherwise transferred to node iM , 0i

jld . 

In the event of failure of node l
M , its task jl  can either be discarded, i.e. not transferred to any 

of the operable nodes, or assigned to only one of the nodes of set 
rD . In the former case 0i

jld  for 

all 
r

i DM  and 0jlb , in the second case only one of the values 1i
jld  and hence 1jlb .  

Therefore,  
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where  1,0i
jld  and  1,0jlb  are valid. 

The total consumption required to implement the reallocation of all tasks f
jl A , is expressed 

as 
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The average time for a handling declaration in node iM  which is in state s  is determined by the 

expression  



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f
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0  

where ijlT )(  is the increment of the average time for handling declaration in the operable node iM

with a task jl being transferred to it, where 
f

jl A ; values ijlT )(  being independent of l  are 

assigned by matrix jlT . 

Thus, finding the optimal allocation of tasks C  in the system for a fixed state s  boils down to 

solving an integer linear programming problem, which consists in finding a set of values of variables 
i
jld , where  1,0i

jld , at which the maximum value of the functions is achieved  
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This problem can be solved by any of the known methods of integer linear programming. 

Once the set   GГ  of optimal task allocation for the assigned subset   sS  of system states 

is found, the set of tasks to be performed in state 0s  and in all states Ss   is to be found for each 

node of the system. Also, it is necessary to compute the total consumption required for implementing 



103 

 

the resulting allocation set   GГ , as well as the average time for handling a declaration in each 

node and the system performance for each state of the assigned set   sS . 

We shall describe the optimal allocation of tasks determined for each state )...,,1( rSs   by 

using matrix 
jlA , whose lines correspond to tasks j )...,,1( Lj  , and columns to nodes iM

)...,,1( ni  , 
jiA  represents some subsets of tasks determined below. As regards the columns 

corresponding to operable nodes iM  in state s ,   i
jljljiA

   , where ji  is the task 

performed in iM  in state 0s , here   i
jl


  is the set jl  transferred to iM  in state s . 

As for the columns corresponding to failures iM , 
jiA  Ø, let us construct for them the resulting 

matrix jiA , where 
r

jiji AA

1

 .  

The matrix jiA  defines for each node iM , )...,,1( ni   a set of tasks for whose completion it has 

to have the necessary resources in order that each of the corresponding system states might achieve 

the maximum value of its efficiency with the constraints imposed on the node performance and 

additional consumption. This matrix can be used to calculate the above-mentioned system 

performance. 
Thus, the application of the proposed approaches towards reallocating tasks to a system's hierarchy 

levels and nodes allows both the embedded system and the whole system of controlling compound 

elementsand complex processes to remain functional when a failure stems from adverse exposure. 

5. The Choice of Computing Systems Capable of Reconfiguring the 
Underlying Structure of Hardware Components 

The choice of computing systems is meant to single out from the options for organising computing 

systems those which hold the most potential for the future and are capable of reconfiguring the 

underlying structure in the wake of adverse exposure. It is to be noted that the issue of choosing a 

computing system occurs is to be solved at the beginning stage of designing. This means that it is 
solved before the development of functional subsystems of the system for controlling compound 

elements and complex technological processes has been completed. Therefore some requirements 

posed to the system intrinsically lack clarity and lucidity. Fuzzy input calls for adequate decision-
making methods based on imprecise expert evaluation as regards the tasks relating to input data and 

result presentation.  

Now let us introduce the composite linguistic variable computing system and narrow down the task 

of choosing a computing system to determining the compliance (of the meaning) of this variable with 
technical requirements posed to it [20]. The constraints imposed by the technical requirements 

represent clear or unclear relationshipsassigned by a universal set of values of the composite linguistic 

variable computing system. This set consists of the values making up the linguistic variable, each of 
them corresponding to a particular hardware-software module.  

The statement computing system must have a high-performance processor is to be interpreted in 

the following way. The name computing system is regarded as a name of the composite linguistic 
variable whose components are linguistic variables such as processor, random-access memory, 

external storageand others. The statement in question assigns the value high-performance processor 

to the linguistic variable processor. 

The value high-performance processor is to be interpreted as a name of some fuzzy 
constraintimposed on the basic variableprocessor, with the meaning of this constraint being defined 

by its membership function. For example, as pursuant to the value meaning, the linguistic value high-

performance processor leaves only four processors as to generating computing system variants: Intel 
Core i5-12600K, Intel Core i9-12900K, AMD Ryzen 5 5600X и AMD Ryzen 9 5900X. In the same 
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way, one can evaluate other linguistic variables. Now we shall give a formal description of the 
approach in question. 

Suppose the linguistic variable value computing system is assigned through a tuple of the 

constituent terms iX , each of them naming a particular functional characteristic of the computing 

system. The values of the corresponding terms ),1( miX i   of the linguistic variable are taken from 

the corresponding subsets iT  of the term set of the linguistic variable, whose elements are assigned by 

way of enumerating all values accepted by the given characteristic of the computing system. With the 

concept of the linguistic variable employed, requirements are to be interpreted as an equation for 
allocating the linguistic variable computing system of some linguistic value from an allocated term 

set. In this case, the linguistic variable computing system is assigned a value which is the constituent 

term t representing the tuple of the constituent terms: computing system t , where 

TtXXXt m  ,...,,, 21 . 

The meaning of the concrete value t of the linguistic variable computing system is the fuzzy set tU  

withthe membership function )...,,,( 21 ntttt vvvv   allocated to the universal set U  which includes 

all accessible computing systems. The value itv  indicates the computing system's compliance j -tn 

with a set of characteristics formulated by term t . The semantical rule for determining the meaning of 

each value of the linguistic variable is to be represented as follows:  

    ,,,1,,1,

1

Ttminj
m

i
ijtjt

i  



                                      (3), 

where i  is the importance factor i -tn of the functional characteristic; ijt  is the compliance of the 

computing system j -tn with the functional characteristic i -tn (the degree of its implementation, with 

10  ijt ). Values i  и ijt  are to be given expert evaluation as regards each functional 

characteristic and each computing system in question by way of averaging evaluations given by each 
expert group.  

In this case,                              jt
i

vopt max)system Computing(                                                 (4). 

The process of choosing a computing system can be represented by the following 

algorithm (Fig. 2).  
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Figure 2: Algorithm of choosing computing tools 
 

Steps 1 and 2, which represent the algorithm for choosing a computing system, map the designing 

of a set of requirements for an embedded system formulated in the technical requirements for 

developing this system for the set of valid values of the computing system's output characteristics. 
The mapping of requirements for an embedded system for the set of valid values of the computing 

system's output characteristics is implemented via the tasks assigned to the system and represents the 

main goal as to the development of embedded systems: enhancing the survivability of the system for 
controlling compound elements and technological processes. These are system requirements posed to 
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a computing system which include requirements for productivity, reliability, adjustability, costs, 
proper functionality etc.  

As for Step 3, it is about determining the importance factor i , compliance ijt , priority vector 

tv  and choosing a rational computing system as pursuant to (4).  

If vector tv  has one maximum value, a corresponding computing system will be one that meets 

the assigned requirements in the best way. Otherwise, when taking Step 4, of all computing systems 

that have the highest values itv , with local characteristics of functional subsystems taken account of, 

one is to choose a rational computing system by way of using a group method for handling the 

superiority of alternatives [21, 22]. 
As of today, computing systems that have the properties for changing algorithms of control 

instructions and architectures include microcontrollers (PIC, AVR, MSP430, STM32, Cortex-M, 

TSP32 and others), programmable logic devices (CPLD, FPGA) and single-board computers 
Raspberry Pi. A distinctive feature of the computing systems in question is that microcontrollers and 

single-board computers do not allow the change of internal links between primitive elements in 

contrast to programmable logic devices where programming provides a basis for administering links 
between logical elements in order that a necessary architecture may be obtained. As well as that, 

microcontrollers and Raspberry Pi computers are not able to process data externally because of fixed-

block architectures and fixed instruction set. 

Thus, it can be concluded that programmable logic devices are computing systems that hold the 
most potential for the future and can reconfigure the underlying structure of the embedded system 

hardware components via programming. 

6. Reconfiguration of the Embedded System 

As is mentioned above, that programmable logic devices are computing systems that hold the most 
potential for the future and can reconfigure the underlying structure of the embedded system via 

changing internal links between its logical elements. However, it is to be taken into account that 

reconfiguration of the system structure requires substantial redundancy as each logical element or IP 
software module (intellectual property) in programmable logic devices (hereinafter referred to as the 

module) is to ensure the implementation of any function with the corresponding system signal being 

supplied [23]. Therefore, when implementing one function i , each module is to have j -fold 

redundancy ( j  is the number of modules implementing a particular function. Figure 3 features 

structure redundancy of the device having j -fold redundancy. As a result, a small part of the general 

module structure is employed. This redundancy is not always acceptable. It more expedient to employ 

the primary module structure which is capable of keying out its certain segments in the event of their 
failure. 
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Figure 4 features a flowgraph of the non-redundant device with non-uniform modules. If a 

module containing nodes jAА 1  implements function y, it will implement the disturbed function 
y  

in the event of failure. In this case there arises a task of restoring the assigned function y. This task 

can be fulfilled by way of replacing device jA  with a backup device, which in fact is parallel 

reservation.  

Figure 5 shows the structure of the redundant device with 

non-uniform modules. If a failure in node jA  of module A  

recurs, it renders the whole module inoperative. To repair a 

recurring failure, it is necessary to provide n -fold module 

reservation.  
Now let us define the problem in the following way: the 

keying out of any faulty node can be compensated without 

intervening in the underlying module structure (in devices 

with inaccessible structures). One of the options for solving 

this problem is to finda redundant structure iB  which 

restores the functional characteristics of module A when 

connected to the inlet of module A (with the faulty node jA  

switched off) (Fig. 6). 

Now we shall consider module A which is made up of a 

set of discrete components ia . The module implements the 

function ),(01 nnn YXY  ,                                  (5), 

where )...,,,( 21 nxxxX  is an input word, )...,,,( 21 nyyyY  is 

an output word and n  is time steps. 
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It is necessary to synthesise some system AS   which implements function ),(0 nn YX  in the 

event of failure of any subsystem jA  of system )( AaА i   with the assigned decomposition 

complexity jС . System A may be represented as matrix АМ  of non-overlapping subsystems jA . 

The extraction of any subsystem of matrix АМ  results in the formation of the error-correcting matrix 

  )\(, 000 ijj AAAАМ  , which generates a set of new functions  ),(0 nnj YXМ  . 

In order to restore the functional characteristics of the system (implementation of function Y), it is 

necessary to create the restorative matrix  
jBМ . In this case, each subsystem jB  of matrix  

jBМ  is 

to be connected to the inlet of subsystem error-correctingmatrix  ),(0 nnj YXМ  . Normally, all iB  

have the structural intersection  


i

ji BBBB ...21 , 

 

Figure 5: Structure of the redundant 

device with non-uniform module 
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whose functional characteristics are shared by all jBBB ...,, 21  or by most of them. As well as that, 

there may be some structures that do not contain intersections. In this case, for every failure and 

switch-off system the redundant structure iB  is created by way of connecting corresponding input 

 X  and output  Z  signals of this module on the basis of the generic unit 
i

iB  (Fig. 7).  
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Figure 7: Restoration of module А  
 

 

The essence of the synthesis of system 0A  which is considered lies in defining rule   for 

describing subsystem jB  of matrix  jBМ .when extracting any subsystem jA  of matrix АМ . 

Thus, rule   is to induce the restorative subsystems jB  on jA0 : 

jj AB 0 ,                                                                (6)  

as well as the restorative matrix  jBМ  of the error-correcting submatrix: 

   Ajj MBМ  .                                                           (7) 

Now let us consider the problem for formalizing the induction rule  . Subsystem jA0  of the 

error-correcting matrix  jАМ 0  forms a segment of system 0А  and is described by function (6). To 

convert the error-correcting function j0  into function 0 , one needs a new subsystem jB  whose 

composition coupled with subsystem jA0  forms the system  

 ojjj ABA 0 in ratio j .                                                    (8) 

Ratio j  is assigned by the connector for systems jA0  и jB  or by the relation of equivalence 

between the output subset ojXZ   of subsystem jB  and subset ojX  of subsystem jA0 . The 

connector assigns the functional relationship between indices i and outlets of subsystem jB  with 

indices k  for outlets of subsystem jA0 : 

),,( ki j  ,                                                              (9) 

where   is a parameter characterising the number of inlets jA0  employed by subsystem jB ;   is a 

parameter assigning the relationship between inlets and outlets according to  . 

As stated above, the outlet nj XBZ   of the restorative subsystem jB  implements the function 

),( nnj YXfZ  . 

In order to determine jB  or jf  according to (7), we obtain theexpression  

),(),,( 00 nnj YXZYX  , 

which functionally reflects the right part of ratio (8).  

Then the equation  

),(),,,( 00 nnj YXZYX                                                     (10) 

will determine Z , i.e. it will describe the subsystem  
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),,,( jYXZ nn  .                                                        (11) 

Thus, by means ratio (11) function   assigns the rule for inducing the restorative subsystems jB  

for all Jj .  

Hereinafter the paper propose that that the suggested approach to designing embedded adaptive 

systems should be implemented with CAD software produced by Intel PSG (Altera) for designing the 

SOPC (System-On-a-Programmable-Chip) on the basis of programmable logic devices and NIOS II 

processor core [24, 25]. This core contains enclosing packages Quartus II (PLD), SOPC Builder (a 
configurable processor core), NIOS II IDE (software) and other extensions (DSP Builder, C-to-

Hardware Compiler and others).The equivalent powerful instrumental complexes are produced by 

such companies as Xilinx, Cypress (PSoC Designer), Actel (Smart Design) and some others.  
To sum up what is stated above, we may say that unlike multiple reservationof system elements, 

the proposed reconfiguration of the embedded system not only allows the compensation of recurring 

failures and fault conditions, but also provides the necessary levels of survivability as regards the 
system for controlling compound objects and complex processes.  

7. Conclusion 

The article proposes a methodical approach to designing secure adaptive embedded systems based 

on the ability of the microprocessor-based system to restore the system's proper functionality affected 
by adverse exposure by implementing automatic reconfiguration of the underlying structure, the 

procedure being based on self-checking results. What underlies this approach is the completion of 

systematically-related tasks of synthesising key elements and parts of distributed microprocessor 

control systems, which includes the determination of the number of a system's hierarchy levels and 
nodes, allocation (reallocation) of tasks to a system's hierarchy levels and nodes, as well as the choice 

of computing systems capable of reconfiguring underlying structures of hardware components. All 

this makes it possible to enhance survivability of the embedded system affected by adverse exposure, 
as well as the survivability of the whole system for controlling compound elements and technological 

processes. 
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