
175

Practical Word-based Text Compression Using the Reverse
Multi-Delimiter Codes

Anatoly V. Anisimov, Igor O. Zavadskyi and Timofey S. Chudakov

Taras Shevchenko National University of Kyiv, 4d Glushkov Ave., Kyiv, Ukraine

Abstract
We present the technique of word-level natural language text compression improving the

performance of modern powerful achievers, such as 7z or BC-ZIP. It is based on the use

of the Reverse Multi-Delimiter codes in combination with special preprocessing of a text
and its dictionary. Also, we construct a very fast decoding algorithm for RMD-codes

operating almost at the same speed as SCDC and times faster than Fibonacci codes

decoding.

Keywords 1
Word-based, compression, archiver, code, multi-delimiter

1. Introduction

Compression of large textual databases is one of the key elements of modern information retrieval

systems. Text compression techniques can be divided into 2 groups: methods operating individual
characters as alphabet elements and methods using words as atomic symbols. We focus on methods of

the second group since they rely on partitioning texts (at least in European languages) in most natural

semantic units and thus provide significantly better compression ratios. Well-known classical solutions
based on entropy encoding, such as Huffman codes [1], can be applied to the word-level text

compression and provide compression ratios close to the theoretical limit defined by Shannon’s entropy.

However, not only the compression ratio matters but also such features as fast search in compressed

data, high decoding speed, and code robustness in the sense of limiting possible error propagation. As
is known, Huffman codes are not well suited for such requirements.

An alternative approach stems from the use of variable-length codes with delimiters, such as

Fibonacci [2], (s,c)-dense [3], Multi-Delimiter, or Reverse Multi-Delimiter (RMD) [4] codes.
Delimiters are special bit sequences denoting the beginning or the end of a codeword. Properly chosen

delimiters guarantee that any portion of an encoded bitstream can be uniquely decoded independently

of the surrounding context. This implies such remarkable property of a code as synchronizability and

also allows us to make the fast Boyer-Moore-style pattern search in a compressed file.
Of course, these properties are achieved at the cost of compression ratio. When we use a character-

based alphabet, the price is high enough. However, a word-based alphabet contains rather more

elements and distribution of their frequencies is flatter, which equates the compression performance of
different codes. As shown in [4], 100 MB English text file compressed by SCDC on a word alphabet

may exceed Shannon's H0 entropy by 14.5%, Fibonacci code Fib3 – by 4.4%, and RMD-codes – by

2.8%. Let us note that the mentioned compression ratios characterize codes themselves, without
auxiliary structures, such as dictionaries required for encoding and decoding. In contrast to character-

level, in a word-level text compression, a dictionary is a more significant part that should be stored

together with the compressed file. It can be represented as the sequence of pairs (word of a text,

codeword), where codewords are sorted in ascending order of their lengths, while words are sorted in
descending order of their frequencies. However, for monotonous codes (e.g. SCDC, Fibonacci, and

Information Technology and Implementation (IT&I-2022), November 30 - December 02, 2022, Kyiv, Ukraine

EMAIL: a.v.anisimov@knu.ua (A. 1); ihorzavadskyi@knu.ua (A. 2); timofey.chudakov@gmail.com (A. 3)

ORCID: 0000-0002-4826-5265 (A. 1); 0000-0002-1467-2006 (A. 2); 0000-0002-1050-1226 (A. 3)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

176

RMD but not MD-codes), it is enough to store only the sequence of different words of a text, since for
a given word its codeword can be easily calculated from the word number and vice versa.

The uncompressed word-level dictionary for 1 GB English text occupies about 2.5–3% of a text

itself and about 5% of 100 MB text. If we compare the size of a compressed dictionary with the

compressed text, the percentage becomes even higher. By the other hand, a text already consists of all
dictionary elements, giving us an idea of saving the space by special marking dictionary elements in

the text. Also, some other regularities of natural language word sequences can be exploited. This leads

us to constructing a word-level text preprocessor, that is placed in front of a standard postcompressor
to achieve a higher compression ratio. We describe such preprocessor in Section 2. Although it can be

postcompressed by any monotonous variable length code, in experiments we use RMD-codes as they

provide the best compression ratio among other codes with delimiters. Notably, the described
preprocessing technique preserves the synchronizability of a code, the possibility of fast decompressing,

and, to some extent, of a compressed search. Also, it is worth to note that this approach improves not

only the performance of variable-length codes but also of known powerful archivers if we apply them

after preprocessing + RMD encoding. Moreover, using RMD-codes to encode the lengths and offsets
of segments in the LZ77 compression scheme can improve the results of high-order character-based

entropy compression, as shown in Section 6 on the example of the open-source archiver BC-ZIP [5].

As mentioned above, another important property of compression codes is a decoding speed. The
(s,c)-dense codes are specially intended for fast decoding and considered a champion solution by this

parameter, if not considering the recently invented Binary Coded Ternary encoding [6] and Byte Codes

with Restricted Prefix Properties [7], although the latter do not possess other properties of codes with
delimiters. In Section 3 we suggest a very fast decoding method for RMD-codes operating almost at

the same speed as SCDC decoding and even faster for short texts. It essentially improves our previous

decoding technique given in [4]. Let us define an RMD-code. Assume 𝑚1,… ,𝑚𝑡 is the ascending

sequence of natural numbers. The codeword set of the RMD-code 𝑅𝑚1,…,𝑚𝑡
 consists of codewords of

the form 01𝑚𝑖 , 𝑖 = 1, 𝑡̅̅ ̅̅ , and also codewords that:

 start from the sequence 01𝑚𝑖0, 𝑖 = 1, 𝑡̅̅ ̅̅ and do not contain any of these sequences anywhere

else in a codeword;

 do not end with a sequence 01𝑚𝑖 , 𝑖 = 1, 𝑡̅̅ ̅̅ .

The bit sequences of the form 01𝑚𝑖0 can be considered as delimiters. Although such delimiters do

not belong to codewords of the form 01𝑚𝑖 , these codewords constitute the delimiters together with the
leading 0 bit of the next codeword.

In this paper, we use only RMD-codes with the infinite number of delimiters as they demonstrate

better compression ratio [4]. By 𝑅𝑚1,…,𝑚𝑡−∞ we denote the RMD-code having the delimiters with

𝑚1, … ,𝑚𝑡 or greater number of ones. E.g. R2,4–∞ is the code with delimiters 0110 and 01t0, where t ≥ 4,

while R2–∞ is the code with all delimiters consisting of 2 or more ones.

2. Text preprocessing

As usual, in practical natural language text compression, a preprocessor is placed in front of a

standard postcompressor to achieve a higher compression ratio. The most known preprocessors, such

as WRT [8], StarNT [9], LIPT [10], and others use a character-based alphabet and exploit such
regularities as q-gram compression, treating uppercase letters as lowercase, separate compression of

typical word suffixes and roots, etc. We have built our own preprocessor for word-based alphabets. It

assumes storing the dictionary together with the encoded text, postcompressing a document with RMD-
codes, and after that, applying some powerful achievers, such as 7zip.

2.1. Low frequency word collapsing

Let us give some considerations on redundancy related to words with frequency 1. In fact, each word
we store twice: the first time in the dictionary and the second time as a codeword in the encoded text.
We could avoid storing a codeword by replacing it with an original word in the text but then additional
issues with marking the beginning and the end of a word arise. Therefore, we suggest the following
scheme:

177

1. Sort the dictionary part consisting of the words of frequency 1 in the order they occur in the
text.

2. Encode all words of frequency 1 in the text with the same short codeword, say code1.
3. While decoding, replace each code1 with the next item from that part of the dictionary.
As a result, to store each word of frequency 1 we use |word|+|code1| bits instead of

|word|+|code(word)| bits. The frequency of the codeword code1 is equal to the number of words of
frequency 1, which defines its position in the dictionary. Thus, we get |code1| ≤ |code(word)|, and the
described technique can save space. This technique can be generalized to words of frequency more than
1. During encoding, when we meet a word of frequency k>1 first time, replace it by the codeword codek,
and encode the next occurrences of this word with its original codeword.

2.2. Word capitalization

This transformation operates as follows. First, a new placeholder is added to the dictionary. This

placeholder will serve as an indication of an anomaly in the text. Then all consecutive pairs of words

are processed. If the first word in a pair ends with the dot character '.', possibly, it is the end of the
sentence. In this case, we check if the first letter of the second word is in uppercase. If so, the frequency

of the lower-cased word is compared with the frequency of its unmodified version. If the lower-cased

version has a higher frequency, the word is substituted with the lower-cased version. Otherwise, no
action is taken. Consider what happens when the second word starts from a lowercase letter. The

decoder won’t be able to make a correct decision just by looking at the word itself. Then the anomaly

placeholder is inserted before this word to make the text uniquely decodable. The first character of the

second word in the pair may be neither in lowercase nor in uppercase. If so, the encoder takes no action.
During the decoding phase, we check all consecutive pairs of words in the text and determine if such

a pair is a sentence transition. If so, the second word is checked if it is the anomaly placeholder. If so,

this placeholder is removed from the text. If not, it is checked if the first character of the second word
is a lowercase letter. If it holds true, it is converted to uppercase, otherwise, no action is taken. Note

that this transformation may convert all occurrences of some word to the lowercase. Then the dictionary

may contain a word with zero frequency. This word might be removed from the dictionary later.

2.3. Local dictionary

Consider all words of the text which follow some chosen word. This subset of the text we denote by

S and call a local dictionary, while the seed-word we call a sentinel word. The word frequency

distribution in the local dictionary differs from the global one. It is possible to decrease the global text

entropy by choosing sentinels among high-frequency text words and cleverly recoding local
dictionaries. Namely, form the set SL of size L consisting of codes of elements of S with the highest

local frequencies. After the sentinel word, the elements of SL are encoded with codewords code(0),…,

code(L–1). All remaining words from S\SL are encoded as follows: if the position of a word in the global
dictionary is less than L, a special anomaly code is inserted behind its codeword, otherwise, the

codeword is left intact. The anomaly code must be chosen depending on the frequency of the anomaly

which can be either less or greater than L. The decoding is done similarly to the encoding. For a given
codeword code(x) after the sentinel word, if x<L, code(x) is mapped back. If it is equal to the anomaly

code, it’s deleted, otherwise, the code is left intact.

It is possible to use several local dictionaries in parallel, one for each sentinel word. Each local

dictionary together with its sentinel word, the parameter L, and the anomaly code should be stored as a
part of a compressed binary sequence. Of course, as the frequency of a sentinel word is higher, the local

dictionary becomes more cost-efficient. And, for a given local dictionary, there exists some optimal

value of L, when its further increasing leads to many anomaly codes. Therefore, the number of local
dictionaries and the value L for each dictionary have to be balanced.

2.4. Using q-grams

Although the difference between q-order and 0-order entropy for word-based alphabets is rather

smaller than for character-based alphabets, a special encoding of some frequent q-grams can reduce the

178

total bit length of a compressed file. Assume the dictionary is divided into parts corresponding to the
codewords of the same length. For RMD-codes, the lengths of codewords of each next part are one bit

longer than that of the previous part. Consider a q-gram of words and denote its frequency in the text

as l. This frequency corresponds to some codeword c. We can replace each series of codewords

corresponding to this q-gram with the codeword c.
Let |c| be the length of this codeword and C be the total length of codewords it replaces. If the

dictionary is already composed, inserting a new codeword shifts the rest of the dictionary. Let q1,…,qm

be frequencies of last words in parts of the dictionary containing codewords of lengths |c|,|c|+1,…,|c|+m.
After inserting, lengths of their codewords will be increased by 1, which adds q1+…+qm extra bits to

the encoded text. Then the gain from encoding the q-gram with one codeword is l(C–|c|) – q1–…– qm–

a, where a is the size of the archived record relating to that q-gram in the dictionary. If this value is
positive, replacing of the q-gram makes sense.

3. Fast byte-aligned decoding

Any Reverse Multi-Delimiter code can be considered as a regular language and thus recognized by

the finite automaton. The decoding automata for codes R2–∞, R3–∞, and R2,4–∞ are given and discussed in
[12]. However, they process a text bit-by-bit, which is quite slow. The main idea of a fast decoding

algorithm is a “quantification” of a decoding automaton so that it reads bytes of a code and produces

the corresponding output numbers.

We use the following notations. Assume we have finished processing some byte of a code. The
pointer ptr is a combination of the decoding automaton state a and the number l of already decoded bits

of the last codeword. It can be calculated as follows: ptr = a·lmax+ l, where lmax is the maximal possible

bitlength of a codeword. If we multiply ptr by 256 and add a current byte of the text, we get the index
x of lookup tables (line 3 of Algorithm 1). We utilize the following lookup tables:

 Pointers[x] – the pointer for decoding the next byte;

 Numbers[x] – a 64-bit number, which consists of four 16-bit numbers we get after decoding a

current byte;

 c[x] – the number of codewords fully decoded during processing the current byte.

At first, we describe a fast decoding algorithm for RMD-codes assuming the dictionary contains no
more than 216 words (Algorithm 1). In this case, 4 sequential decoded integers can be output with one

assignment of a 64-bit value. On the other hand, it is easy to show that no more than 4 codewords can

be decoded, fully or partially, while processing one byte of a code with the shortest delimiter 011.

Combining these two facts, we get Algorithm 1 for decoding texts with a short dictionary. The loop
iterating over bytes of the code is given in lines 2–8. In lines 3 and 4 we calculate the pointer given the

current byte of the code Code[i] and the previous value of the pointer ptr. Then, in line 5, we output 4

decoded numbers, even if the actual number of outputs produced by the current byte is less. In line 6
the current output position is shifted by this actual number of outputs. This means that some elements

of the array Out may be overwritten at next iterations of the decoding loop.

The
byte-aligned decoding is illustrated in Fig. 1. During decoding a current byte, the last codeword is

decoded partially (e.g., the codeword k+2 in Fig. 1). If the first decoded codeword is stored in the

179

element Out[k], the mentioned last codeword is stored in the element Out[k+c[x]]. Thus, the result of
its partial decoding is assigned to the variable tr in line 7. On a little endian machine, this value is added

to the first decoded number at the next iteration of the decoding loop in line 5, since bytes of a value

are loaded from memory to a processor register and vice versa in the reverse order. Execution of line 5

of Algorithm 1 on a little endian machine is illustrated in Fig. 2. Note that on a big endian machine an

extra operation of shifting the value tr to the left on 48 bits is needed in line 5.

Figure 1: Decoding two bytes of an RMD-code

Note that, unlike the fast decoding algorithm for RMD-codes presented in [4], we do not analyze the

number of codewords to be decoded at the current iteration of a decoded loop. This is because the 'if'

statements used for that purpose are unpredictable (i.e. can be either 'true' or 'false' with high
probability), and executing such unpredictable 'ifs' is one of the main reasons for slowing down the

programs on modern processors. The general idea of the described above algorithm resembles the fast

decoding algorithm for the BCT-code presented in [6]. However, the BCT lookup table index does not
depend on the length of the already decoded part of a codeword. Therefore, that table is rather more

compact, and the BCT-code can be decoded essentially faster, though providing a worse compression

ratio. If the dictionary contains more than 216 words, line 5 of Algorithm 1 should be replaced with the

following two lines:

Figure 2: Execution of line 5 of Algorithm 1 on a little endian machine

Here Extranumbers is the special array with 64-bit elements containing third and fourth numbers

that may be obtained during decoding a current byte. This allows us to process texts with a dictionary

containing up to 232 elements, which covers all practically interesting cases. Let us estimate the space

180

overhead posed by Algorithm 1. Assume we decode R2–∞ having 3 states of the decoding automaton.
The length of a codeword in the dictionary with no more than 216 words does not exceed 24. This gives

3·24=72 possible values of ptr and 72·256=18432 possible values of x obtained in line 3. Each element

of the array Numbers occupies 8 bytes, the array Pointers – 1 byte, and the array c also 1 byte. Thus,

all lookup tables occupy 184 KB, which fits into the L2 cache on most machines. For long texts, the
size will be about twice as large, and this comprises a typical L3 cache size.

4. Experiments

We tested how the described above text preprocessing technique can improve the compression

efficiency of RMD-codes and popular archivers. The experiments were conducted for the 1GB text
from the Pizza&Chilie corpus. The original text consists of 1,073,741,824 bytes, 189,528,100 words,

2,523,827 unique words. The file word-level entropy is 273,284,721 bytes, 13.535 bits per word. The

results are shown in Tables 1 and 2.
In Table 1 heads of columns denote applied preprocessing actions.

 (1) Encoding + Dictionary.

 (2) Encoding + Dictionary + Low frequency word collapsing.
 (3) Encoding + Dictionary + Low frequency word collapsing + Word capitalization.

 (4) Encoding + Dictionary + Low frequency word collapsing + Word capitalization + Local

dictionary. We use local dictionaries for 60 most frequent sentinel words and each local dictionary

consists of 230 elements.
 (5) Encoding + Dictionary + Low frequency word collapsing + Word capitalization + Local dictionary

+ q-grams. We include only q-grams reducing the encoded file size. Usually, including only frequent

trigrams appears to be most efficient.
As seen, applying local dictionaries gives the most effect, while the special encoding of q-grams

after all other transformations helps a little. Results of archiving are given in Table 2. We applied 7z,

version 16.02, 64-bit, RAR, and gzip archivers in the maximum compression mode (level 9) to the
original and RMD-encoded texts with all mentioned above preprocessing transformations.

Table 1
Compression with preprocessing

Code (1) (2) (3) (4) (5)

R2–∞ 310,919,900 307,355,686 304,738,038 295,795,588 295,561,517
R2,4–∞ 305,141,686 301,223,784 298,519,942 289,765,845 289,577,183
R3–∞ 307,282,575 303,666,323 301,172,665 293,240,306 292,954,265

Table 2
Compression with preprocessing, RMD-encoding and further archiving

Archiver Original text R2–∞ R2,4–∞ R3–∞

7z 258,428,183 258,705,282 257,252,378 256,751,472
RAR 290,584,311 264,645,314 261,948,637 262,563,336
gzip 405,714,638 277,592,303 273,990,536 274,736,358

As observed, preliminary encoding with RMD-codes significantly improves RAR- or gzip-

compression ratio, by more than 10% or almost 50% respectively. LZMA-based 7z compresses the text

much better than RAR or gzip and it is recognized as one of the most powerful modern archivers.
However, even in this case RMD-codes open room for improvements. For example, the 7z-archiving

of the R3–∞-encoded text produces 0.7% smaller file than archiving this text without the RMD-

preprocessing. Let us note that preprocessing transformations preserve the synchronizability of a code
as well as the possibility of fast decoding. After all transformations, except for the low frequency word

collapsing, the fast Boyer-Moore- style pattern search also remains possible but requires, however, to

process special cases. Also, it is interesting that not archived RMD-encoded files are 32–34% smaller
than files archived with gzip. Considering the possibility of compressed search and fast decoding,

RMD-codes can be considered as a preferred format to store large textual databases compared with

181

gzip, which decodes texts 3–4 times slower. We measured the decoding time on the AMD Athlon
3000G processor, 32 KB of L1 cache, 512 KB of L2 cache, 4 MB of L3 cache, 16 GB RAM, and 64-

bit operating system Windows 10. Results are shown in Table 4 for 3 texts of different size:

 Small: The Bible, King James version, 3.83 MB, 790 018 words in total, 14 087 distinct words,

SCDC(224,32).

 Middle-sized: articles randomly taken from Wikipedia (116 MB, 19 507 783 words in total, 288

179 distinct words), SCDC(175,81).

 Large: the first half of the largest file from the Pizza&Chili Corpus, (512MB, 92 424 896 words in
total, 1 686 371 different words), SCDC(164,92).

For comparison, we chose other known codes, that make a compressed search and/or fast decoding

possible: the Fibonacci codes Fib2 and Fib3 and the byte-aligned (s,c)-dense codes. SCDC are
parameterized, and for them we chose the code parameters providing the best compression ratio for

each text. Texts and (s,c)-code parameters are indicated below. For SCDC it is a pair (s,c).

As seen, RMD-codes can be decoded almost as fast as SCDC and times faster than the Fibonacci
code Fib3. For the short text, the special decoding algorithm (Algorithm 1) operates even faster than

SCDC. For longer texts, Algorithm 1 can be applied only with amendment (1) and it is

4–11% slower than SCDC-decoding. Also, as seen, the R2–∞-code can be decoded 4–7% faster than

R2,4–∞. This can be explained by the larger lookup tables of the latter code (the decoding automaton for
R2,4–∞ consists of 5 states vs 3 states for R2–∞). Also, experiments on pattern matching in encoded texts

have been conducted. Both SCDC and RMD-codes allow fast pattern search of the Boyer-Moore type

in the encoded file without its decompression. Generally, the pattern search in an SCDC-file can be
performed on the byte level, while in an RMD-file we should analyze the values of bit patterns. This

means that the pattern search in an SCDC-file should be faster. However, the fastest known up-to-date

family of bit-pattern search methods [11] performs the bit-pattern search on the byte level, and only
when a candidate substring is found, the individual bits are analyzed. This allows performing the bit-

pattern search at a speed comparable to the byte-pattern search.

Table 4
Empirical comparison of decoding time (milliseconds)

Text Fib3 SCDC R2–∞ – short R2–∞ – long R2,4–∞ – long

Small 7.38 2.73 2.69 3.08 -
Middle-sized 240.3 96.6 - 100.6 108

Large 984 479 - 507 525

We apply one of such methods described in [13] to search for a pattern in the mentioned above Large

text. For comparison, the text was encoded both with SCDC and R2,4–∞-codes. RZkByte-wn pattern
matching algorithms was applied to the SCDC-code and RZkBit-wn algorithms to the RMD-code,

where k is the number of significant bits in a mask and n is the number of sliding windows. Different

values of parameters k and n have been tested to find all occurrences of encoded sequences of 2–1024
words randomly taken from the text. For each pattern length, the values (k,n) giving the best time in

average were chosen. The average times of 1000 runs of search algorithms are shown in Table 5, with

method parameters (k,n) in brackets.

Table 5
Empirical comparison of pattern search time (milliseconds)

Code / Pattern

length (words)

2 4 8 16 32 64 128 256 512 1024

SCDC 21.38 17.46 17.53 17.02 11.87 6.23 3.78 2.68 2.11 1.61

 (12,5) (12,5) (16,3) (16,3) (16,3) (16,3) (16,3) (16,3) (16,3) (15,5)

R2,4–∞ 120.91 37.54 20.6 16.73 15.88 15.3 8.81 4.74 2.5 1.67

 (15,2) (16,1) (14,2) (16,2) (15,2) (16,2) (16,1) (16,2) (16,1) (16,1)

As seen, for very short patterns (2 words in length), the pattern search in the SCDC-encoded text is
6 times faster. This is because patterns of lengths <16 bits cannot be searched on the byte level. For

longer patterns of some lengths (4, 64, or 128 words) SCDC-search is more than twice faster. However,

182

there are some commonly searched pattern lengths when the RMD-search is almost on the same level
as the SCDC-search or even a little faster (8 or 16 words). As a pattern becomes longer, the difference

between performances of bit and byte pattern matching methods goes to zero, which is demonstrated

by the results for patterns of 512 and 1024 words in length.

5. Reverse multi-delimiter codes in LZ77 character-based compression

The variable-length integer codes are in the heart of character-based data compression schemes. The

RMD-codes belong to this class and thus they can be used not only as a preprocessing tool for text

compression but also within character-based compression algorithms. For instance, they can encode

lengths and distances of segments in the LZ77-style compression. One of the most efficient LZ77-based
archivers for the natural language texts is BC-ZIP [12], [13]. Among versions of BC-ZIP, the 'bit-

optimal' algorithm provides the best compression ratio. Its core idea is to optimize the LZ-parsing

considering the lengths of segment bit representations. Special variable-length codes ('SODA09' and
'Nibble4'), with different parameters for offsets and lengths of LZ-segments, have been developed and

implemented in the source code of BC-ZIP [5]. These codes use the Elias gamma-style encoding. A

codeword is divided into 2 parts: the first part contains the number of a codeword class given in the
unary numeral system, while the second part consists of the main binary sequence. All codewords of

the same length comprise a codeword class. In gamma encoding, selecting the proper length classes

allows for achieving rather better compression ratios than for other variable-length codes.

Although BC-ZIP codes parameters were selected very carefully to maximize the ratio of the bit-
optimal compression, experiments demonstrate that replacing the original BC-ZIP codes with multi-

delimiter codes can better compress short texts of different nature. Table 6 shows the results of the bit-

optimal BC-ZIP-compression of different texts from the Canterbury corpus and parts of the English text
from the Pizza&Chili corpus [14]. Code parameters giving the best compression ratio were chosen both

for RMD- and BC-ZIP families. Segment offsets were encoded by R2–∞, R3–∞, or R2,4–∞ codes. Segment

lengths are shorter and the best choice for them is a code with the shortest codeword of length 2: R1–∞
or R1–5,7–∞.

As seen, using RMD-codes in the BC-ZIP scheme instead of SODA09 or Nibble4 code improves

the compression ratio for all files from the Canterbury corpus, except the grammar.lsp. The compression

ratios for the 1MB English text are almost the same. However, when files become larger, the efficiency
of RMD-codes decreases since Elias gamma-style codes are better suited for large codeword sets.

Nonetheless, compressing short text messages is important, because even large texts are often divided

into small windows during the compression (see e.g. the Brotli compressor [15]).

Table 6
Using RMD-codes in BC-ZIP compressor

Original
file (KB)

RMD
(KB)

RMD-code
(type)

BC-ZIP
(KB)

BC-ZIP
(type)

RMD out-
performance

alice29.txt 152.089 55.362 R3–∞; R1–∞ 57.708 Soda-09-8 4.07%

asyoulik.txt 125.179 50.935 R3–∞; R1–∞ 53.916 Soda-09-8 5.53%

kennedy.xls 1.029.744 313.505 R3–∞; R1–∞ 327.716 Nibble4-8 4.34%

cp.html 24.603 9.629 R2,4–∞; R1–∞ 9.894 Nibble4-8 6.32%

fields.c 11.150 3.690 R2–∞; R1–∞ 3.761 Nibble4-8 1.89%

grammar.lsp 3.721 1.621 R2–∞; R1–∞ 1.582 Nibble4-8 -2.46%

lcet10.txt 426.754 135.819 R3–∞; R1–∞ 137.761 Soda-09-8 1.41%

plrabn12.txt 481.161 191.758 R3–∞; R1–5,7–∞ 191.847 Soda-09-8 0.05%

ptt5 513.216 64.656 R2–∞; R1–∞ 65.633 Nibble4-8 1.49%

sum 38.240 15.346 R2–∞; R1–∞ 16.406 Nibble4-8 6.46%

xargs.1 4.227 2.208 R2–∞; R1–∞ 2.218 Nibble4-8 0.48%

english.1MB 1000 337.118 R3–∞; R1–∞ 337.206 Soda-09-8 0.03%

english.2MB 2144.059 738.917 R3–∞; R1–∞ 730.255 Soda-09-8 -1.19%

183

On the other hand, the bit-optimal LZ-parsing is performed times faster for 'stepped' gamma-style
codes. This is because less number of possible codeword lengths require fewer search resources.

However, BC-zipped file decompression can be done roughly at the same speed both for gamma-style

and RMD-encodings due to the fast decoding algorithm described in Section 3.

6. Conclusion

The reverse multi-delimiter (RMD) compression codes are of special interest. They can be used as
a key element for the word-based natural language text compression as well as for the compact
representation of unbounded integer sequences. We establish a monotonous invertible mapping
between the set of natural numbers and the set of reverse multi-delimiter codewords. This mapping
implies the 'decoding-in-parts' principle, allowing us to construct a very fast byte-aligned decoding
algorithm based on lookup tables, which is comparable with the (s,c)-dense byte-aligned decoding
method. Given a good compression ratio, the RMD-codes provide an attractive point in the trade-off
between the compression ratio and the decoding speed in natural language text compression. Together
with the special word-level text preprocessing technique, the RMD-codes can serve as a preprocessing
tool improving the compression ratio of known archivers. Also, being delimiter-based, the RMD-codes
allow using the fast Boyer-Moore style direct pattern search in a compressed bitstream. The experiments
show that patterns of different lengths can be searched in SCDC- and RMD-compressed files with a
comparable speed.

7. References

[1] D. Huffman, A method for the construction of minimum-redundancy codes, Proc. IRE, vol. 40,

1952, pp. 1098–1101.
[2] A. Apostolico and A. S. Fraenkel, Robust transmission of unbounded strings using Fibonacci

representations, IEEE Trans. Inf. Theory, vol. 33, 1987, pp. 238–245.

[3] N. Brisaboa, A. Farina, G. Navarro, and M. Esteller, (s,c)-dense coding: an optimized compression

code for natural language text databases, in: Proc. Symposium on String Processing and Information
Retrieval, ser. LNCS, no. 2857. SVB, 2003, pp. 122–136.

[4] I. Zavadskyi and A. Anisimov, Reverse multi-delimiter compression codes, in: 2020 Data

Compression Conference, 2020, pp. 173–182.
[5] Bc-zip. Open source project. URL: http://farruggia.github.io/bc-zip/.

[6] I. Zavadskyi, Binary-coded ternary number representation in natural language text compression, in:

2022 Data Compression Conference, 2022, pp. 419–428.
[7] J. Culpepper and A. Moffat, Enhanced byte codes with restricted prefix properties, in: String

Processing and Information Retrieval, 12th International Conference Proceedings, ser. LNCS, vol.

3772, 2005, pp. 1–12.

[8] P. Skibinski, S. Grabowski, and S. Deorowicz, Revisiting dictionary-based compression, Software,
Practice & Experience, vol. 35, no. 15, 2005, pp. 1455—-1476.

[9] W. Sun, A. Mukherjee, and N. Zhang, A dictionary-based multi-corpora text compression system,

in: 2003 IEEE Data Compression Conference, 2003, p. 448.
[10] F. Awan and A. Mukherjee, Lipt: A lossless text transform to improve compression, in: 2001 IEEE

Inf. Technology: Coding and Computing Conference, 2001, pp. 452–460.

[11] I. Zavadskyi, Fast exact pattern matching by the means of a character bit representation, Springer

Nature Computer Science, vol. 3, no. 181, 2022, pp. 1––20.
[12] P. Ferragina, I. Nitto, and R. Venturini, On the bit-complexity of Lempel-Ziv compression, SIAM

Journal on Computing (SICOMP), vol. 42, no. 4, 2013, pp. 1521–1541.

[13] A. Frangioni, P. Ferragina, R. Venturini, and A. Farruggia, Bicriteria data compression, ch. 115,
pp. 1582–1595. URL: http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.115.

[14] Pizza&chili corpus – English texts, URL: http://pizzachili.dcc.uchile.cl/texts/nlang/.

[15] J. Alakuijala, A. Farruggia, P. Ferragina, E. Kliuchnikov, R. Obryk, Z. Szabadka, and L.
Vandevenne, Brotli: A general-purpose data compressor, ACM Transactions Information Systems,

vol. 37, no. 1, 2019, pp. 1–30.

http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.115

	1. Introduction
	2. Text preprocessing
	2.1. Low frequency word collapsing
	2.2. Word capitalization
	2.3. Local dictionary
	2.4. Using q-grams

	3. Fast byte-aligned decoding
	4. Experiments
	5. Reverse multi-delimiter codes in LZ77 character-based compression
	6. Conclusion
	7. References

