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Abstract  
The precision of text-based location inference models, which aim to identify a tweets’ point of 

origin through analysing the post’s text, is strongly influenced by differing location mentions. 

This particularly concerns the description of remote locations, i.e., locations that do not 

coincide with the user’s location when posting a tweet. To filter out remote location mentions 

keyword filtering, temporal information matching and rule-based matching approaches 

have been used. However, these methods fail to take into account the tweets’ syntax and 

hence produce low performance. We propose an advanced Named Entity Recognition 

model that not only extracts location entities but distinguishes between remote and in-situ 

location mentions based on the texts’ surrounding grammatical cues. We train our 

algorithm on a base spaCy model which exhibits moderate performance on a relatively 

small training size. Preliminary results show that our approach outperforms similar studies 

and suggest the possibility of distinguishing between in-situ and remote location mentions 

with higher precision upon further refinement of the study design.  
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1. Introduction 
With the automatic disabling of location sharing, less than 3% of generated tweets are coordinate 

geotagged [1], that is, have a latitude and longitude value corresponding to the user’s location when 

posting a tweet. This small percentage of geotagged posts limits the sample size of posts that can be 

used in spatial analysis, thereby compromising the representativeness of the Twitter population [2].  

 

Text-based location inference models have been developed to increase the percentage of geotagged 

posts by inferring the tweets’ point of origin. These developed models have reported precision values 

ranging between 55% and 85% within a 50 km radius of the tweets’ point of origin [3–5]. 

 

Several factors can be attributed to the reduction in precision values [6–10]. In this paper, we address 

the reduction of precision values as a result of unfiltered remote location mentions. In the context of 

this paper, remote location is used to refer to any location that does not coincide with the tweets’ point 

of origin. For example, South Carolina would be a remote location in the post, ‘I may move to South 

Carolina by the end of the semester’ because the tweet refers to a distant location rather than an in-situ 

location (tweet location / location of the user when writing the post). 

 

 Remote location mentions have been filtered in the past by using keywords [3,11,12], rule based 

matching [13–15], classifiers [16] and machine learning models [17,18]. However the developed 

methods reported relatively lower precision values on the location inference models which suggests 

that they miss a percentage of remote mentions. 
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We propose to integrate a custom model into an existing spaCy [19] syntax based Named Entity 

Recognition (NER) model to distinguish between remote and in-situ location mentions. Similar to the 

existing spaCy2 models, our custom model needs to be able to distinguish locations based on the 

sentence syntax. Example posts in Figure 1 show the capability of spaCy in distinguishing between 

named entities regardless of the entities being written alike. By adopting spaCy’s base models, we can 

create a customised model for location distinction. 

 
Figure 1: Example of spaCy recognized entities highlighted by spaCy’s displaCy visualizer.  

2. Approach 
We design our analysis following four main steps highlighted in Figure 2. In the subsection below, 

we provide more details for each of the four steps. 

 
Figure 2: Overall design workflow showing the main components of the methodology. 

1. Data selection: To evaluate the robustness of our developed approach, we restricted our 

dataset to posts which contained a coordinate geotag on a worldwide scale. We discarded 

auto-generated posts following the procedure outlined in [14]. 

2. Data preprocessing: We deleted URLs, emojis, and extra spaces because they did not aid value 

to our analysis. The elimination of these characters resulted in a simplified annotation process. 

3. Model setup: We annotated 4,028 tweets using three entities classes: in-situ, remote and 

unclear. The annotation was done by a single annotator with an in depth knowledge of the 

objective. The annotation guidelines used are as follows: 

i. A location was annotated as in-situ if: 

a. The author clearly states that there are in that location at the time of sending 

the post. For instance, “It feels good to be back here in Ohio [in-situ] after my 

six months internship abroad….”  

b. The author attaches a location at the end of a post that does not include any 

mention to a past or future event. For instance: “This is the kind of thing I like 

to see in my basement. @ Kitchener, Ontario [in-situ]”.  

ii. A location was annotated as remote if: 

a. There is clear evidence that the author was not in the stated location at the 

time of sending the post: For instance: “Popped over to Budapest [remote] last 

week for a couple of days. We really lucked out with the weather! It was 

absolutely gorgeous and made me really excited about the arrival of spring.” 

iii. A location was annotated as unclear if: 

a. There was no evidence that suggests that the location is either in-situ or 

remote: e.g. “The croissants are DEFINITELY better in France [unclear]” or in 
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the post, “I need someone I can travel with from Ferndale [unclear] to 

Bryanston [unclear] twice a week”. 

b. The author attaches a location at the end of a post that includes a mention to 

a past or future event. e.g. “Me last night…. @ San Diego, California 

[unclear]”. 

c. A location is attached without any surrounding text. e.g. “@ Open Arms 

Christian Fellowship [unclear]”. 

d. The location follows the structure: Just posted a photo / video @. e.g. “Just 

posted a photo @ Irving, Texas [unclear]”.  

We excluded all location names that were used metonymically e.g. the country names Tanzania and 

Nigeria in the post: “Tanzania has reportedly started exploring a Central Bank Digital Currency 

(CBDC). The country is following the footsteps of Nigeria, which Launched its own digital currency 

last month…” To prevent multiple location labeling, we annotated locations in their full totality 

including any linking terms e.g. “I’m at The Village of River Oaks in Houston, TX [in-situ]”. 

 

We trained our syntax model on a version 3.1.0 empty spaCy high accuracy English model officially 

abbreviated as ‘en_core_web_trf’. We used 80% (3,222/4,028) of the annotated tweets for training and 

the remaining 20% (806/4,028) for testing.  

 

4. Evaluation: The aim of our syntax based model is to distinguish between in-situ and remote 

location mentions so as to as to obtain higher precision values when inferring tweets’ points of 

origin in non-geotagged posts. Therefore, after training our syntax model we evaluated our 

overall method design by inferring in-situ locations from a random sample of geotagged tweets. 

Our evaluation followed three steps. First, we extracted in-situ locations from a random sample 

of 88,732 pre-processed coordinate geotagged tweets. Second, we geocoded the extracted in-

situ locations using the Google Maps geocoding API. The geocoder returned, for each geocoded 

in-situ location, the centroid coordinates and northeast and southwest coordinate pairs of the 

location’s bounds. In our third and finally step, we compared each locations’ geocoded 

coordinates against the tweets’ attached geotagged coordinates. 

We defined two approaches for the comparison. In Approach 1, we computed the geodesic 

displacement between the geocoded centroid coordinates and the geotagged coordinates. To 

account for geographical scale, in Approach 2 we generated a bounding box from the geocoded 

northeast and southwest coordinates of each in-situ location and counted the number of 

geotagged points found within the bounding box of the corresponding geocoded location. 

3. Discussion of preliminary findings 
The overall F1 score of our model was 77.8%. The model’s performance was high for in-situ 

location entities (precision 86.2%, recall 88.2% and F1 score 87.2%) compared to the remote location 

entity (precision 54.7%, recall 43.9% and F1 score 48.7%) and unclear location entities (precision 

62.4%, recall 43.8% and F1 score 51.5%). The low performance of the model on the remote and unclear 

location entities can be attributed to the low number of posts with a remote and unclear location in the 

training dataset, respectively. Of the 4,028 annotated tweets, 44.2% contained an in-situ location, 8.2% 

a remote location and 15.6% an unclear location. 

 

Compared to a similar study of [18], our trained model returned a higher F1 score for in-situ location 

mentions (87.2%) than the reported best performing model (74.0%) . The authors reported much higher 

model performances (87.0%) for posts with a low evidence of being in-situ. Since we divided what 

would equate the low evidence of in-situ location mentions into remote and unclear entities, it is not 

justifiable to compare our results with the authors’ findings.  

  



After passing a random sample of pre-processed English tweets to our trained syntax model, we 

extracted in-situ locations from 31.7% (28,129/88,732) of the posts. Of the extracted locations, 84.9% 

(23,869/28,129) were successfully geocoded by the Google Maps API. Figure 3 shows the obtained 

results from applying the two approaches described in section 4. Using Approach 1, only 8.8% of the 

in-situ locations were geocoded to a radius of greater than or equal to 50 km from the tweets’ geotagged 

coordinate. This result could be due to the model extracting remote locations as in-situ, which is 

probable given that the model’s in-situ location precision value was only 86.2%. Another reason could 

be the presence of high granular locations defined as in-situ locations for example USA. 

 
Figure 3: Performance of developed method using evaluation Approach 1 (left) and Approach 2 (right). 

To cater for high spatial granularity, we used Approach 2 which considers the bounding box of the 

defined area. However, using approach 2, surprisingly resulted in an even higher percentage of posts 

(17.1%) classified outside the geocoded bounding box. This result suggests probable limitations to 

bounds defined by the Google Maps geocoder. For instance, in the post “I can’t believe I am standing 

right in front of the Eiffel Tower [in-situ]”, the tweets’ geotagged position might be falling outside of 

the Eiffel Tower’s bounding box, according to Google Maps’ defined bounding box, which then lowers 

the percentage of posts counted within the polygon. This theory, however, needs to be investigated 

further perhaps by using manual validation. 

 

In Table 1 we show a comparison of our syntax based approach to previous studies which inferred 

in-situ locations from tweet text. Overall, our syntax model was able to outweigh most of the studies 

with the exception of the entity prioritization method [12] for the 10 km and 50 km radius values. By 

eliminating limitations surrounding the development of our approach such as, the small annotation size, 

use of a single annotator, low percentage of remote locations in the training data etc. the performance 

of our syntax model can be greatly improved. 

 
Table 1: Comparison of location inference results with previous studies  

Precision @ 1 km radius         (%) Precision @ 10 km radius    (%) Precision @ 50 km radius (%) 

Staking approach [20] 22 Staking approach [20] 37 Stacking approach [20] 54 

Keyword association [21] 18 Keyword association [21] 45 Label propagation [4] 65 

Bayes model [22] 44.4 Ranking algorithm [14] 60 Ranking algorithm [14] 83 

Entity prioritization [12] 61.9 Entity prioritization [12] 86.1 Entity prioritization [12] 92.1 

Syntax model 63.8 Syntax model 82.0 Syntax model 91.2 

4. Conclusion 
The aim of our paper was to customize a syntax model that can distinguish between in-situ and 

remote locations. Our preliminary results show high performance of our developed syntax model in 

comparison to related studies. However, further refinement of the study design is needed to improve 

the overall model performance especially with regards to the extraction of remote location mentions. 
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