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Abstract  
The questions related to the improvement of the performance of bithreshold classifiers are 

treated in the paper. The new 4-layer neural network architecture is proposed whose first layer 

performs the normalization of inputs, the second layer is composed of bithreshold neurons, 

linear threshold units and winner-take-all neurons, and every linear threshold unit in last two 

layers has only small predefined weights. The synthesis algorithm for such networks is 

described and estimations of its time complexity and the size of the resulting network are given. 

The experiment results demonstrate that the implementation of the proposed approaches in the 

design of multiclass classifiers considerably improves their generalization capabilities.  
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1. Introduction 

Neural network technologies are extremely useful in intelligent systems [1] and machine learning 

[2]. They are embedded in many smart high-tech products [3, 4]. The tremendous capabilities of 

artificial neural networks (NN) are powered by task-oriented network architectures [5] and special 

hardware components [3]. 

The choice of the neuron model for the network is crucial in neural computations [6]. First neural 

networks used linear threshold units with threshold activation functions [5, 7] and binary outputs. 

Somewhat later, many kinds of more complicated models of neural units were proposed in order to 

increase the computational power and the capability of the networks [8] and make their learning easier. 

One of the first among them was the model of the neural unit with a binary-valued multi-threshold 

activation function, which was introduced in the middle 1960s [9]. The simplest kind of such devices 

was a bithreshold neural unit or a bithreshold neuron (BN). Let us recall that the bithreshold neuron 

with the weight vector ( )1, , n

nw w= w R  and thresholds ( )1 2 1 2,t t t t R  is the computation unit 

with n inputs 
1, , nx x  and the single binary output y, which is calculated by the following rule: 

1 21, if ,

0, otherwise.

t t
y

  
= 


w x
 

 

In the previous equation =x ( )1, , n

nx x R  is an input vector. The activation function that is applied 

to the weighted sum of inputs w x  is called a bithreshold activation function. BN is completely defined 

by its structure triplet ( )1 2, ,t tw . Bithreshold neurons outperform single-threshold ones [10], because 

they have the more sensible activation capable to trigger only in the case when the sum of weighted 

stimuli is within the given range, which is specified by thresholds of the neural unit [11]. 
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Bithreshold neurons can be organized in the consecutive layers of feed-forward neural networks, 

which are capable to solve classification tasks [12, 13]. But simulations revealed several weak points 

of 2-layer neural network classifier, which hidden layer consists of bithreshold neurons [14]. We will 

cover it later in the third section, but it is almost evident that before the practical applications, the model 

of bithreshold neural network classifier must be refined. Our research has two main goals: 

• The design of the network architecture that would effectively use the advantages of bithreshold 

activation and mitigate the weakness of the basic model of the network from [14]. 

• The development of the synthesis algorithm for the classifier based on the designed 

architecture, as well as theoretical and experimental estimations of its performance. 

The paper has the following structure. First, the works related to the topic of the study will be 

reviewed. Then, the basic model of 2-layer feed-forward bithreshold NN will be considered. We will 

discuss its advantages and consider carefully downsides related to the practical classification using this 

model. In the next section a new 4-layer hybrid architecture will be proposed, which enhances the 

network capability by imposing the locality constraints by using in the first hidden layer linear threshold 

units and winner-take-all neurons alongside with bithreshold ones. Then, the synthesis algorithm for 

such networks will be described, which application can significantly improve the classifier generali-

zation capability and preserve the high memorization ability of the network. Next, we will treat the 

simulation results of the performance of 4-layer hybrid neural network multiclass classifier in the 

comparison with other popular classifiers provided by Sklearn library. Finally, two last paper sections 

contain the discussion of obtained results and conclusions. 

2. Related Works 

Recent research proved that bithreshold neural-like models have good perspectives of the successful 

application in the solving of important problems of data science [15], machine learning [16, 17] and 

forecasting [18]. 

The study of multithreshold neural units has a long history [9, 10]. Networks based on the layer of 

neurons with bithreshold activations have better capabilities in solving the classification tasks than 

single threshold ones [10, 13] and are better memorizers [8]. But the practical use of neural systems 

based on the bithreshold paradigm faces two problems: the estimation of the parameters of the network, 

which is capable to solve a given task [12] and the design of effective learning techniques for such 

systems [14]. 

Some approaches to the solution of the first problem were made in [12] where the magnitude of the 

weights and thresholds of the bithreshold neuron was established. Namely, it was shown that the largest 

coefficient of the bithreshold neuron with n binary inputs is bounded by ( ) ( )
( )1

2 1
n

n n
+

+  + . The 

practical consequence follows: ( )2 logO n n  memory bits are enough to store the structure triplet of BN. 

Moreover, this estimation is not very loose, because in average at least ( )2n  bits are required [12]. 

The second problem is a part of the greatest challenge in the threshold logic, which consists in the 

design of training algorithms for network with discrete-valued activations. It is stated in [8] that if we 

consider the network with the fixed topology (i.e., a predefined number of layers and number of the 

neurons in each layer), then there are no effective approaches to learn such systems even for networks 

with the single-threshold activation functions (i.e., simple 2-layer networks consisting of classical linear 

threshold units [19]). It is shown in [12] that similar conclusion is also true for any bithreshold network, 

no matters how many layers it has, because the corresponding task of the learning such networks is NP-

complete. In order to avoid this hardness another way of dealing with the bithreshold neural networks 

was explored in [14], where the synthesis approach was proposed consisting in the dynamic growth of 

layers of the network during the synthesis process. This approach ensures that network exactly 

memorizes every learning pattern. Thus, it satisfies the following paradigm: training neural networks 

consists in to train the networks until they fit the training dataset perfectly [20]. 

The synthesis algorithm originates from ideas exposed in [21] and can be extended to the design of 

multiclass classifiers. Estimations on the network size proved in [14] show that in the case of the 

memorization of patterns presented by points in general position (i.e., none 1n+  of them lies on the 



same hyperplane) in the case of two and more classes the number of bithreshold neurons in the hidden 

layer is bounded by ( )/ 2m n   and /m n   , respectively, where n is the dimension of input patterns, 

m is the size of the design set. It should be also noted that new deeper architectures were recently 

proposed in [20, 22, 23], which use tricky approaches to increase the memorization capability of 

networks in the case of ReLU [22] and threshold [20, 23] activations, respectively. 

It has already mentioned in Introduction, that the classifier performance outside the training set was 

not quite satisfying both for binary and multiclass classification. Properties of bithreshold activation 

and network working principles will be discussed later that are responsible for the network poor ability 

to generalization. 

3. Methods 
3.1. 2-Layer Bithreshold Neural Network Classifier 

Let us consider issues related to the bithreshold neural networks and their application in the neural 

network classifiers. First, let us review in brief the model of 2-layer bithreshold neural network. 

3.1.1. Basic 2-Layer Network Architecture  

Consider the architecture of 2-layer feed-forward fully-connected neural network, which was 

proposed in [14] to solve the task of multiclass classification in the case of several disjoint classes. The 

conceptual graph of the network is shown in Figure 1. 

 

Figure 1: Architecture of 2-Layer Bithreshold neural network 

 

The hidden layer consists of bithreshold neurons and each output node is the single-threshold neuron 

corresponding to the one of the given classes. Note that concentric circles are used to mark bithreshold 

neurons and distinguish them from single-threshold ones. 

The synthesis (learning) algorithm for such networks was proposed in [14]. It is intended to learn 

the network classify exactly all patterns from the design (training) set ( ) ( ) 1 1, , , ,m mS t t= x x , where 

m is the size of training set,  1, , mX = x x  is the set of input patterns, which are represented by n-



dimensional vectors and 
it  are corresponding class labels, where {1,2, , }, 1it l l  , 1, ,i m= . Let 

 |1 ,i j jX j m t i=   =x  be the subset of training samples belonging to ith class. The main geometri-

cal idea behind the learning algorithm is the separation of 
iX  from all other patterns by the means of 

pairs of parallel hyperplanes with respect to the distribution of the labels of patterns, which can be 

regarded as targets. 

3.1.2. Synthesis Algorithm for 2-Layer Bithreshold Networks 

The following algorithm is the subtle simplification of the learning algorithm, which was proposed 

in [14] for the synthesis of 2-layer neural network classifier: 

BasicSynthesis(S) 

1. 0k   

2. for 1i  to l: 

3.   Add threshold neuron TN[i] with bias 1−  in the output layer of NN 

4.   Select Xi from S  

5.   
i iA X  

6.   while 
iA  : 

7.   1k k +  

8.    min , ir n A  

9.    Put r patterns from 
iA  into the matrix A 

10.    Solve linear system TA =w 1  

11.    min | 1| ,jX j i   −  w x x  

12.    \ | 1|i i iA A A    − x w x  

13.   Add BN[k] with the structure ( ),1 ,1 − +w  in the hidden layer of NN 

14.    Connect BN[k] with TN[i] with the weight 2 

15.   return NN 

The only input parameter of BasicSynthesis is the design set S. The above algorithm returns the 

synthesized network NN. The resulting network is not fully-connected, because each bithreshold neuron 

from the hidden layer is connected only to the single output node corresponding to the class for the 

recognition of whose members this bithreshold neuron was created. 

Figure 2 shows the example of the classification task in 2 dimensions. The network has classify 

patterns belonging to 3 given classes, which are marked by green squares, yellow diamonds and blue 

circles, respectively. The geometrical illustration of how the network works is shown in Figure 2. Every 

bithreshold neuron from the hidden layer performs its own “slice” whose “width” depends on the 

position of the points of other classes. BN recognizes at least two patterns of its own class, with possibly 

some other representatives. Two parallel lines perform a slice and they are equidistant from the dotted 

line—the “central hyperplane”, which is defined by 2 patterns through which this line is drawn (in 

Figure 2 they are H1, H2 and H3, respectively). For our example three BNs are sufficient to classify 

exactly all patterns. Thus, the corresponding 2-layer network has 2-3-3 architecture. 

As it was mentioned in the introduction, the basic synthesis algorithm from [14] yields the network 

that memorizes precisely patterns from the design set but its behavior can be poor outside this set. 

Consider some reasons explaining it in details: 

1. Outside the design set the classifier is often indecisive and does not attributes new patterns to 

any class (e.g., in Figure 2 all points P1, P2 and P4 are not classified although it seems that P1 would 

be attributed to the second class and P2 and P4—to the third one. This disadvantage results in low 

values of the recall metric for classes [5]. 



 
 

Figure 2: Illustration of the performance of 2-layer bithreshold neural network 

 

2. The network often attributes a new pattern to the class all whose training points are very distant 

from this pattern (e.g., in Figure 2 pattern P3 is classified as a member of the third class despite it is 

too far from the class members). This drawback is related to the nonlocal nature of the bithreshold 

activation function, which follows from the fact that the decision region of the bithreshold unit is 

unbounded. 

Above drawbacks result in the poor generalization ability of classifiers. If we split the design set 

into training set and testing set and run synthesis algorithm only on the training set, then we can obtain 

the classifier with low accuracy on the testing set. 

3.2. Hybrid 4-Layer Neural Network 
3.2.1. Network Architecture 

The disadvantages of the basic classifier and its synthesis algorithm mentioned at the end of the 

previous section force to look for ways to improve the network performance. Consider some of them. 

The main reason of the first drawback is the narrow gap between bounding hyperplanes. It can be 

reduced if we relax the restriction of the equidistance of the decision hyperplanes from central 

hyperplane, which is imposed in step 10 of synthesis algorithm. We can divide this step by two smaller 

steps by finding the upper and lower threshold independently. This can lead to the wider decision 

regions and decreases the degree of the indecisiveness of the classifiers. E.g., by shifting the left bound 

line of the second BN in Figure 2, we can force the network to classify the pattern P1 as a member of 

the second class. Sometimes the separate search of the biases from the central hyperplane can result in 

the undefined (or infinite) value(s) of threshold(s). E.g., it is true for our example in Figure 2. In such 

cases we can restrict the corresponding bias by using the bias of the pattern that is most distant from 

the central line of its class. 

Experiments show that just mentioned modification can improve the accuracy on the testing set by 

several percent. But it cannot eliminate the lack of the decisiveness of classifiers. In order to reduce the 

downsides of the basic classifier we can change the topology of the network by replacing the single BN, 

which is responsible for the recognition of the portion of patterns of the fixed class, by the block 

consisting of a single BN, two additional neurons in the same layer and one neuron in the next layer. 

First, let us explore how we can reduce the first network drawback by using alternative decision 

rules when bithreshold neurons fail to attribute a new pattern to any class. The simplest solution is based 

on the slight modification of the nearest-neighbor rule. We can classify the unclassified pattern x as a 

member of the class whose member is nearest to x. The entire dataset can be large and to remember all 



patterns is too expensive and can decrease the classifier performance. Thus, some derived class charac-

teristics would be used. For example, we can use the center of the class. It is a good choice for compact 

classes. But it fails for complex-shaped class (e.g., ring-like), because its center may be far away from 

most class members). The possible tradeoff is the center (centroid) of the set of all patterns from the 

design set that are “properly classified” by the fixed BN in the hidden layer of the network. Another 

solution consists in the use of the subset of “just classified” patterns that are properly attributed by the 

current BN for the first time during the synthesis. 

Let BN[k] be a kth bithreshold neuron in the hidden layer of the network and Zk be the set of its 

“properly classified” (or “just classified”) patterns. Then the corresponding centroid can be calculated 

using the following equation: 

1

k

k

XkZ 

= 
x

c x  
(1) 

We call ck a center of BN[k]. For example, in Figure 3 c1, c2 and c3 are centroids corresponding to 3 

bithreshold neurons in the hidden layer (note also wider gap between hyperplanes of the second class). 

 

Figure 3: Example of the network performance 

 

Let argmin k
k

k = −x c , where x is a given input pattern and the index k ranges over all possible 

indices of centers. Then the network classifies x as a member of the class 
k

t  , where 
k

t   is the target 

label of the patterns, which were used to calculate the center 
k

c . For example, such approach allows 

us to properly classify new patterns P2 and P4 in Figure 3 in the third class. 

Let us consider the possible implementation of the nearest-neighbor rule using the neural compu-

tations. Since 

2 2 2
2k k k− = −  +x c x c x c , 

(2) 

the minimization of the distance between vectors is equivalent to the minimization of the right part in 

the last equation. Under the assumption that const=x  this task is equivalent to the task of the 

maximization of the value of expression 2 k  −c x
2

kc  over all centroids corresponding to the 

bithreshold neurons in the second layer of the network. We can treat the last equation as the biased 

weighted sum of the neuron WTA[k] with the weight vector 2ck and the bias 
2

k− c . The sublayer of 

“winner-take-all” (WTA) neurons ensures the desired behavior of the classifier. 

Notice that the input normalization is required for the successive application of above approach. But 

the normalization can result in the undesirable coincidence of nearly collinear patterns. We can avoid 



it by augmenting input patterns with a new component (e.g., 
1 1nx + = ). The need to perform these 

transformations requires us the add the additional normalization layer at beginning of the network. 

Consider the second downside of the basic classifier, which is caused by the unboundedness of the 

decision region of bithreshold neurons. Note also that the WTA layer has even worse property, because 

it has not only unbound decision region but is always decisive. The above downside can be reduced by 

rejecting patterns, which are too distant from patterns that were used during the computation of the 

coefficients of bithreshold neurons in the hidden layer. Let 

max
k

k k
Z

r


= −
x

x c . 
(3) 

We call rk the radius of BN[k] and require that classifier accepts only such patterns x that the inequality 

k kr− x c  holds, where ( )0,  + . We can consider that the coefficient β is responsible for the 

degree of sensibility of the neuron. For example, if 1 = , then only the interior of the green and blue 

dotted circles in Figures 3 can be attributed to the first and third classes, respectively. It is evident, that 

( )
2 22 2 2 0k k k k k kr r r  −   −   − − x c x c x c . 

Thus, using (2), we obtain the following equation for normalized inputs: 

22 22 1 0k k k k kr r −    + − − x c c x c . 

Therefore, single-threshold neuron TN[2, k] with the weight vector 2 kc , the bias 
22 2 1k kr − − c  and 

the step binary-valued activation can be used to verify whether a given pattern x is in the 
kr -neighbor-

hood of the center ck of kth bithreshold neuron. 

Three units BN[k], WTA[k] and TN[2, k] are placed in the second layer of the network and are 

together responsible for the classification of patterns lying in the neighborhood of the kth centroid ck. 

Notice that the unit TN[2, k] is more “important” than other two units. Its activation is necessary for the 

successful classification of an input pattern as a member of the corresponding class. The decision of 

such classification is made in the case when at least one of remaining two units is activated. To imple-

ment the above classification rule using neural network approach, we can use a mini-block consisting 

of BN[k], WTA[k] and TN[2, k] in the second network layer and the single threshold neural unit 

TN[3, k] in the third layer, which has the bias 5−  and whose three inputs are outputs of BN[k], WTA[k] 

and TN[2, k] taken with the weights 2, 2, and 4, respectively. The output of each mini-block is 

connected to the corresponding single-threshold node TN[4, i] in the output layer, where i is a number 

of the class for the classification of whose patterns the kth mini-block is intended. 

Therefore, we obtain 4-layer neural network architecture in which the first layer is responsible for 

the augmentation and normalization of inputs, the second hybrid hidden layer consists of 3 kinds of 

neurons (BN, WTA and TN), the third hidden layer consisting of single-threshold neurons with only 3 

inputs and the output layer is composed of l single-threshold neurons, where l is the number of classes. 

The second and third layers are crucial for this architecture and grow dynamically according to the 

design set and implementation details of the synthesis algorithm. The size of the second layer is 3 times 

greater than the size of the third layer. 

Consider an example of the conceptual graph of the network that is designed employing the above 

4-layer architecture. Let the network be designed to solve the binary classification task in two dimen-

sions and let training patterns of the first class can be separated using 2 mini-blocks and a single mini-

block suffices to recognize patterns belonging to the second class. The graph of the network is depicted 

in Figure 4, where threshold neurons are denoted by circles, bithreshold neurons—by concentric circles 

and winner-take-all neurons—by square boxes, all possible pairs of which are joined by lateral connec-

tions. The normalization and augmentation layer has 3 outputs, which are denoted in similar way as 

network inputs x1 and x2. Each mini-blocks consisting of 4 neurons is depicted inside a frame. The 

outputs of the first two mini-blocks are passed to inputs of the first output neurons, which corresponds 

to the first class. The last mini-block is connected to the output neuron, which is responsible of the 

recognition of patterns of the second class. 



 
Figure 4: Example of 4-layer hybrid neural network Architecture  

3.2.2. Synthesis Algorithm 

The preceding explanation allows us to design the synthesis algorithm for a 4-layer neural network. 

Its principal part is the subroutine Branch, which synthesizes the part of the network responsible for 

the recognition of the patterns of the particular class (parameter B) by separating them from patterns 

from other classes (the set of all patterns is passed using parameter A). Let us describe it using the 

following pseudocode: 

Branch(NN, OutputNode, A, B, α, β) 

1. Copy patterns from B to C 

2. while C  : 

3.  1k k +  

4.   min ,q n C  

5.   Choice q random patterns from C to D 

6.  Find a solution of the system 1, D = w x x  

7.    1 max 1 \ , 1A B   −   w x x w x  

8.    2 min 1 \ , 1A B   −   w x x w x  

9.   1 21kX B      − x w x  



10.   
k c centroid of BN[k] 

11.   
kr  radius of BN[k] 

12.   \ kC C X  

13.  Add BN[k] with the structure triplet ( )1 2,1 ,1 + +w  in the second layer 

14.   Add WTA[k] with the structure ( )2
2 ,k k−c c  in the second layer 

15.   Add TN[2, k] with the structure ( )22 22 , 1k k kr − −c c  in the second layer 

16.   Add TN[3, k] with the bias −5 in the third layer 

17.   Connect BN[k], WTA[k], TN[2, k] with TN[3, k] using weights 2, 2, 4 

18.   Connect TN[3, k]  and  OutputNode with the weight 1 

Note that some steps of the previous subroutine might be explained in more detail. E.g., 

steps 10 and 11 are intended to search the center and radius of kth bithreshold neuron. We can employ 

here equations (1) and (3) using 
k kZ X=  or 

k kZ X C= . Steps 7 and 8 correspond actually to step 11 

of BasicSynthesis. They are useful to determine the independent shifts from central hyperplane 1 =w x  

and are intended to increase the gap between the decision hyperplanes of the current BN. 

The main network synthesis algorithm can be described as follows: 

HybridSynthesis(S, α, β) 

1. for 1i  to l: 

2.   
iB   

3. for 1i  to m: 

4.  ( ) ( ),1 / ,1i i ix x x  

5.  Add a small random noise to xi 

6.   Include xi in A 

7.  Include xi in 
it

B  

8. Create 4-layer NN 

9. 0k   

10. for 1i  to l: 

11.   Add the node TN[4, i] in the output layer of NN and initialize its bias to zero 

12.   Branch(NN, TN[4, i], A, Bi, α, β) 

13. for 1i  to 1k − : 

14.   for 1j i +  to k: 

15.     Set the lateral connection between WTA[i] and WTA[j] 

16. return NN 

Three parameters are used in HybridSynthesis(S, α, β): S—design set, α—a tolerance measure (see 

[8, 14]), and β—a factor by which the distance to the center is multiplied. Both α and β are suitable to 

adjust the classifier performance for a particular task. These hyperparameters alongside with the trans-

formation in step 4 are designed to improve the generalization ability of the classifier. Both Hybrid-

Synthesis algorithm and its Branch subroutine use global counter of the network mini-blocks k. Hyb-

ridSynthesis returns the resulting 4-layer neural network whose first layer performs normalization, the 

second layer consists of 3k neurons, the third layer—of k neurons, and the output layer—of l neurons. 

The following proposition gives the characteristics of the performance of the HybridSynthesis. 

Proposition. An arbitrary learning sample S consisting of m training pairs, each of which contains 

a n-dimensional pattern and its target class label, can be completely memorized by 4-layer hybrid neural 

network multiclass classifier with at most ( )( )/ 1k m n l=  +  +   neurons in the third layer, 3k neurons 

in the second layer and l output binary threshold neurons if training patterns are in general position. The 



network can be synthesized using HybridSynthesis algorithm in time ( )2 2O mn m+ , where l is the 

number of classes and m n . 

The proof is similar to the proof of the related proposition in [14] and is omitted here. 

4. Experiment and Results 

The capability of 2-layer and 4-layer neural network classifiers were tested on the medium-sized 

“Pen-Based Recognition of Handwritten Digits” (pendigits) dataset provided by UC Irvine Machine 

Learning Repository [24]. The dataset contains 10992 instances, which were obtained by collecting 250 

samples from 44 writers. After a resampling the patterns have 16 input attributes. The target is the class 

code 0..9. The classes contain 901, 912, 934, 830, 906, 842, 855, 912, 855, and 846 members, respec-

tively. Thus, it was the multiclass classification task with training pairs spread out relatively uniformly 

across all 10 classes. 

The quality of the performance of classifiers that have treated in the work was compared with the 

performance of 3 classifiers: RBF support vector classifier (SVC), decision tree classifier, multilayer 

perceptron (MLP). Three classifiers from the current paper were examined. The first of them (NN2) 

was the basic 2-layer NN with bithreshold hidden layer, which was synthesized using BasicSynthesis 

algorithm. The other two were 4-layer hybrid neural networks produced by Synthesis(S, α, β) algorithm 

with 0.95 = and 1.33 = . The first of them (NN4a) used only “just” classified patterns in steps 10 

and 11 of Branch subroutine, meanwhile the second one (NN4b)—all “properly” classified. 

During the simulation standard versions of first three classifiers from Scikit-Learn library [25] were 

used (with gamma = ‘scale’, C = 0.1 for RBF SVC, max_depth = 7 for decision tree, 100 and 20 nodes 

in hidden layers for MLP). NN2, NN4a and NN4b was implemented using Numpy and Scikit-Learn 

libraries [5, 25]. 

In order to estimate the generalization abilities of classifiers the dataset was split into a training set 

and a testing set. In each trial 20% of randomly chosen patterns (2198 patterns) was moved to the testing 

set, the rest of the dataset—to the training set (the design set for NN2, NN4a and NN4b). The dataset 

split and the training were repeated 100 times. 

The simulation results are presented in Table 1, which contains the average accuracies over all 100 

trials. 

 

Table 1 
Experiment results on pendigits dataset 

Classifier Accuracy on training set (in %) Accuracy on testing set (in %)  

RBF SVC 98.09 97.77 
Decision tree 92.99 91.21 

MLP 99.32 98.12 
NN2 100 59.34 

NN4a 99.76 97.65 
NN4b 99.87 98.01 

 

The analysis of the experiment results allows us to conclude that: 

• As expected, BasicSynthesis algorithm ensured exact memorization on the training data for 

NN2 but the network performed poorly outside the design set. 

• HybridSynthesis(S, α, β) algorithm yielded networks with the almost same accuracy on the 

training set as NN2 but the significantly better accuracy on the testing set. Moreover, NN4a and 

NN4b had in average 12% fewer bithreshold neurons in the hidden layer. 

• 4-layer network NN4b had the better classification accuracy than NN4a and overperformed all 

considered classifiers except MLP on the testing set. 



5. Discussions 

Proposed 4-layer hybrid neural network architecture allows to reduce some downsides of the basic 

2-layer bithreshold architecture. Moreover, the modification of the step 11 of the BasicSynthesis algo-

rithm, which is performed in steps 7 and 8 of Branch subroutine has following consequences: 

• The network is suitable for the classification in the case when some classes have a nonempty 

intersection. 

• The bounding hyperplanes are shifted independently from the central one (defined by the con-

dition 1 =w x ). This leads in practice to the wider gap between the decision surfaces and decreases 

the number of necessary bithreshold neurons. 

• The use of hyperparameter α also permits to increase the mentioned gap. It allows the network 

make some mistakes on the design set but, in general, improves its generalization abilities. 

The main HybridSynthesis algorithm call Branch on each iteration of the loop, which is executed 

through class labels. These calls are independent and admit the parallel implementation. It can consi-

derably speed up the synthesis computation using GPUs [5] or other similar hardware [3]. 

The optimal values of hyperparameters α and β are task-dependent and can be found using the grid 

search [25] or the random search [5]. 

6. Conclusions 

We considered the new 4-layer neural network architecture, which can be useful for the design of 

multiclass classifiers. The experiment results prove that the combination of the power of bithreshold 

activations with the nearest neighbor rule (provided by the sublayer of WTA-neurons) and the regula-

rization of the distance to the centers allowed to reduce the network overfitting and considerably 

improved the classifier’s generalization capabilities. 

The proposed HybridSynthesis algorithm has high degree of parallelism and the resulting model of 

the classifier can be fine-tuned using two hyperparameters. The synthesis algorithm is flexible enough 

and yields the network, which size depends on the dimensionality and the complexity of the concrete 

classification task. It should be noted that additional efforts are required for the enhancement of the 

generalization ability of the classifier via the decreasing of the number of the units in hidden layers and 

the reduction of the influence of the order in which learning pairs are selected during the synthesis. 

4-layer classifier can be implemented as the part of different computational intellectual tool, i.e., in 

the smart classification subsystem of the linguistic interactive map [26]. 
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