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Abstract  
 

Logical classification methods normally involve the compilation and solution of logical 

equations with variables that take values of 1 and 0, depending on whether the given object 

has a certain property or not. The solution of such equations makes it possible either to 

identify an object by the available sets of values of attribute variables, or to establish 

unknown properties of a given object. A natural generalization of the Boolean algebra 

equations is equations of the finite predicate algebra, which makes it possible to operate with 

arbitrary attribute variables defined on different finite sets. The use of such equations for 

constructing logical conclusions in knowledge bases allows expanding the capabilities of 

Boolean logical methods for object recognition and classification. When classifying objects, 

one deals with sets of features, selecting some values of which it is possible to identify 

whether the object under consideration belongs to a certain class.  In this paper a method for 

investigating links between discrete object features is presented. Also, different types of 

predicate equations are considered. When analyzing links between salient data features, we 

often encounter quite complicated systems of logic equations that, nevertheless, can be 

simplified owing to their specific properties. A real-world medical example has been 

considered to demonstrate the procedure of eliminating non-salient features. 
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1. Introduction 

Knowledge representation and interpretation plays an important part in various fields of computer 

science. To formalize information about objects and processes in knowledge bases, various methods 

of discrete mathematics are used. In cases where information about objects and processes, represented 

by discrete information features, has a rather complex logical structure, various methods and models 

of discrete mathematics, including logical equations with Boolean variables, are used for its formal 

presentation.  

Logical classification methods normally involve the compilation and solution of logical equations 

with variables that take values of 1 and 0, depending on whether the given object has a certain 

property or not. The solution of such equations makes it possible either to identify an object by the 

available sets of values of attribute variables, or to establish unknown properties of a given object. A 

natural generalization of the Boolean algebra equations is equations of the finite predicate algebra, 

which makes it possible to operate with arbitrary attribute variables defined on different finite sets. 
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The use of such equations for constructing logical conclusions in knowledge bases allows expanding 

the capabilities of Boolean logical methods for object recognition and classification. When classifying 

objects, one deals with sets of features, selecting some values of which it is possible to identify 

whether or not the object under consideration belongs to a certain class.  In this paper a method for 

investigating links between discrete object features is presented. Also, different types of predicate 

equations are considered. When analyzing links between salient data features, we often encounter 

quite complicated systems of logic equations that, nevertheless, can be simplified owing to their 

specific properties. Excluding extra variables with the help of the quantifiers leads to the 

simplification of the original system of predicate equations. A real-world medical example has been 

considered to demonstrate the procedure of eliminating non-salient features. 

 

2. Related works 

Many practical problems lead to the necessity of using logic classification methods. For example, 

in [1] binary feature vectors are classified. The proposed method can be used in a variety of 

classification problems in different industries. The process of classification is reduced to investigating 

logical-dynamic systems depending on some initial states. In [2] corrective functions for object 

recognition logical methods are constructed. An interesting algorithm for logic classification with the 

help of correcting functions has been proposed. In [3] logical data classification has been used for the 

analysis of hyperspectral data. Some combinatorial issues of logic classification have been 

highlighted in [4]. The authors have applied their research to Alzheimer’s Disease Proteomics 

Expression classification. In [5] logical algorithmic methods for building decision trees have been 

considered. A logic-based classification method for text recognition has been proposed in [6]. In [7] 

logic machine learning approach has been suggested. The authors have developed a special logic 

classifier. Logic-based design of a strong classifier with the help of weak classifiers has been 

considered in [8]. A combination of various methods including logic classification has been tested in 

[9]. A method for the classification of text messages based on logical extraction has been considered 

in [10]. In [11] finite predicate networks have been investigated for radar detection. A new approach 

to logic classification and recognition has been suggested in [12]. Subsystems of Boolean equation 

systems have been studied in [13]. A method for distributed solving logic equations has been 

presented in [14]. In [15] some specific types of logic functions are considered. The focus if on 

symmetric functions that are widely used for classification purposes. Entropy issues in Boolean 

networks have been highlighted in [16]. Logic-predicate networks have been investigated in [17]. 

Using predicates for classifying access issues on the Internet of things has been considered in [18]. 

Many works devoted to classification often use Boolean algebra, fuzzy logic or neural networks as 

main mathematical tools [19]. Logic approaches to fact-based analysis have been highlighted in [20]. 

3. Methodology for analyzing logic links between salient data features in 
systems of predicate equations 

A universal way to solve systems of equations of the algebra of finite predicates is to reduce the 

predicate given by the system of equations and initial conditions to a perfect disjunctive normal form. 

However, such a procedure involves enumeration of many intermediate solutions, and its practical 

implementation requires a significant amount of computer time. For some types of predicate 

equations, taking into account the peculiarities of their structure, it is possible to develop simpler 

algorithms for solving them.  

In many practical tasks related to the semantic processing of medical data, natural language 

information, customer data, there is no need to obtain all sets of values of semantic features, but it is 

required to obtain one or more sets of values of features (target variables) that are of interest to the 

user. It is often necessary to find the values of target variables under given initial conditions, which 

are a fixed set of values of other features. When solving such problems, other variables that are not 



included in the initial conditions and are not target variables are excluded from the equation by 

linking them with existential quantifiers. 

Unlike Boolean variables, predicate variables provide more flexibility in discovering necessary 

features. For example, let us consider the following dependencies: 

 

𝑦𝑎1 → 𝑥1
𝑏1  ∨  𝑥1

𝑏2, 

𝑦𝑎2 → 𝑥1
𝑏3  ∨  𝑥1

𝑏4, 

𝑦𝑎3 → 𝑥1
𝑏5  ∨  𝑥1

𝑏6, 

 

where domains for 𝑦 and 𝑥1 are {𝑎1, 𝑎2 , 𝑎3} and {𝑏1, 𝑏2 , 𝑏3, 𝑏4, 𝑏5 , 𝑏6} correspondingly. If 𝑦 = 𝑎1, 

then 𝑥1 = 𝑏1 or 𝑥1 = 𝑏2. On the other hand, it follows from the first expression, that  

 

¬(𝑥1
𝑏1  ∨  𝑥1

𝑏2) → ¬𝑦𝑎1 , 

 

which means 

 

𝑥1
𝑏3  ∨  𝑥1

𝑏4  ∨ 𝑥1
𝑏5  ∨  𝑥1

𝑏6 → 𝑦𝑎2 ∨ 𝑦𝑎3 . 

 

Thus, if 𝑥1 takes on a value from the set {𝑏3, 𝑏4, 𝑏5 , 𝑏6}, the object property 𝑦 takes on values 

either 𝑎2 or 𝑎3. 

Finite predicates algebra gives us an opportunity to interpret knowledge in a strict mathematical 

form, where different features and their values are connected with the help of Boolean and predicate 

operations. The classical form of a logic equation with finite predicates is as follows: 

 

𝑓(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1, 

 

where each variable takes on values from a finite set of elements, and in the general case these 

domains can be different. In practice, we can encounter problems with many equations. In this case a 

problem can be resolved by solving a system of equations: 

 

𝑓1(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1, 
𝑓2(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1, 

… 

𝑓𝑚(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1. 

 

If needed, this system can be rewritten as a conjunction of the above equations and represented in 

the form of a single equation: 

 

𝑓1(𝑥1, 𝑥2 , … , 𝑥𝑛)⋀𝑓2(𝑥1, 𝑥2 , … , 𝑥𝑛)⋀…⋀𝑓𝑚(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1. 

 

For such equations we can define some problems that can be resolved: 

1. Find all possible sets of variable values that satisfy these equations. This problem is 

obviously difficult as there is exponential growth in calculations. 

2. Determine whether the system has a solution 

3. Determine whether it has a single solution 

4. Find some important combinations of variable values that satisfy the system 

5. Solve the system under some initial conditions. 

Consider the following system of predicate equations: 

 

𝑦𝑎1 → 𝑔1(𝑥1, 𝑥2 , … , 𝑥𝑛), 
𝑦𝑎2 → 𝑔2(𝑥1, 𝑥2 , … , 𝑥𝑛), 

… 

𝑦𝑎𝑚 → 𝑔𝑚(𝑥1, 𝑥2 , … , 𝑥𝑛). 



 

It means that when the feature 𝑦 takes on a value 𝑎𝑖, a set of values for the variables 𝑥1, 𝑥2 , … , 𝑥𝑛 

should satisfy the equation 

  

                                                            𝑔𝑖(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1,                                                               (1) 

 

which means that if an object possesses the property 𝑎𝑖 then the features 𝑥1, 𝑥2 , … , 𝑥𝑛 should satisfy 

the above equation. 

Generally speaking, the converse is not necessarily true. If 𝑔𝑖(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1, 𝑦 does not 

necessarily take on the value 𝑎𝑖. Consider a stronger dependence: 

 

                                                     𝑦𝑎1 = 𝑔1(𝑥1, 𝑥2 , … , 𝑥𝑛), 
                                                     𝑦𝑎2 = 𝑔2(𝑥1, 𝑥2 , … , 𝑥𝑛), 
                                                                  …                                                                                                 

                                                     𝑦𝑎𝑚 = 𝑔𝑚(𝑥1, 𝑥2 , … , 𝑥𝑛). 
 

In this case any set of values of the features 𝑥1, 𝑥2 , … , 𝑥𝑛 either confirms the fact that 𝑦 equals  𝑎𝑖 
or not (belongs to the corresponding class or not). If the object has the property 𝑎𝑖, its features should 

satisfy (1). Thus, we can classify the feature 𝑦 by values of the features 𝑥1, 𝑥2 , … , 𝑥𝑛. Also, it can be 

easily shown that the conjunction of any two different functions 𝑔𝑖 and 𝑔𝑗 is equal to zero. It follows 

from the basic properties of recognition predicates. It can be shown that the above system is 

equivalent to the following equation: 

 

𝑦𝑎1𝑔1(𝑥1, 𝑥2 , … , 𝑥𝑛) ∨ 𝑦
𝑎2𝑔2(𝑥1, 𝑥2 , … , 𝑥𝑛) ∨ …∨ 𝑦

𝑎𝑚𝑔𝑚(𝑥1, 𝑥2 , … , 𝑥𝑛) = 1.                 (2) 

 

Logic methods for object classification are applied for solving practical problems from a variety of 

fields: biology, physics, meteorology etc. Their specifics can be discovered at the stage of building a 

mathematical model including data features. Normally propositional logic is used for this purpose. 

We suggest an approach based on finite predicate algebra. Let us build a general form of such tasks 

based on predicate equations.  

Let feature variables 𝑦1, 𝑦2 , … , 𝑦𝑙 denote some properties of objects, for example, a disease like 

flue. Each variable takes on its values from its domain. Unlike Boolean variables, predicate variables 

can take on values from different domains.  

Let discrete variables 𝑥1, 𝑥2 , … , 𝑥𝑛 be features by sets of which we can determine which values the 

property variables can take on. Properties and features can be connected in the form of some 

complicated logic dependencies that can be represented as a predicate equation: 

                                                  𝑃(𝑦1, 𝑦2 , … , 𝑦𝑙;  𝑥1, 𝑥2 , … , 𝑥𝑛) = 1,                                                  (3) 

where P is a finite predicate. 

To classify an object under consideration means to determine based on this predicate equation and 

experimental data on the features 𝑥1, 𝑥2 , … , 𝑥𝑛, which properties (values of the features 𝑦1, 𝑦2 , … , 𝑦𝑙) 
this object possesses, and which properties are not satisfied. Each elementary conjunction, for 

example, 

 

𝑥1
𝑎11𝑥2

𝑎12…𝑥𝑛
𝑎1𝑛, 

𝑥1
𝑎21𝑥2

𝑎22…𝑥𝑛
𝑎2𝑛, 

… 

𝑥1
𝑎𝑚1𝑥2

𝑎𝑚2…𝑥𝑛
𝑚𝑛 

 

characterizes an object class. Then, based on the a priori dependence (3) and experimental data on the 

features 𝑥1, 𝑥2 , … , 𝑥𝑛, it is possible to determine to which class the given object belongs. As can be 

seen from the above considerations, the values of features are grouped into a matrix. 

Suppose that as an experiment outcome we have obtained some data related to values of the 

features 𝑥1, 𝑥2 , … , 𝑥𝑛 that describe the object being classified and composed the following predicate 

equation describing links between them: 



 

𝑔( 𝑥1, 𝑥2 , … , 𝑥𝑛) = 1. 

 

The problem of object classification can be formalized as solving the following predicate 

equation by finding an unknown predicate 𝑓: 

 

𝑔( 𝑥1, 𝑥2 , … , 𝑥𝑛) → 𝑓(𝑦1, 𝑦2 , … , 𝑦𝑙). 
 

By solving this functional equation, it is possible to determine feature values 𝑥1, 𝑥2 , … , 𝑥𝑛 that 

characterize the objects  𝑦1, 𝑦2 , … , 𝑦𝑙 .  
In studies related to logical inferences in knowledge bases, questions arise in determining the 

tightness of the links between the features of these objects, as well as questions of their materiality 

and insignificance. Apparently, we can consider the formal relationship between features to be 

stronger, the fewer sets of values of these variables satisfy the equation. In this case, if any sets of 

values of these variables satisfy the original equation, we can assume that there is no connection 

between these variables. 

In addition, when solving practical problems, the following questions arise: 

1. How will the specific values of this feature, substituted into the logical equation, affect the 

links between the other features? 

2. How strong is the logical relationship between two (or more) given features? 

To answer the first question, it seems natural to single out those predicates (and, accordingly, 

equations) that, when a certain attribute value is substituted, are transformed into predicates that give 

a stronger connection between variables, as well as such predicates, substitution into which this value 

leads to a weakening of the logical connection between signs. 

To get an answer to the second question, it is necessary to exclude from the original equation with 

the help of the existence or universal quantifier all variables except those under consideration and 

study the resulting equation with a smaller number of variables, which describes all admissible sets of 

values of the features under study. 

Let us consider the procedure of feature selection, where the number of features can be reduced. 

Here we can encounter the following problems: 

We may need to find some sets of feature values that interest us where there is at least one value of 

non-salient features such that there exists at least one set of values of salient features. In this case we 

apply an existence quantifier to the set of non-salient values. 

We may need to find some sets of feature values, where for any set of non-salient features there 

exists at least one solution of the equation. In this case we apply a universal quantifier to non-salient 

variables. 

We may need to find some sets of feature values that satisfy the equation under the condition that 

non-salient features take on some specific values. 

Let predicate P depend on the variables 𝑥, 𝑦, … , 𝑧. Define the substitution operator a(P) (a belongs 

to the domain of the definition of the variable x ) acting on the predicate P as follows: 

𝑎(𝑃(𝑥, 𝑦, … , 𝑧) = 𝑃(𝑎, 𝑦, … , 𝑧). 
Let’s call the substitution operator restrictive if the following condition is met 

𝑃(𝑎, 𝑦, … , 𝑧) → 𝑃(𝑥, 𝑦, … , 𝑧) 
for all 𝑥, 𝑦, … , 𝑧. 

Call the subsitution operator distributive if the condition is met 

 

𝑃(𝑎, 𝑦, … , 𝑧) ← 𝑃(𝑥, 𝑦, … , 𝑧) 
for all 𝑥, 𝑦, … , 𝑧. 

When interpreting knowledge represented by this implication, we can say that estrictive operators 

reinforce the logical relationship between discrete features, distributing substitution operators weaken 

this relationship, shifting the relationship between features in an arbitrary way. 

Consider the predicate P as follows: 

 



𝑃(𝑥, 𝑦, … , 𝑧) = 𝑥𝑎1𝑃1(𝑦, … , 𝑧) ∨ 𝑥
𝑎2𝑃2(𝑦, … , 𝑧) ∨ …

 ∨ 𝑥𝑎𝑛𝑃𝑛(𝑦, … , 𝑧).
 

Then  

𝑎1(𝑃) = 𝑃1(𝑦, … , 𝑧) = 𝑥
𝑎1𝑃1(𝑦, … , 𝑧) ∨ 𝑥

𝑎2𝑃1(𝑦, … , 𝑧) ∨ …

 ∨ 𝑥𝑎𝑛𝑃1(𝑦, … , 𝑧).
 

It is obvious that the predicate 𝑎1(𝑃) will be contracting, if 𝑃1 → 𝑃𝑖∀𝑖 = 1,2, … , 𝑛. 

The operator 𝑎1(𝑃) will be distributing, if 𝑃1 ← 𝑃𝑖∀𝑖 = 1,2, … , 𝑛. 

Let us consider examples of the application of the operator 𝑎1 to the predicate 𝑃(𝑥, 𝑦), where the 

variables 𝑥, 𝑦 and 𝑧 have the domains {𝑎1, 𝑎2}, {𝑏1, 𝑏2} и {𝑐1, 𝑐2} correspondingly. 

Let  

𝑃 = 𝑥𝑎1𝑦𝑏1𝑧𝑐1 ∨ 𝑥𝑎2𝑦𝑏1𝑧𝑐2 ∨ 𝑥𝑎2𝑦𝑏1𝑧𝑐1 . 

Then  

𝑎1(𝑃) = 𝑦
𝑏1𝑧𝑐1 = (𝑥𝑎1 ∨ 𝑥𝑎2)&𝑦𝑏1𝑧𝑐1 =

 = 𝑥𝑎1𝑦𝑏1𝑧𝑐1 ∨ 𝑥𝑎2𝑦𝑏1𝑧𝑐1 .
 

Except for the disjuncts that the predicate 𝑎1(𝑃) contains 𝑃 includes one more disjunct 𝑥𝑎2𝑦𝑏1𝑐𝑐1, 

i.e. the operator 𝑎1 is a restricting one for the predicate 𝑃. According to the introduced definitions, in 

the given example 𝑃1 = 𝑦
𝑏1𝑧𝑐1 , 𝑃2 = 𝑦

𝑏1𝑧𝑐2 ∨ 𝑦𝑏1𝑧1
𝑐1  . It is obvious here that 𝑃1 → 𝑃2. Consider now 

the predicate 

𝑃 = 𝑥𝑎1𝑦𝑏1𝑧𝑐1 ∨ 𝑥𝑎1𝑦𝑏1𝑧𝑐2 ∨ 𝑥𝑎2𝑦𝑏1𝑧𝑐1 ,

𝑎1(𝑃) = 𝑦𝑏1𝑧𝑐1 ∨ 𝑦𝑏1𝑧𝑐2 = (𝑥𝑎1 ∨ 𝑥𝑎2)&

&(𝑦𝑏1𝑧𝑐1 ∨ 𝑦𝑏1𝑧𝑐2) = 𝑥𝑎1𝑦1𝑏1𝑐1 ∨ 𝑥
𝑎2𝑦𝑏1𝑧𝑐2 ∨

∨ 𝑥𝑎2𝑦𝑏1𝑧𝑐1 ∨ 𝑥𝑥𝑎2𝑏1𝑏
𝑐2 .

 

The 𝑎1operator for this predicate is obviously a distributing one. In this example 

𝑃1 = 𝑦
𝑏1𝑧𝑐1 ∨ 𝑦𝑏1𝑧𝑐2, and 𝑃2 = 𝑦

𝑏1𝑧𝑐2, i.e. 𝑃1 ← 𝑃2. 

In order to answer the second question, it is necessary to exclude from the original equation all 

variables except those considered, and to investigate the resulting equation with fewer variables, 

describing all valid feature value sets. The work [21] considers a fairly wide class of predicates for 

which it is possible to specify an efficient algorithm for eliminating variables without increasing the 

size of the original formula. We extend here this class by adding some additional properties. Consider 

the following properties of the existence quantifier: 

1. ∃𝑥𝑥𝑎 = 1. 

2. ∃𝑥¬𝑥𝑎 = 1. 

3. ∃𝑥(¬(𝑃(𝑥)𝑄(𝑥))) = ∃𝑥¬𝑃(𝑥) ∨ ∃𝑥¬𝑄(𝑥). 

4. ∃𝑥(𝑃(𝑥) ∨ 𝑄(𝑥)) = ∃𝑥𝑃(𝑥) ∨ ∃𝑥𝑄(𝑥). 

5. ∃𝑥(𝑃(𝑥)&𝑄(𝑦) = ∃𝑥𝑃(𝑥)&𝑄(𝑦). 

6. ∃𝑦(𝑃(𝑥) → 𝑄(𝑦)) = 𝑃(𝑥) → ∃𝑦𝑄(𝑦). 

7. ∃𝑦(𝑃(𝑥) → 𝑄(𝑦)) = 𝑃(𝑥) → ∃𝑦𝑄(𝑦). 

8. Suppose 𝑃𝑖(𝑥)&𝑃𝑗(𝑥) = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘, then: 

∃𝑦((𝑃1(𝑥) → 𝑄1(𝑦))&(𝑃2(𝑥) → 𝑄2(𝑦))&…

&(𝑃𝑘(𝑥) → 𝑄𝑘(𝑦))) = (𝑃1(𝑥) → ∃𝑦𝑄1(𝑦))&

&(𝑃2(𝑥) → ∃𝑦𝑄2(𝑦))&…&(𝑃𝑘(𝑥) → ∃𝑦𝑄𝑘(𝑦)).

 

9. If the identity 𝑃𝑖(𝑥) ≡ 0 is not true for any 𝑖 = 1,2, … , 𝑘  and  𝑃𝑖(𝑥)&𝑃𝑗(𝑥) = 0  fo 𝑖 ≠

𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘, then: 

∃𝑥((𝑃1(𝑥) → 𝑄1(𝑦))&(𝑃2(𝑥) → 𝑄2(𝑦))&…

&(𝑃𝑘(𝑥) → 𝑄𝑘(𝑦))) = 𝑄1(𝑦) ∨ 𝑄2(𝑦) ∨ …∨ 𝑄𝑘(𝑦).
 



The properties listed above allow describing a broad class of finite predicates (correspondingly 

equations) defined on the set of variables {𝑥, 𝑦, … , 𝑧}, for which it is easy to find links between 

selected variables without any increase in the size of the original formulas. Let us define such a class 

recursively. 

1. All “recognitions” 𝑥𝑎 , 𝑥𝑏 , … , 𝑥𝑐(𝑎, 𝑏, … , 𝑐 − symbols belonging to the domain for the 

variable 𝑥 ) belong to Δ𝑥. 

2. All the negations ¬𝑥𝑎 , ¬𝑥𝑏 , … , ¬𝑥𝑐 belong to Δ𝑥. 

3. If predicates ¬𝑃(𝑥), ¬𝑄(𝑥) belong to Δ𝑥, then the predicate ¬(𝑃(𝑥)𝑄(𝑥)) belong to Δ𝑥 

4. Any predicate not depending on the variable 𝑥, belongs to Δ𝑥. 

5. If predicates 𝑃1 and 𝑃2 belong to Δ𝑥, then the predicate 𝑃 = 𝑃1 ∨ 𝑃2 belongs to Δ𝑥. 

6. If the predicate 𝑃1 belongs to Δ𝑥, and the predicate 𝑃2 does not depend on 𝑥, then the 

predicate 𝑃 = 𝑃1&𝑃2 belongs to Δ𝑥. 

7. If the predicate 𝑃1 does not depend on 𝑥, and the predicate 𝑃2 belongs to Δ𝑥, then the 

predicate 𝑃 = 𝑃1 → 𝑃2 belongs to Δ𝑥. 

8. Let predicates 𝑃1, 𝑃2, … , 𝑃𝑘 do not depend on 𝑥; 𝑃𝑖&𝑃𝑗 = 0  for  𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘,   

predicates 𝑄1, 𝑄2, … , 𝑄𝑘 belong to Δ𝑥; then 

𝑃 = (𝑃1 → 𝑄1)&(𝑃2 → 𝑄2)&…&(𝑃𝑘 → 𝑄𝑘) 
belongs to Δ𝑥. 

9. If the predicates 𝑃1, 𝑃2, … , 𝑃𝑘 depend only on 𝑥, 𝑃𝑖&𝑃𝑗 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘; for any 

𝑖 = 1,2, … , 𝑘 the identity 𝑃𝑖 ≡ 0 is not true; predicates 𝑄1, 𝑄2, … , 𝑄𝑘 do not depend on 𝑥; then 

the predicate  

𝑃 = (𝑃1 → 𝑄1)&(𝑃2 → 𝑄2)&…&(𝑃𝑘 → 𝑄𝑘) 
belongs to Δ𝑥. 

One may need also to exclude extra variables with the help of the universal quantifier. In this case 

we can use the following properties of this quantifier: 

1. ∀𝑥𝑥𝑎 = 0. 

2. ∀𝑥¬𝑥𝑎 = 0. 

3. ∀𝑥¬(𝑃(𝑥) ∨ 𝑄(𝑥)) = ∀𝑥¬𝑃(𝑥)&∀𝑥¬𝑄(𝑥) 

4. ∀𝑥(𝑃(𝑥)&𝑄(𝑥)) = ∀𝑥𝑃(𝑥)&∀𝑥𝑄(𝑥). 

5. ∀𝑥(𝑃(𝑥) ∨ 𝑄(𝑦) = ∀𝑥𝑃(𝑥) ∨ 𝑄(𝑦). 

6. ∀𝑦(𝑃(𝑥)&𝑄(𝑦)) = 𝑃(𝑥)&∀𝑦𝑄(𝑦). 

7. Suppose 

𝑃𝑖(𝑥)&𝑃𝑗(𝑥) = 0,  𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘, 

then: 

∀𝑦((𝑃1(𝑥)&𝑄1(𝑦)) ∨ (𝑃2(𝑥)&𝑄2(𝑦)) ∨ …

∨ (𝑃𝑘(𝑥)&𝑄𝑘(𝑦))) = (𝑃1(𝑥)&∀𝑦𝑄1(𝑦)) ∨

 ∨ (𝑃2(𝑥)&∀𝑦𝑄2(𝑦)) ∨ …∨ (𝑃𝑘(𝑥)&∀𝑦𝑄𝑘(𝑦)).

 

8. If the identity 𝑃𝑖(𝑥) ≡ 0 is not true for any  𝑖 = 1,2, … , 𝑘  and  𝑃𝑖(𝑥)&𝑃𝑗(𝑥) = 0  for 𝑖 ≠

𝑗, 𝑗 = 1,2, … , 𝑘, then: 

∀𝑥((𝑃1(𝑥)&𝑄1(𝑦)) ∨ (𝑃2(𝑥)&𝑄2(𝑦)) ∨ …

∨ (𝑃𝑘(𝑥)&𝑄𝑘(𝑦))) = 𝑄1(𝑦)&𝑄2(𝑦)&…&𝑄𝑘(𝑦).
 

We can recursively define a class of predicates Σ𝑥 from which it is possible to exclude the variable 𝑥 

without an increase in the size of the formula: 

1. All the “recognitions” 𝑥𝑎 , 𝑥𝑏 , … , 𝑥𝑐 belong to Σ𝑥.  

2. All the negations ¬𝑥𝑎 , ¬𝑥𝑏 , … , ¬𝑥𝑐 that do not depend on 𝑥 belong to Σ𝑥. 

3. If ¬𝑃1 and ¬𝑃2 belong to Σ𝑥, then ¬(𝑃1 ∨ 𝑃2) belongs to Σ𝑥. 

4. If predicates 𝑃1 and 𝑃2 belong to Σ𝑥, then the predicate 𝑃 = 𝑃1&𝑃2 belongs to Σ𝑥. 



5. If a 𝑃1 belongs to Σ𝑥, and a predicate 𝑃2 do not depend on 𝑥, then the predicate 𝑃 = 𝑃1 ∨ 𝑃2 

belongs to Σ𝑥. 

6. If a predicate 𝑃1 does not depend on 𝑥, and a predicate 𝑃2 belongs to Σ𝑥, the predicate 𝑃 =

𝑃1&𝑃2 belongs to Σ𝑥. 

7. Suppose predicates 𝑃1, 𝑃2, … , 𝑃𝑘 do not depend on 𝑥, 𝑃𝑖&𝑃𝑗 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘; 

predicates 𝑄1, 𝑄2, … , 𝑄𝑘 belong to Σ𝑥, then 

𝑃 = (𝑃1&𝑄1) ∨ (𝑃2&𝑄2) ∨ …∨ (𝑃𝑘&𝑄𝑘) 

belongs to Σ𝑥. 

8. If predicates 𝑃1, 𝑃2, … , 𝑃𝑘 depend only on 𝑥, 𝑃𝑖&𝑃𝑗 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝑘; for any 𝑖 =

1,2, … , 𝑘 the identity 𝑃𝑖 ≡ 0 is not true, predicates 𝑄1, 𝑄2, … , 𝑄𝑘 do not depend on 𝑥, then the 

predicate 𝑃 = (𝑃1&𝑄1) ∨ (𝑃2&𝑄2) ∨ …∨ (𝑃𝑘&𝑄𝑘) belongs to Σ𝑥.  

4. Experiment and results 

Let us consider a medical example and investigate links between features. The predicate variables 

are interconnected with systems of logic equations. Solving these equations allows attributing the 

objects under consideration to a certain class, which characterizes determining the risk group of a 

patient related to some diseases.  

The plan of the experiment is as follows. We use real-world medical data and code them with the 

help of predicate equations. We note that although some variables can take on values “unknown”, this 

is nevertheless a case of the closed world as “unknown” just means a value from the alphabet on 

which a variable is defined. Thus, every domain for any variable is closed. After we have written a 

system of equations with the help of experts, we start deleting variables that we consider non-salient 

at the moment. It does not mean that in other cased other variables will be considered as non-salient. 

Salient variables are those for which we want to determine logic links As an output, we obtain an 

equation where non-salient variables are deleted. The resulting equation is simpler than the original 

system, and it is possible to analyze links between salient variables in a simpler way. 

If we consider the information screening of medical data for assessing the development and 

prevention of heart and vessel diseases [22], we can select a set of features for formalizing screening 

procedures. Let us consider the following features and their values: 

Gender: 𝑋1 = {𝑥1
1, 𝑥1

2}, where 𝑥1
1 means a woman, 𝑥1

1 means a man.  

Age: 𝑋2 = {𝑥2
1, 𝑥2

2, 𝑥2
3}, where 𝑥2

1 is less than 40 years, 𝑥2
2 is from 40 to 50 years, 𝑥2

3 is greater 

than 50 years. 

Diabetes mellitus: 𝑋3 = {𝑥3
1, 𝑥3

2, 𝑥3
3, 𝑥3

4}, where 𝑥3
1 – yes, 𝑥3

2 – no (actual diagnosis), 𝑥3
3 – no (not 

actual diagnosis),  𝑥3
4 – unknown. 

Arterial hypertension: 𝑋4 = {𝑥4
1, 𝑥4

2, 𝑥4
3, 𝑥4

4}, where 𝑥4
1 – yes, 𝑥4

2 – no (actual diagnosis), 𝑥4
3 – no 

(not actual diagnosis), 𝑥4
4 – unknown. 

Kidney problems: 𝑋5 = {𝑥5
1, 𝑥5

2, 𝑥5
3}, where 𝑥5

1 – yes, 𝑥5
2 – no, 𝑥5

3 – unknown. 

Tachycardia: 𝑋6 = {𝑥6
1, 𝑥6

2, 𝑥6
3, 𝑥6

4, 𝑥6
5}, where 𝑥6

1 – yes (actual diagnosis), 𝑥6
2 – yes (not actual 

diagnosis), 𝑥6
3 – no (actual diagnosis), 𝑥6

4 – no (not actual diagnosis), 𝑥6
5 – unknown. 

Here 

dity of heart and vessel diseases: 𝑋7 = {𝑥7
1, 𝑥7

2, 𝑥7
3}, where 𝑥7

1 – yes, 𝑥7
2 – no, 𝑥7

3 – unknown.  

Smoking: 𝑋8 = {𝑥8
1, 𝑥8

2, 𝑥8
3}, where 𝑥8

1 – yes, 𝑥8
2 – no, 𝑥8

3 – unknown. 

Alcohol problems: 𝑋9 = {𝑥9
1, 𝑥9

2, 𝑥9
3}, where 𝑥9

1 – yes, 𝑥9
2 – no, 𝑥9

3 – unknown. 

Hypodinamia: 𝑋10 = {𝑥10
1 , 𝑥10

2 , 𝑥10
3 }, where 𝑥10

1  – yes, 𝑥10
2  – no, 𝑥10

3  – unknown. 

These features allow developing a model for identifying diagnostic parameters, with the help of 

which it is possible to determine a group of patient health 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}, where 𝑟1 is a low risk of 

heart and vessel diseases, 𝑟2 is a moderate risk, 𝑟3 is a high risk, 𝑟4 is a very high risk.  

For determining a health group, a set of aggregated features 𝑄1 − 𝑄3 can be used, where 𝑄1 is 

expressed in terms of 𝑋1 and 𝑋2, 𝑄2 is expressed in terms of 𝑋7 to 𝑋10, 𝑄3 is expressed in terms of 𝑋3 

– 𝑋6. 



The values of each health group and each aggregated feature is divided into four classes according 

to the corresponding medical technological documentation (unified clinical protocol and local 

protocols related to the prevention of heart and vessel diseases. 

For example, for forming the feature 𝑄2, the following system of predicate equations can be 

formed: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑞2

1 = 𝑥7
2𝑥8

2 (𝑥9
2 ∨ 𝑥9

3(𝑥10
2 ∨ 𝑥10

3 )) ∨ 𝑥7
2𝑥8

3𝑥9
2𝑥10

2 ∨ 𝑥7
3𝑥8

2𝑥10
2 (𝑥9

2 ∨ 𝑥9
3)

𝑞2
2 = 𝑥7

2 (𝑥8
1(𝑥9

1𝑥10
2 ∨ 𝑥9

2) ∨ 𝑥9
3(𝑥8

1𝑥10
2 ∨ 𝑥8

2𝑥10
1 )) ∨ (𝑥7

2(𝑥8
2𝑥9

1 ∨ 𝑥8
3𝑥9

2) ∨ (𝑥7
2𝑥9

3 ∨ 𝑥7
3𝑥9

1)𝑥8
3𝑥10

2 ∨

∨ (𝑥7
2𝑥8

3 ∨ 𝑥7
3𝑥8

2)𝑥9
1(𝑥10

2 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
2(𝑥9

2 ∨ 𝑥9
3)) (𝑥10

1 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
1(𝑥9

2𝑥10
2 ∨ 𝑥9

3) ∨

∨ 𝑥7
3𝑥8

3𝑥9
2(𝑥10

1 ∨ 𝑥10
2 ),

𝑞2
3 = 𝑥7

1𝑥10
2 (𝑥8

1𝑥9
2 ∨ 𝑥8

2(𝑥9
1 ∨ 𝑥9

2)) ∨ (𝑥7
1𝑥9

3(𝑥8
1 ∨ 𝑥8

2) ∨ (𝑥7
1𝑥8

3 ∨ 𝑥7
3𝑥8

1)𝑥9
1)(𝑥10

2 ∨ 𝑥10
3 ) ∨

∨ 𝑥7
1𝑥8

3(𝑥9
2 ∨ 𝑥9

3) ∨ (𝑥7
2(𝑥8

1(𝑥9
1 ∨ 𝑥9

3) ∨ 𝑥8
3𝑥9

3) ∨ (𝑥7
2𝑥8

3 ∨ 𝑥7
3𝑥8

2)𝑥9
1𝑥10

1 ∨

∨ 𝑥7
3(𝑥8

1𝑥9
2 ∨ 𝑥8

3𝑥9
1)) (𝑥10

1 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
3(𝑥9

2𝑥10
3 ∨ 𝑥9

3),

𝑞2
4 = 𝑥7

1𝑥9
3𝑥10

1 (𝑥8
1 ∨ 𝑥8

2) ∨ (𝑥7
1𝑥8

3 ∨ 𝑥7
3𝑥8

1)𝑥9
1𝑥10

1 ∨ (𝑥7
1𝑥8

2𝑥9
1 ∨ 𝑥7

1𝑥9
2(𝑥8

1 ∨ 𝑥8
2)) (𝑥10

1 ∨ 𝑥10
3 ) ∨ 𝑥7

1𝑥8
1𝑥9

1.

 

 

The final classification can be expressed by the following system: 

 

 

{
 
 
 

 
 
 
𝑟1 = 𝑞1

1𝑞2
1(𝑞3

1 ∨ 𝑞3
2) ∨ (𝑞1

1𝑞2
2 ∨ (𝑞1

2 ∨ 𝑞1
3)𝑞2

1)𝑞3
1,

𝑟2 = 𝑞1
1(𝑞2

1𝑞3
3 ∨ 𝑞2

2𝑞3
2) ∨ (𝑞1

1(𝑞2
3 ∨ 𝑞2

4) ∨ 𝑞1
2(𝑞2

2 ∨ 𝑞2
3) ∨ 𝑞1

3𝑞2
2 ∨ 𝑞1

4(𝑞2
1 ∨ 𝑞2

2)) (𝑞3
1 ∨ 𝑞3

2) ∨

∨ (𝑞1
2 ∨ 𝑞1

3)𝑞2
1(𝑞3

2 ∨ 𝑞3
3) ∨ (𝑞1

2𝑞2
4 ∨ (𝑞1

3 ∨ 𝑞1
4)𝑞2

3)𝑞3
1,

𝑟3 = 𝑞2
1𝑞3

4 ∨ (𝑞1
1 ∨ 𝑞1

2 ∨ 𝑞1
3)(𝑞2

2 ∨ 𝑞2
3)(𝑞3

3 ∨ 𝑞3
4) ∨ 𝑞1

3𝑞3
2(𝑞2

3 ∨ 𝑞2
4) ∨ (𝑞1

3 ∨ 𝑞1
4)𝑞2

4𝑞3
1 ∨

∨ (𝑞1
1𝑞2

4 ∨ 𝑞1
4(𝑞2

1 ∨ 𝑞2
2)) 𝑞3

3 ∨ (𝑞1
2𝑞2

4 ∨ 𝑞1
4𝑞2

3)(𝑞3
2 ∨ 𝑞3

3),

𝑟4 = (𝑞1
1 ∨ 𝑞1

2)𝑞2
4𝑞3

4 ∨ 𝑞1
3𝑞2

4(𝑞3
3 ∨ 𝑞3

4) ∨ 𝑞1
4𝑞3

4(𝑞2
2 ∨ 𝑞2

3) ∨ 𝑞1
4𝑞2

4(𝑞3
2 ∨ 𝑞3

3 ∨ 𝑞3
4)

 

 

Let us investigate logic links between discrete features 𝑥1 – 𝑥10. First of all, let us rewrite the 

system of predicate equations in the following form (2): 

 

𝑃(𝑞2, 𝑥1, … , 𝑥10) = 𝑞2
1(𝑥7

2𝑥8
2 (𝑥9

2 ∨ 𝑥9
3(𝑥10

2 ∨ 𝑥10
3 )) ∨ 𝑥7

2𝑥8
3𝑥9

2𝑥10
2 ∨ 𝑥7

3𝑥8
2𝑥10

2 (𝑥9
2 ∨ 𝑥9

3)) ∨ 

∨ 𝑞2
2(𝑥7

2 (𝑥8
1(𝑥9

1𝑥10
2 ∨ 𝑥9

2) ∨ 𝑥9
3(𝑥8

1𝑥10
2 ∨ 𝑥8

2𝑥10
1 )) ∨ (𝑥7

2(𝑥8
2𝑥9

1 ∨ 𝑥8
3𝑥9

2) ∨ (𝑥7
2𝑥9

3 ∨ 𝑥7
3𝑥9

1)𝑥8
3𝑥10

2 ∨ 

∨ (𝑥7
2𝑥8

3 ∨ 𝑥7
3𝑥8

2)𝑥9
1(𝑥10

2 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
2(𝑥9

2 ∨ 𝑥9
3)) (𝑥10

1 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
1(𝑥9

2𝑥10
2 ∨ 𝑥9

3) ∨ 

∨ 𝑥7
3𝑥8

3𝑥9
2(𝑥10

1 ∨ 𝑥10
2 )) ∨ 

∨ 𝑞2
3(𝑥7

1𝑥10
2 (𝑥8

1𝑥9
2 ∨ 𝑥8

2(𝑥9
1 ∨ 𝑥9

2)) ∨ (𝑥7
1𝑥9

3(𝑥8
1 ∨ 𝑥8

2) ∨ (𝑥7
1𝑥8

3 ∨ 𝑥7
3𝑥8

1)𝑥9
1)(𝑥10

2 ∨ 𝑥10
3 ) ∨ 

∨ 𝑥7
1𝑥8

3(𝑥9
2 ∨ 𝑥9

3) ∨ (𝑥7
2(𝑥8

1(𝑥9
1 ∨ 𝑥9

3) ∨ 𝑥8
3𝑥9

3) ∨ (𝑥7
2𝑥8

3 ∨ 𝑥7
3𝑥8

2)𝑥9
1𝑥10

1 ∨ 

∨ 𝑥7
3(𝑥8

1𝑥9
2 ∨ 𝑥8

3𝑥9
1)) (𝑥10

1 ∨ 𝑥10
3 ) ∨ 𝑥7

3𝑥8
3(𝑥9

2𝑥10
3 ∨ 𝑥9

3)) ∨ 

∨ 𝑞2
4(𝑥7

1𝑥9
3𝑥10

1 (𝑥8
1 ∨ 𝑥8

2) ∨ (𝑥7
1𝑥8

3 ∨ 𝑥7
3𝑥8

1)𝑥9
1𝑥10

1 ∨ (𝑥7
1𝑥8

2𝑥9
1 ∨ 𝑥7

1𝑥9
2(𝑥8

1 ∨ 𝑥8
2)) (𝑥10

1 ∨ 𝑥10
3 ) ∨

𝑥7
1𝑥8

1𝑥9
1) = 1. 

 

It can be seen that this predicate belongs to the class Δ𝑥7. Let us investigate the link between all 

variables except 𝑥7. This elimination will give us the link between the variables 𝑞2, 𝑥1, …, 

𝑥6, 𝑥8, 𝑥9, 𝑥10: 

 

𝐹 = ∃𝑥7𝑃(𝑞2, 𝑥1, … , 𝑥10) = 

= 𝑞2
1(𝑥8

2 (𝑥9
2 ∨ 𝑥9

3(𝑥10
2 ∨ 𝑥10

3 )) ∨ 𝑥8
3𝑥9

2𝑥10
2 ∨ 𝑥8

2𝑥10
2 (𝑥9

2 ∨ 𝑥9
3)) ∨ 



∨ 𝑞2
2 (𝑥8

1(𝑥9
1𝑥10

2 ∨ 𝑥9
2) ∨ 𝑥9

3(𝑥8
1𝑥10

2 ∨ 𝑥8
2𝑥10

1 )) ∨ ((𝑥8
2𝑥9

1 ∨ 𝑥8
3𝑥9

2) ∨ (𝑥9
3 ∨ 𝑥9

1)𝑥8
3𝑥10

2 ∨ 

∨ (𝑥8
3 ∨ 𝑥8

2)𝑥9
1(𝑥10

2 ∨ 𝑥10
3 ) ∨ 𝑥8

2(𝑥9
2 ∨ 𝑥9
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It should be noted that the size of the original formula has not increased, which is because the 

predicate 𝑃(𝑞2, 𝑥1, … , 𝑥10) belongs to Δ𝑥7 . 

Suppose we are interested in the link between 𝑞2, 𝑥9, 𝑥10. Let us eliminate the other features from 

the predicate 𝐹(𝑥1, … , 𝑥10): 
 

𝐺(𝑞2, 𝑥9, 𝑥10) = ∃𝑥1∃𝑥2∃𝑥3∃𝑥4∃𝑥5∃𝑥6∃𝑥7∃𝑥8𝑃(𝑞2, 𝑥1, … , 𝑥10) = 
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Again, we have reduced the original formula and obtained a simpler dependence between selected 

medical features. After the necessary dependence is obtained, we can solve the resulting equation with 

one or several target variables.  

5. Conclusions and further research 

In this paper finite predicate equations of different types have been considered. The description of 

classification problems based on predicate equations have been presented. The problem of object 

classification on the basis of features taking on discrete values has been described mathematically as a 

solution of predicate equations. A broad class of predicates from which it is possible to delete extra 

variables and focus on links between salient variables has been described. A method for deleting non-

salient variables by the application of the existential quantifier has been suggested and demonstrated 

on a real-world medical example. 

Although some variables in the medical example can take on values “unknown”, we deal with the 

closed world here as “unknown” means just an element from the domain for the variable. All the 

domains are strictly defined and cannot be completed with any other elements. The main advantage of 

this method based on a specific structure of predicate systems lies in the fact that after deleting non-

salient variables the original system (or equation) is simplified, which is due to special properties of 

quantifiers. Salient variables are not necessarily fixed forever. It is up to researcher to decide what 

logic connections are important at the moment.  

As a further research direction, we are going to extend classes of predicates from which it is easy 

to delete non-salient variables Such classes are much more complicated than relational structures, but 

many practical problems require a corresponding knowledge representation and analysis.  
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