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Abstract  
As blockchain applications increase continuously, the number of smart contracts has exploded. 

However, an increasing number of hackers are mining the vulnerabilities hidden in smart 

contracts and using them to attack blockchain networks, causing serious consequences. To 

solve the problem of smart contract vulnerability, we propose W2V-SA, a static analysis 

method based on deep neural networks for vulnerability detection in smart contracts. This 

approach appraises the smart contracts before they are deployed to the blockchain network, to 

detect vulnerabilities timely. Firstly, converts smart contracts into vectors as input data by the 

word embedding method. Secondly, the hybrid deep neural network model is used to extract 

and classify features from the input data. Finally, efficient and accurate detection is achieved 

for six vulnerability types on real smart contracts. The experimental results indicate that the 

average accuracy of this method is more than 94% in smart contract vulnerability detection. 

The experimental results demonstrate the effectiveness of W2V-SA. 
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1. Introduction 

Smart contracts [1], as a core component of blockchain technology, play an important role in the 

application of blockchain technology. In the early stage, smart contracts were a scripting language for 

Bitcoin, mainly used to limit the input and output of transactions and implement some simple logical 

judgments, and they were very difficult to write and use. With the emergence of the Ethereum 

blockchain, Ethereum adopted smart contracts based on the solidity programming language, making it 

easy for developers to write and use smart contracts and implement more complex functions [2]. At this 

stage, more and more industry sectors are introducing blockchain technology, for example, in the 

logistics industry [3], blockchain technology makes the traceability of express delivery faster and more 

credible. In the field of information security [4], blockchain technology can ensure that evidence is not 

tampered with and is permanently preserved. Blockchain smart contracts have not only brought great 

innovation to the industry but also brought great convenience to human life [5]. 

However, blockchain has been under attack at any time since its inception. In recent years, more and 

more hackers have exploited vulnerabilities in smart contracts to attack blockchain networks, causing 

huge economic losses and trust crises in blockchain networks [6]. In 2016, hackers exploited 

vulnerabilities in smart contracts, leading to attacks on DAO projects on the Ether platform and the 

theft of more than $50 million in digital currency [7].Smart contracts on the CoinBene exchange were 
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vulnerability, leading to the theft of a large amount of digital currency [8]. 2020, the UniSwap platform 

smart contract vulnerability was exploited by hackers, stealing over $500,000 in digital currency 

[9].The security of smart contracts is closely related to the security of the blockchain network. On the 

one hand, smart contracts as an important part of the blockchain ecosystem, and the security of smart 

contracts directly affects the security and stability of the blockchain ecosystem. On the other hand, with 

the rapid development of blockchain technology, the application scenarios of smart contracts are 

expanding, and only by ensuring the security of smart contracts can they be better applied. Therefore, 

it is necessary to conduct security audits on smart contracts before deploying them to blockchain 

networks [10]. 

To prevent further smart contract security incidents, researchers, scholars, and companies are 

actively researching and developing more secure and reliable smart contract detection technologies and 

tools to ensure the security and stability of blockchain systems. However, most smart contract 

vulnerability detection methods still suffer from significant drawbacks, including low efficiency, 

inability to perform high-volume smart contract vulnerability detection, low automation, and long 

detection times. This paper examines the literature published by domestic and foreign scholars on smart 

contract vulnerability detection, identifies the shortcomings of existing research, and proposes an 

automated vulnerability detection method for (Ethereum) smart contracts named W2V-SA (Word2vec-

Solidity Attention) based on the deep neural network method. By integrating the benefits of different 

neural networks, W2V-SA accurately and comprehensively extracts features, surpassing single smart 

contract vulnerability detection models, with higher detection efficiency and the capability of detecting 

a large number of smart contract vulnerabilities. The primary contributions of this paper are as follows: 

1. This paper proposes a deep neural network-based vulnerability detection method for smart 

contracts (W2V-SA), which develops specific vulnerability identification checking models for 

different vulnerability types of smart contracts. 

2. Combining different neural network models and word embedding methods, the scheme 

proposed in this paper can effectively improve the efficiency and accuracy of smart contract 

vulnerability detection. 

3. The results of extensive experimental comparisons indicate that the W2V-SA model, which 

combines the advantages of several neural network models, surpasses individual neural network 

models and machine learning algorithms in detecting smart contract vulnerabilities. The three 

performance evaluation metrics- precision, recall, and F1-score, all exhibit an improvement of over 

4%, signifying superior detection performance. 

The structure of this paper comprises five sections. The first section serves as an introduction, 

presenting the background and motivation of the research. In the second section, an overview of related 

work is provided. The third section outlines the proposed method and architecture. The results of the 

experiment are presented in the following section. Finally, the fifth section is the conclusion and 

provides an outlook for future research. 

2. Related Work 

This section covers several fundamental concepts related to the research, such as Ethereum smart 

contract vulnerabilities, neural network models, and existing methods for detecting smart contract 

vulnerabilities are examined. 

2.1. Smart Contracts Vulnerability 

The smart contract is essentially a piece of code written by a human that runs automatically on a 

blockchain network, which completes the given operations according to predefined rules [11]. 

However, the code written by humans based on known knowledge is difficult to guarantee perfect 

application in different scenarios, and it is also difficult to avoid the emergence of smart contract 

vulnerabilities. Smart contract vulnerabilities are flaws or weaknesses in the design, implementation, 

or use of smart contracts. These weaknesses can be exploited by malicious attackers and lead to 

unexpected behavior in smart contracts, such as theft of funds and network crashes [6]. The reasons for 

vulnerabilities arising from smart contracts can be summarized as follows. 



 Code quality issues 

A smart contract is essentially a piece of code, and if the code is not of high quality, it is susceptible 

to a variety of vulnerabilities. For example, there can be unvalidated input in the code, dead loops, stack 

overflows, and other issues that can lead to contract execution failures or attacks. 

 Logic vulnerabilities 

The writing of smart contracts often involves a lot of complex business logic, and if the writer does 

not consider all possible scenarios, logic vulnerabilities may arise. For example, when writing a multi-

signature contract, if the writer does not consider the case where everyone is unable to sign, it may lead 

to an attack on the contract. 

 External dependency issues 

Smart contracts may need to rely on external services and libraries, such as cryptographic libraries, 

random number generators, etc. If these external dependencies are vulnerable, the security of the smart 

contract can be compromised. 

2.2. Smart Contracts Vulnerability Detection 

Currently, the mainstream detection methods of smart contract vulnerability can be divided into two 

types, one is static analysis, and another method is dynamic analysis. Static analysis is an analysis 

method of vocabulary, syntax, control flow, and data flow information before the source code is run. It 

does not need to compile or run smart contract code to identify common vulnerabilities. With the rise 

of artificial intelligence, a large number of methods of machine learning and deep learning have realized 

static analysis. Liu et al. [12] propose a smart contract vulnerability detection method based on a 

combination of deep learning and expert patterns, which converts the code into a semantic graph to 

extract deep graph features and later fuses local expert patterns for prediction. Slither [13] is a static 

analysis framework that converts smart contract code to SlithIR, which is the method that can 

simultaneously be a platform for finding bugs, suggesting code optimizations, and improving the 

understanding of a given smart contract code. Contractward [14] converts smart contract source code 

into opcodes and builds models using five machine learning algorithms and two sampling algorithms 

to achieve efficient detection of six smart contract vulnerabilities. In summary, static methods often 

rely on vulnerability models constructed by human experts and vulnerability-type criteria developed by 

experts [15]. The high cost of manual construction and human subjectivity seriously affect the false 

positive rate and omission rate of smart contracts as the complexity of the code program increases. 

Static methods are generally only applicable to small-scale code programs and cannot cope with large 

and complex programs and diverse vulnerabilities. 

Dynamic analysis is a method of debugging and checking the program when it running. Oyente [16] 

is a well-known tool for detecting smart contract vulnerabilities based on symbolic execution. This tool 

uses symbolic execution to traverse execution paths on the control flow graph to analyze vulnerabilities 

in smart contracts, including error-handling exceptions, transaction order dependencies, timestamp 

dependencies, and reentrancy. ConFuzzius [17] is the first tool to detect smart contract vulnerabilities 

using hybrid fuzzy testing, which combines evolutionary fuzzy, lightweight EVM, symbolic taint 

analysis, and genetic algorithms to generate inputs that satisfy complex conditions to achieve coverage 

of more program paths and uncover deeper vulnerabilities. Manticore [18] examines the security of 

smart contracts by enumeration all execution paths of the contract. The tool can detect vulnerabilities 

of integer overflow and uninitialized memory. Ding et al. [19] proposed a fuzzy technology-based 

approach to detect vulnerabilities in Hyperledger Fabric smart contracts. The method is well combined 

with the fuzzing tool go fuzz and has achieved better results in practice. The current mainstream 

dynamic analysis methods, such as symbolic execution and fuzzy testing, have great challenges. First, 

fuzzy testing has difficulties in finding complex vulnerabilities with long execution paths and 

concealment. Second, most programs need to judge the reasonableness of the input data, and blind 

random variation will lead to inefficiency in generating test cases. Third, in the process of fuzzy testing, 

different test cases may execute the same path and trigger the same vulnerabilities. The challenge with 

symbolic execution is path explosion. Dynamic analysis methods require exploring all executable paths 

in a smart contract and analyzing the dependency graph of a smart contract [20]. It has problems such 



as high time overhead and unsuitability for high-volume contract detection, and these problems can 

lead to reduced efficiency of smart contract vulnerability detection. 

2.3. Deep Neural Network Hybrid Model 

In recent years, there has been a growing preference for deep neural network hybrid models. In these 

models, each component compresses different feature values based on its unique characteristics, 

resulting in more comprehensive extracted feature values compared to individual neural network 

models. SAMF-BiLSTM [21] is a hybrid neural network model that integrates a self-attention 

mechanism with a bidirectional LSTM featuring multichannel features. This model performs better in 

sentiment analysis tasks. Jin et al. [22] proposed a hybrid neural network model, Bi-LSTM-CRF with 

Self-Attention, for Korean named-entity recognition. Xu et al. [23] proposed a hybrid neural network 

model, Self-Attention Bi-LSTM combined with ALBERT, for detecting spam. 

Since CNN does not require manual feature selection [24], feature extraction is fast and effective, 

and has strong generalization ability [25]. Compared with other network models, the self-attention 

mechanism has lower model complexity, fewer parameters, and less arithmetic power requirement, and 

its computation at each step does not depend on the results of the previous step, which can be processed 

in parallel as CNN [26]. In addition, the self-attention mechanism is not limited by the length of the 

text. Even if the text is long, the self-attention mechanism can obtain the global and local connections 

and capture the key parts of the text without losing the important information. Therefore, the paper 

combines these two models with a good-performing word embedding method to build a method for 

smart contract vulnerability detection. To demonstrate that the performance of the hybrid model is better 

than that of the single model, the CNN and fastText models are chosen to compare with the performance 

of W2V-SA. FastText [27] is a fast text classification model that is close to deep neural network 

classification models in terms of precision. Moreover, no pre-trained word embeddings are required in 

fastText compared to the deep neural networks model, speeding up training and testing while 

maintaining high precision. The CNN modeluses [28] word embeddings for word pre-training, which 

was first proposed by Kim for sentiment classification in the field of NLP, and has achieved better 

results. 

3. Overall Framework 

In order to achieve efficient and accurate detection of smart contract vulnerabilities, this paper 

introduces a self-attention mechanism in the neural network model to improve the feature extraction 

rate of the model and enhance the performance of smart contract vulnerability detection. This subsection 

mainly introduces the structural design of W2V-SA and the functions of each layer of W2V-SA. 

3.1. Overall Method Structure  
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Figure 1: Structure of W2V-SA 

 



As shown in Figure 1, the W2V-SA hybrid model consists of three layers, which are the word 

embedding layer, feature extraction layer, and classification layer. After the conversion of smart 

contract source code into opcodes, each smart contract 𝐶𝑤  takes word 𝑤𝑖 as the basic unit and forms a 

sequence of words: {𝑤1,𝑤2,𝑤3, … … , 𝑤𝑛}. In the word embedding layer, the word2vec model maps each 

word 𝑤𝑖to a multidimensional vector 𝑤𝑖
𝐸. The word embeddings in the sequence are concatenated to 

obtain a word embedding matrix representation of the entire smart contract: 𝐶𝑤 = 𝑤1
𝐸 + 𝑤2

𝐸 + 𝑤3
𝐸 +

⋯ + 𝑤𝑖
𝐸. After converting smart contracts into word embeddings, smart contracts are classified and 

labeled into two classes: with vulnerability (positive) and without vulnerability (negative), and they are 

first mixed and disrupted, and then their features are extracted using a hybrid neural network model. In 

the feature extraction layer, the features extracted by the convolutional neural network are input to the 

self-attention layer to calculate the attention weights, analyze the relationship between the mining 

contexts, and continuously train the smart contracts with and without vulnerabilities for feature 

extraction. Finally, the training results are classified and the model is saved. To verify the validity of 

the model, unknown smart contracts are fed into the model for prediction to determine whether they 

contain some type of vulnerability. 

3.2. Word Embedding Layer 

Before word embedding training of smart contracts, the source code of smart contracts needs to be 

compiled into bytecodes and then de-compiled into opcodes. According to the specification of the 

Ethereum [29], each bytecode has its corresponding opcode, and there are 144 bytecodes in total 

corresponding to the opcode. The mapping between bytecode and opcode is shown in Table 1. 

 

Table 1 
The relationship mapping table of byte code to opcode 

Bytecode Opcode 

0x00 STOP 
0x01 ADD 
0x02 MUL 
0x03 SUB 
...... ...... 
0xfd REVERT 
0xfe INVALID 
0xff SELFDESTRUCT 

 

Table 2 
Word embedding training results 

Opcode Word Embedding 

PUSH1 

0.27597266 0.005130794 0.00354396 
0.062392443 -0.31270385 0.028506324 

-0.02617409 0.09100188 0.08294053 
0.13363415 -0.18524168 -0.20330547 
0.07561363 -0.034679547 0.54183996 
0.14461869 0.03434112 -0.20602745 

-0.38273817 -0.043624587 0.0013151914 
-0.2788695 0.1741333 -0.0054611214 
0.037056547 0.009860475 0.21438162 
0.20419425 0.08955717 -0.15953913 

 

The opcode is a text message and cannot be entered directly into the model, we need to convert the 

opcode into a digital representation. We choose to use the skip-gram model in the word2vec word 



embedding model to vectorize the text. In this section, 144 opcodes are trained by the skip-gram model, 

and after continuous testing, we choose the most suitable representation of text conversion into vectors: 

each opcode is mapped into a 30-dimensional vector. Taking the opcode PUSH1 as an example, the 

word vector training results are shown in Table 2. 

 

3.3. Feature Extraction Layer 

After the skip-gram model finishes training the smart contract word embeddings, as shown in 

Figure.2, the hybrid neural network model starts feature extraction of the input word embeddings. 
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Figure 2: Feature extraction layer 

 

In the convolutional neural network branch, As seen in Figure 2, the data output from the word 

embedding layer is passed into the convolutional layer, which extracts some primary features through 

local connectivity and weight sharing. Then it is passed to the pooling layer for down-sampling. The 

pooling layer can effectively reduce overfitting and improve the fault tolerance of the model. This study 

utilized three layers of convolutional neural networks for local feature learning. The advantage of using 

three layers of convolution is to reduce the number of network parameters, thereby reducing the amount 

of data that needs to be learned. As the number of layers increases, the model can extract more complex 

and abstract information during training, thus improving learning efficiency. 

The self-attention mechanism model is another branch of the feature extraction layer, which is an 

enhanced version of the attention mechanism that relies less on external information and is proficient 

at capturing data features or correlations within features. By learning the correlation between different 

words, the self-attention mechanism selects the more relevant words from a vast amount of information. 

It enables better comprehension of the connections between local contexts and extraction of essential 

feature information while reducing the data quantity. 

The text representation sequence obtained from the convolutional layer is input to the self-attention 

layer for attention weight calculation, where the larger the weight is, the more focused its corresponding 

information, and the weight represents the importance of the information. The computing process of 

the self-attention mechanism is shown in Figure 3. 𝑎𝑖  in the formula denotes the input vector and 

𝑤𝑞 , 𝑤𝑘 , 𝑤𝑣 denotes the weight matrix. Take input vectors 𝑎1 and 𝑎2 as an example. first, multiply 𝑎1 

by 𝑤𝑞 , 𝑤𝑘, 𝑤𝑣  three weight matrices respectively to get 𝑞1  (query), 𝑘1 (key), 𝑣1  (value), and input 

vector 𝑎2 similarly, the calculation formula can be expressed as 

𝑞𝑖 = 𝑎𝑖 ∙ 𝑤𝑞 (1) 
𝑘𝑖 = 𝑎𝑖 ∙ 𝑤𝑘 (2) 
𝑣𝑖 = 𝑎𝑖 ∙ 𝑤𝑣 (3) 

Second, the relevance between input vectors is calculated. 𝛼𝑖,𝑗  is represented as the relevance 

between input vectors 𝑎𝑖  and 𝑎𝑗 . According to Equation (4), vector 𝛼1,2 is obtained by multiplying 



matrix 𝑞1 and 𝑘2. Third, the attention scores between input vectors are calculated. Third, the attention 

scores between the input vectors are computed. according to Equation (5), 𝛼1,2 is computed by the 

activation function Soft-max, and then the input vectors 𝑎1 and 𝑎2 are obtained as the attention scores 

𝛼′1,2. Finally, the output vector 𝑏2 is obtained by multiplying the attention scores 𝛼′1,2 with the value 

𝑣2 according to Equation (6). 
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Figure 3: The self-attention mechanism computation process 

 

𝛼𝑖,𝑗 = 𝑞𝑖 ∙ 𝑘𝑗 (4) 

𝛼′
𝑖,𝑗 =

𝑒𝑥𝑝(𝛼𝑖,𝑗)

∑ 𝑒𝑥𝑝(𝛼𝑖,𝑗)𝑗

(5) 

𝑏𝑖 = ∑ 𝑣𝑖 ∙ 𝛼′𝑖,𝑗

𝑗

(6) 

The subsequent layer after the self-attention layer is the Flatten layer, this layer helps to decrease 

the dimensionality of the final output vector. The Dropout layer is positioned after the Flatten layer, 

and it disregards a certain number of neurons with a certain probability in each training batch. This can 

significantly reduce overfitting. The final layer is the Dense layer, which maps the feature space 

computed in the previous layer to the sample label space. Its primary role is to integrate feature 

representation into a single value, which reduces the influence of feature position on classification 

results and enhances the entire network's robustness. 

The W2V-SA model, which combines the word embedding model with the hybrid deep neural 

network model, is proposed in this paper. By comprehensively extracting features, W2V-SA can 

effectively enhance the efficiency of smart contract vulnerability detection. In the following section, 

we employ the W2V-SA model in actual smart contract vulnerability detection and establish the 

effectiveness of the proposed model through numerous experiments. 

4. Experiments and Results 

This subsection encompasses a series of comprehensive experiments that evaluate the efficiency of 

the hybrid neural network model proposed in this paper for detecting vulnerabilities in smart contracts. 

4.1. Dataset 

The data utilized in this paper comprises authentic smart contracts sourced from the official 

Ethereum website. After verification and removal of duplicate and incomplete smart contracts, we 

acquired a total of 98,919 smart contracts. In this study, the dataset was categorized and labeled into 

two groups, namely smart contracts with vulnerabilities and smart contracts without vulnerabilities. The 

detection of six types of smart contract vulnerabilities was the focus of this paper, including AssertFail 



vulnerability, BlockTimestamp vulnerability, CheckEffects vulnerability, LowLevelCalls 

vulnerability, Reentrancy vulnerability, and IntegerUnderFlow vulnerability. Table 3 illustrates the 

distribution of the smart contract dataset. 

Table 3 indicates that the distribution of smart contracts with and without vulnerabilities is 

imbalanced, and direct usage could lead to severe overfitting. Therefore, the dataset requires balancing 

before performing word embedding transformation. For imbalanced datasets, this paper utilizes a 

technique called ADASYN, which is an adaptive synthetic sampling method proposed by He et al. [30]. 

ADASYN translates the difficulty of samples into weights to facilitate the learning process and provides 

a higher proportion of the few difficult samples to simulate the data distribution. Table 4 displays the 

balanced dataset, and the distribution of the balanced dataset is more reasonable than the original 

dataset. 

 

Table 3 
Distribution of smart contract data sets 

Types of vulnerability 
Positive 

(With vulnerability) 
Negative 

(Without vulnerability) 
Total 

AssertFail 7296 9960 17256 
BlockTimestamp 5624 11785 17409 

CheckEffects 6851 10557 17408 
LowLevelCalls 5153 12257 17410 

Reentrancy 5130 6897 12027 
IntegerUnderFlow 10882 6527 17409 

 
Table 4 
Distribution of balanced smart contract dataset 

Types of vulnerability 
Positive 

(With vulnerability) 
Negative 

(Without vulnerability) 
Total 

AssertFail 7296 9960 17256 
BlockTimestamp 5624 6231 11855 

CheckEffects 6851 7945 14796 
LowLevelCalls 5153 6034 11187 

Reentrancy 5130 6897 12027 
IntegerUnderFlow 6697 6527 13224 

4.2. Comparison of Results 

The fundamental concept of the W2V-SA model is to merge word embedding with a hybrid deep 

neural network model to enhance the model's performance. Figure 4 illustrates the training process of 

the W2V-SA model, and all four curves of the model gradually stabilize after reaching 15 training 

iterations. Throughout the training phase, the training and test sets exhibit similar curves and are in 

close proximity, indicating that the model does not overfit during the training process. 

The W2V-SA model is evaluated for detecting common smart contract vulnerabilities, including 

AssertFail vulnerability, BlockTimestamp vulnerability, CheckEffects vulnerability, LowLevelCalls 

vulnerability, Reentrancy vulnerability, and IntegerUnderFlow vulnerability. The detection outcomes 

are presented in Table 5. 

 



 
Figure 4: Training process of W2V-SA model 

 

Table 5 
Test results 

Types of vulnerability Precision Recall F1-score 

AssertFail 94.50% 94.40% 94.45% 
BlockTimestamp 95.56% 95.47% 95.51% 

CheckEffects 94.99% 94.98% 94.98% 
LowLevelCalls 94.46% 94.46% 94.46% 

Reentrancy 97.71% 97.70% 97.70% 
IntegerUnderFlow 91.86% 91.74% 91.80% 

 

Table 5 demonstrates that the W2V-SA model presented in this paper achieves over 90% for the 

three evaluation metrics, Precision, Recall, and F1-score, for the six aforementioned vulnerabilities. To 

establish the superiority of the W2V-SA model, this paper compares it with the fastText and CNN 

models to evaluate the performance of detecting smart contract vulnerabilities under the same 

experimental environment. The results of the comparison between the W2V-SA model proposed in this 

paper and fastText and CNN are depicted in Figure 5 to Figure 7.  

As shown in Figure 5 and Figure 6, in terms of Precision, the best detection for the six smart contract 

vulnerability types is the W2V-SA model, with Precision exceeding 90%, reaching 94.85% on average. 

The next best model is CNN, with an average Precision of 88.34%. The last is fastText, with a Precision 

average of only 84.99%. In terms of Recall, the best detection effect is the W2V-SA model, with Recall 

exceeding 90% and the average value reaching 94.79%. The next is CNN, with a recall average of 

88.08%. The last is fastText, with a recall average of only 84.99%. This means that the W2V-SA model 

is more accurate in detecting smart contract vulnerabilities, and is more suitable for smart contract 

vulnerability detection than fastText and CNN. Among the other smart vulnerability types, the best 

Reentrancy vulnerability detection is W2V-SA, with Precision and Recall metrics exceeding 97%. 

Among the models compared, the CNN model performs relatively in the detection of Reentrancy 

vulnerabilities, with Precision and Recall metrics exceeding 93%, and the worst result is fastText, with 

Precision and Recall metrics not exceeding 90%. The performance of CNN with fastText in the 

detection task of Reentrancy vulnerabilities is still lower than that of the W2V-SA model. 

 



 
Figure 5: Comparison results of Precision for different models 

 

 
Figure 6: Comparison results of Recall for different models 

 

The F1-score is a metric utilized to assess the comprehensive performance of the model, and a higher 

F1-score value indicates a superior model. As illustrated in Figure 7, the average F1-score values of 

W2V-SA exceed 94%, followed by CNN with an average F1-score of over 88.21%, while fastText has 

the lowest average F1-score value of only 84.99%.When compared to CNN and fastText, both of which 

are single-model deep neural network models and algorithms, the W2V-SA model proposed in this 

paper combines the advantages of several deep neural network models. The comparison results 

demonstrate that the average value of all metrics for the W2V-SA model exceeds that of the CNN model 

by more than 6%, and that of the fastText model by more than 10%, under the same experimental 

environment. Among all the models involved in the comparison, the F1-score of the W2V-SA model is 

higher, indicating the effectiveness of the vulnerability detection method used in the model. In terms of 

performance metrics, the Recall and Precision of the CNN and fastText models are inferior to those of 



the W2V-SA model. As a result, the detection outcomes of the W2V-SA model can identify more 

samples containing smart contract vulnerabilities. 

 

 
Figure 7: F1-score comparison 

 

The results suggest that the W2V-SA model proposed in this paper is highly effective in detecting 

smart contract vulnerabilities, with all metrics surpassing 90%. Additionally, it outperforms single-

model neural network models and algorithms with an exceptional level of performance.To summarize, 

in contrast to previous smart contract vulnerability detection models, the W2V-SA model can update 

the detection model based on different types of vulnerabilities, maintaining a high accuracy rate. 

Nevertheless, there are limitations to the smart contract vulnerability detection model proposed in this 

paper. Firstly, the W2V-SA model can only identify whether a smart contract contains a certain type of 

vulnerability and cannot detect if a smart contract contains multiple types of vulnerabilities. Secondly, 

the Precision of the W2V-SA model is higher for detecting smart contract vulnerabilities with clear 

features, whereas it is lower for detecting vulnerabilities with obscure features. For example, the 

Precision of the W2V-SA model in detecting integer underflow vulnerabilities is 91.86%, whereas in 

detecting reentrant vulnerabilities, it is 97.71%. 

5. Conclusions 

The W2V-SA model proposed in this paper is a deep neural network-based smart contract 

vulnerability detection model that amalgamates the advantages of various deep neural network models. 

By meticulously considering contextual information during vulnerability detection, this model 

accurately and rapidly extracts features. To evaluate the performance of the W2V-SA model, we 

conducted comparative tests with other smart contract vulnerability detection methods under the same 

experimental environment. The results showed that the W2V-SA model possesses excellent smart 

contract vulnerability detection capabilities and is more efficient than other models in detecting 

common smart contract vulnerabilities. Furthermore, this paper demonstrated the effectiveness of the 

self-attention mechanism in the model through comparative experiments. 

In future work, we will focus on studying vector representation methods and feature extraction 

methods for text, improving model structures, and increasing the efficiency of smart contract 

vulnerability detection. The next work will delve into two aspects: (1) Using sentence vectors or other 

word embedding models to improve the model structure. (2) Combining different attention mechanisms 

to improve our approach. In order to cope with the constantly updated smart contract vulnerabilities 



and to face the serious harm caused by smart contract vulnerabilities, we need to explore more efficient 

methods for detecting smart contract vulnerabilities. 
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